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ABSTRACT

Objective: Hospitals encounter challenges in performing efficient scheduling and good resource management to ensure 
advanced healthcare quality is provided to patients. Operating room (OR) scheduling is important as it affects workflow 
efficiency, critical care and OR optimization. Automatic scheduling and accurate surgical case duration prediction have critical 
roles in improving OR utilization. To estimate surgical case duration, most hospitals rely on historic averages obtained from 
the electronic medical record (EMR) scheduling systems. However, this produces low accuracy leading to negative impacts, e.g. 
rescheduling and cancellation.

Methods: A large date set, which covered various details on patients, surgeries, specialties and surgical teams, was obtained. 
Surgical cases within 60-600 min from 14 specialties were selected for predictive model development. These data included 
over 500 different procedure types. All models were evaluated with R-square (R2), mean absolute error (MAE), percentage 
overage (actual duration > prediction), underage (actual duration < prediction) and within. Subsequently, all selected cases 
were separated into cases with 1 procedure or ≥ 2 procedures and retrained with the best model.

Results: The extreme gradient boosting (XGB) model was superior, achieving a higher R2, lower MAE and higher percentage 
within on a time-wise testing set (not in the original data). The errors (actual - predictions) could be reduced using model 
retrained on cases with ≥ 2 procedures (XGB2). Interpretation of XGB predictions with Shapley additive explanations showed 
that procedure type, anesthesia type, and procedure no. were the top 3 most important features. Specific and higher interactions 
between anesthesia type, procedure no. and specialty were also identified in a subset of complicated cases.

Conclusions: The XGB and XGB2 models outperformed other models in predicting surgical case durations. They are deployed 
as a stand-alone machine intelligence server connected by the EMR system for scheduling. This will eventually lead to reduce 
medical and financial burden for healthcare management.

Keywords: Operating room; Scheduling; Machine learning; Extreme gradient boosting; Anesthesia type; Surgery; Shapley 
additive explanations
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INTRODUCTION
It has become increasingly important for clinics and hospitals to 
manage resources for critical care during the COVID-19 pandemic 
period. Statistics show that approximately 60% of patients 
admitted to the hospital will need to be treated in the operating 
room (OR) [1], and the average OR cost is up to 2,190 dollars 
per hour in the United States [2,3]. Hence, the OR is considered 
as one of the highest hospital revenue generators and accounts 
for as much as 42% of a hospital’s revenue [3,4]. Based on these 
statistics, a modern OR scheduling and management strategy is not 
only critical to patients who are in need of elective, urgent and 

emergent surgeries but is also important for surgical teams to be 
prepared. Owing to the high importance of the OR, OR efficiency 
improvement has high priority so that the cost and time spent on 
the OR is minimized while the OR utilization is maximized to 
increase the surgical case number and patient access [5]. 

In a healthcare system, numerous factors are involved in 
affecting OR efficiency, for example, patient expectation and 
satisfaction, interactions between different professional specialties, 
unpredictability during surgeries, surgical case scheduling, etc. [6]. 
Although the OR process is complex and involves multiple parties, 
one way to enhance OR efficiency is by increasing the accuracy of 
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predicted surgical case duration. Over- or under-utilization of OR 
time often leads to undesirable consequences such as idle time, 
overtime, cancellation or rescheduling of surgeries, which may 
induce a negative impact on the patient, staff and hospital [7]. In 
contrast, high efficiency in OR scheduling not only contributes to 
a better arrangement for the usage of the OR and resources but 
can also lead to a cost reduction and revenue increase since more 
surgeries can be performed. 

Currently, most hospitals schedule surgical case duration by 
employing estimations from the surgeon and/or averages of 
historical case durations, and studies show that both of these 
methods have limited accuracy [8-10]. For case lengths estimated by 
surgeons, factors including patient conditions and anesthetic issues 
might not be taken into consideration. Moreover, underestimation 
of case duration often occurs because surgeon estimations are 
usually made by favoring maximizing block scheduling to account 
for potential cancellations and cost reduction. Furthermore, 
operations with higher uncertainty and unexpected findings during 
surgery add difficulties and challenges to case length estimation 
[8]. Historical averages of case duration for a specific surgeon or 
a specific type of surgery obtained from electronic medical record 
(EMR) scheduling systems have also been used in hospitals. 
However, these methods have been shown to produce low accuracy 
due to the large variability and lack of the same combination of 
factors in the preoperative data available on the case that is being 
performed [11].

To improve the predictability, researchers have utilized linear 
statistical models, such as regression, or simulation for surgical 
duration prediction and evaluation of the importance of input 
variables [10,12–14]. However, a common shortcoming of these 
studies is that relatively fewer input variables or features were 
used in their models than in alternative approaches due to the 
limitation of statistical techniques in handling too many input 
variables. Recently, machine learning (ML) has been shown to be 
powerful and effective in aiding health care management. Master 
et al. (2017) trained multiple ML models, including decision tree 
regression, random forest regression, gradient boosted regression 
trees and hybrid combinations, to automate prediction and 
classification of pediatric surgical durations [15].

Ensemble algorithms, implementing least-squares boosting and 
bagging models with ML, developed by Shahabikargar et al. were 
shown to reduce the error by 55% compared to the original error 
[7]. With the use of a boosted regression tree, Zhao et al. increased 
the percentage of accurately booked cases for robot-assisted surgery 
from 35% to 52%. Bartek et al. reported that they were able to 
improve predicted cases within 10% of the tolerance threshold 
from 32% to 39% using an extreme gradient boosting model 
[16]. Nonetheless, these ML studies included only 5-12 different 
types of procedures and specialties to train their ML models, 
which may limit the generalization of these models.

In this study, more than 170,000 cases were obtained from China 
Medical University Hospital (CMUH) containing hundreds types 
of procedures across multiple different specialties. From the 
original data, we analyzed the working time of primary surgeons 
and computed their total number of previous surgeries and the 
total time spent on previous surgeries within 24 hr as well as within 
the last 7 days. Since surgeons’ working performance might be 
affected by previous events, surgical cases performed by the same 
primary surgeon should not be considered as totally independent 
and unrelated. Hence, previous surgical counts and working time 

obtained from surgeons’ data were included as additional features 
in our ML model training to account for their influences on 
surgical case duration. With a total of 20 features, ML models were 
built and trained to improve surgical case duration prediction. 
Subsequently, model predictions were interpreted with Shapley 
additive explanations (SHAP) to unravel global importance of 
features in the ML model and local interaction of features in a 
subset of cases.

METHODS 
Data sources

Data for this study were collected retrospectively from the EMR 
scheduling system of CMUH located in Taichung, Taiwan. The 
data set covered a broad variety of details about patients, surgeries, 
specialties and surgical teams. A total of 170,748 cases performed 
between Jan 1, 2017, and Dec 31, 2019, were used for model 
development. Additionally, 8,672 cases performed between Mar 1 
and April 30, 2020, were used as data for time-wise model evaluation 
in this study. The proportions regarding patient characteristics 
in the overall data set and time-wise testing set were reported in 
Table 1. Over 500 different types of procedures across 14 surgical 
specialties were included in the training data set. Institutional 
review board approval (CMUH109-REC1-091) was obtained from 
CMUH before carrying out this study.

Selection and exclusion criteria, data processing and feature 
selection

Emergent and urgent surgical cases were removed since these 
two types of surgeries cannot be scheduled until they happen. 
Surgical records with missing values in procedure type and 
specialty were excluded. Patients who were pregnant, patients’ 
age younger than 20 and duplicates were also removed. The 
exclusion criteria are shown in Figure 1. Since surgical cases that 

Table 1: Proportion based on patient characteristics in the overall original 
data set and time-wise testing set.

 Overall (n = 86,621) Test(n =4,257)

Gender

Male 43935 (50.7%) 2105 (49.4%)

Female 42686 (49.3%) 2152 (50.6%)

Age

20-45 24740 (28.6%) 1188 (27.9%)

45-65 33829 (39.1%) 1699 (39.9%)

65-80 21481 (24.8%) 1054 (24.8%)

>80 5663 (6.5%) 280 (6.6%)

In-/out-patient

In-patient 73585 (85%) 3681 (86.5%)

Out-patient 13036 (15%) 576 (13.5%)

Hypertension

Yes 26039 (30%) 1287 (30.2%)

No 49059 (56.6%) 2427 (57%)

Unknown 11523 (13.3%) 543 (12.8%)

BMI

<18.5 21164 (24.4%) 1176 (27.6%)

18.5-22.9 28466 (32.9%) 1486 (34.9%)

23-26.9 26122 (30.2%) 1313 (30.8%)

>= 27 5065 (5.8%) 253 (5.9%)

Missing 5804 (6.7%) 29 (0.7%)
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consumed longer duration may benefit more from predictions 
using ML approach and human interpretation may fail to 
consider all the complex interaction of the variables, surgical 
cases within duration of 60-600 min were selected. Surgical 
cases that took more than 10 hours were not considered as the 
case numbers were low. These exclusion and selection criteria 
resulted in a data set of 86,621 cases that were used for model 
training and validation. The same criteria were also applied to 
the data of Mar 1 to April 30, 2020, and 4,257 cases remained 
after exclusion and selection. These data were treated as time-
wise testing set since they were temporally segregated from the 
original data.

Features were selected from available data sources based on 
literature review and discussion with surgeons and administrators 
of CMUH. Although the model performance could be enhanced 
by some postoperative information (e.g., total blood loss), these 
parameters cannot be used as features for model training because 
they were either missing or simply estimated by surgeons before 
surgery. Therefore, only variables that were available before 
surgery were selected for model development. Furthermore, the 
correlations of feature variables with the surgical case duration 
were checked by performing a regression analysis. Only those 
variables with significant (p-value < 0.05) correlation coefficients 
were selected as predictor variables for model training. 
When visualizing all the categories of procedure type and the 
International Classification of Diseases (ICD) code, there were 

hundreds to thousands of categories in these two variables. To 
reduce the problem of having too many dimensions during 
one-hot encoding of categorical features and running into 
the curse of dimensionality, procedure type and ICD codes 
with less than 30 cases within 2017-2019 were not included in 
one-hot encoding. Surgical cases with these rare procedure types 
were removed as well. In addition, since surgical case duration 
can be related to the performance of surgeons and surgeons’ 
performance is affected by their working time, we analyzed 
primary surgeons’ previous surgical events. The number of 
previous surgeries and total surgical minutes performed by 
the same primary surgeons within the last 7 days and 24 hr. 
Together, 20 predictor variables were included for predictive 
model development in this study. These predictors can be 
categorized into 5 groups: patient, surgical team, operation, 
facility and primary surgeon’s prior events (Table 2).

Model development and training

We trained multiple algorithms for surgical case duration 
prediction. Surgical case duration (in minutes) is the total period 
starting from the time the patient enters the OR to the time of 
exiting the OR (“wheels-in to wheels-out”). The distribution of 
surgical case duration was observed to be skewed to the right and it 
follows a log-normal distribution as reported by some past studies 
[9,16]. A logarithmic transformation on the surgical case duration 
was performed. All models were built by using the log-transformed 

Figure 1: The workflow of model training and evaluation. The data used 
for model training fall within the time range of Jan 1, 2017, to Dec 31, 
2019. From this data set, cases were excluded based on the following 
criteria: duplicates, emergent and urgent cases, patients with age younger 
than 20, pregnant patients, and cases with missing values. The total 
number of cases included in the data set for model development was 
86,621. There were two stages (labeled as (1) and (2)) of machine learning 
(ML) model development in this study. In stage 1, the selected data were 
split into training (95 %) and validation (5 %) subsets. ML and linear 
regression models were developed on the training data set and evaluated 
on the validation data set using R 2 and mean absolute error (MAE). 
Model performance was also validated using percentage within (absolute 
duration differences falling within 0.15 x prediction or 30 min), overage 
(actual > prediction) and underage (actual < prediction). 

Table 2: Preoperative data with 20 predictor variables were used as inputs 
for model development. The predictor variables can be categorized by 
relationship to patient, surgical team, operation, facility and surgeon’s prior 
events. These predictor variables were selected based on the significance 
(p-value<0.05) of their correlations with the outcome using a regression 
analysis.  Text in parentheses is the code name of the corresponding feature 
variable that was used during model development and interpretation. BMI 
classification was performed following the standard for Asians and the 
categories are listed in Table 1.

Patient Surgical team
Primary surgeon’s prior 
events

Age 
Primary surgeon’s ID 
(DocID)

No. of previous surgeries 
performed by the surgeon on 
the same day (Opcount_1d)

Gender 
(SexName)

Surgeon team size 
(TeamSize)

Total surgical hours 
performed by the surgeon on 
the same day (Optoltime_1d)

ICD code 
(Diag)

Specialty (DivNo)

No. of previous surgeries 
performed by the surgeon 
within the last 7 days 
(Opcount_7d)

In-/out-
patient 
(OpType)

Primary surgeon’s age 
(Dr_age)

Total surgical hours 
performed by the surgeon 
within the last 7 days 
(Optoltime_7d)

ASA status 
(ASA) 
Hypertension

Primary surgeon’s year 
of eperience (Dr_year)

 

Operation Facility  

Procedure 
type (Proceed)

Room No. (OpRoom)  

Anesthesia 
type (Ana 
Value)

Day of the week 
(weekday) Time of day 
(Time of Day)

 

ICD: International Classification of Diseases; ASA: American Society of 
Anesthesiologists; BMI: Body mass index
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case duration as the target. Data visualization, processing, model 
development and evaluation in this study were all performed using 
Python.

There were two stages (stage 1 and stage 2 shown in Figure 1) of 
model development in this study. 

Moreover, the models were further evaluated on the most recent 
surgical cases (from Mar 1 to Apr 30, 2020), which were not included 
in the original data set for model training. In stage 2, all selected 
cases were divided into cases with 1 procedure and ≥ 2 procedures. 
These two groups of cases were then retrained with XGB algorithm 
since XGB produced the best predictive performance in stage 
1. The same strategies, including the train-valid split ratio and 
hyperparameter tuning with 5-fold cross validation, for model 
development in stage 1 were applied in stage 2. Two additional 
ML models were built separately to predict surgical case durations 
for cases with 1 procedure (XGB1) or ≥ 2 procedures (XGB2). 
Eventually, comparisons were performed on the XGB model (stage 
1), XGB1 and XGB2 (stage 2) in the following three aspects: (1) 
within, overage and underage percentage; (2) errors of cases that 
were categorized as overage or underage; (3) feature importance 
of model revealed in SHAP analysis. SHAP: Shapley additive 
explanations.

A data-splitting strategy was used in the training for all the 
models. In stage 1, the original data were randomly split into 
training and validation subsets at a ratio of 95%: 5%. The 
training data were used to build different predictive models as 
well as to extract important predictor variables. The validation 
data were used for internal evaluation of the models. In 
addition to interval evaluation, time-wise evaluation on all the 
models was performed using data from Mar 1 to Apr 30, 2020. 
These data were not included in the original data set for model 
training. The results obtained from time-wise evaluation are better 
in verifying the robustness of the trained model in making an 
accurate prediction since they were temporally segregated from the 
original data. Moreover, by using train-valid split ratio of 95%: 
5%, the data size of the validation set was similar to the data size 
of the testing set. Historical averages of case durations based 
on procedure-specific data obtained from EMR systems were 
used as the baseline model for comparison. A multivariate 
linear regression (Reg) model was built to be used as a model 
for comparison. Two ML algorithms were trained to predict 
surgical durations in this study. The first ML algorithm 
used is random forest (RF), a tree-based supervised learning 
algorithm. RF uses bootstrap aggregation or a bagging technique 
for regression by constructing a multitude of decision trees based 
on training data and outputting the mean predicted value from 
the individual trees [17]. Tree-based techniques were suitable 
for our data since they include a large number of categorical 
variables, e.g., ICD code and procedure type, of which most 
were sparse. Extreme gradient boosting (XGB) algorithm is the 
second ML algorithm that was trained for comparison to the 
RF model. Recently, XGB algorithm has gained popularity 
within the data science community d ue to its ability in 
overcoming the curse of dimensionality as well as capturing the 
interaction of variables [18]. XGB is also a decision tree-based 
algorithm similar to RF. XGB and RF algorithms are different 
in the way on how the trees are built. It has been shown that 
XGB performs better than RF if parameters are tuned carefully 
[19,20]. For both RF and XGB algorithms, we adopted a 5-fold 
cross-validation strategy to tune the best hyperparameters, e.g., 

no. of estimators, maximum of depths, etc.

In stage 2, all the selected cases from the original data as 
well as the time-wise testing set were divided into cases with 
1 procedure and ≥ 2 procedures. This is because we observed 
that approximately 55% of the selected cases in the original data 
(47,236 cases) were cases with 1 procedure while the remaining 
consisted of cases with ≥ 2 procedures. Moreover, cases with 
1 procedure were mostly less complicated than cases with ≥ 
2 procedures. Building two separate ML models that predict 
durations for cases with 1 procedure or ≥ 2 procedures might 
help to improve overall predictive performance. Therefore, 
these two groups of cases were retrained with the ML algorithm 
that produced the best results in stage 1. The same strategies, 
including train-valid split ratio and hyperparameter tuning with 
5-fold cross validation, for model development in stage 1 were 
applied in stage 2. Cases with 1 or ≥ 2 procedures in the training 
set were used to train model to predict surgical case durations for 
cases with 1 (XGB1) or ≥ 2 procedures (XGB2). 

At last, three types of comparisons were performed on the 
XGB (stage 1), the XGB1 and XGB2 (stage 2) models: 
Within, overage and underage percentage;  
Errors of cases that were categorised as overage or underage;  
Feature importance of model revealed in Shapley additive 
explanations (SHAP) analysis.

Model evaluation

The three key metrics used to evaluate model performance in this 
study included (1) R-square (R2), (2) meanb absolute error (MAE), 
and (3) the percentage within, overage, and underage. R2 is the 
coefficient of determination representing the proportion of the 
variance for the actual case duration that is explained by predictor 
variables in the model.
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In this study, percentage within indicates the percentage of cases 
with absolute duration differences falling within a tolerance 
threshold (τ(y)). Two types of tolerance threshold were used: 
(1) τ(y)= 0.15 x prediction and (2) τ(y)= 30 min. Meanwhile, 
percentage underage is the percentage of cases with actual case 
duration shorter than prediction and case duration difference 
was more negative than the threshold. Similarly, percentage 
overage is the percentage of cases with actual case duration longer 
than prediction and case duration difference was more positive 
than the threshold. The condition that defines a case as overage, 
within and underage is summarised as follows:
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 Model interpretation with SHAP

To further interpreter the developed XGB model, we determined 
the SHAP value by applying SHAP package. SHAP can be used 
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to explain the predicted output by computing the contribution 
of each feature to the prediction [21]. SHAP value of a feature i, 
termed ϕi, can be obtained with the following equation:

S F{i}

 | S | !(| F |   | S |  1 )! [ ][f (S { i}  f (S))
| | !

i
F

φ
⊆

− −
= −∑ ∪

In the above equation, F is the set of all features considered for the 
XGB algorithm, S denotes a subset of features obtained from the 
set F except feature i, and f(S) is the expected output given by the 
set S of features. In summary, SHAP values indicate the impact of 
a feature on the model output. For our ML model, a large positive 
(negative) SHAP value of a feature implies that this feature has 
a large contribution in predicting a longer (shorter) surgical case 
duration. Meanwhile, a SHAP value of 0 implies that this feature 
have no or low contribution in predicting surgical case duration. 
SHAP values are expressed in log-odds (5) in this study

 log[P( ) / (1  P( ))],  P( ) 1 φ φ φ− < . 

Local interaction effects between features were identified by 
applying SHAP interaction values in the SHAP package. While 
SHAP value is the attribution for each feature, SHAP interaction 
value is a matrix of feature attributions [22]. The interaction effects 
on the off-diagonal and the main effects are on the diagonal. The 
SHAP interaction values is defined as:

S m/i, j
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In the equation (6), m is the set of all M input features. More 
details regarding the computation 180 of SHAP interaction values 
can be referred to Lundberg et al. (2020). The SHAP interaction 
value between feature i and feature j is split equally between each 
feature (Φ

i,j
 (f, x) = Φ

j,i
 (f, x)), and the total interaction effect is the 

sum of Φ
i,j
 (f, x) and Φ

j,i 
(f, x).

RESULTS 
Model development and evaluation

Since surgical cases completed within one hour can be estimated 
by surgeons easily, predictions made by ML model would provide 
more benefits to surgical cases longer than 60 min. On the other 
hand, surgical cases conducted more than 10 hr (60 min) were rare. 
Therefore, surgical cases with actual duration longer than 60 min 
and less than 600 min were selected from the original data from 
Jan 1, 2017, to Dec 31, 2019. Fourteen specialties with surgical 
cases numbers ≥ 100 per month were included in this study. These 
specialties are shown in Table 2. After processing data with the 
exclusion and selection criteria as shown in Figure 1, 82,289 cases 
containing 546 procedural categories were included for predictive 
model development. Furthermore, a recent data set collected from 
Mar 1 to April 30, 2020, was processed similarly to the original 
data set and used as the time-wise testing set to verify the robustness 
of model performance. There were total 4,257 cases in the time-
wise testing set. In the model development of stage 1, the original 

processed data were split into training and validation sets at 95%:5%. 
This generated a validation set with a case number of 4,332, which is 
close to the case number of the time-wise testing set.

Stage 1

In the hospital, surgical cases are scheduled according to estimates 
made by primary surgeons. However, surgeon estimates rely heavily 
on prior experiences, which are based on the procedures that 
have been performed. Since there is no formal record on surgeon 
estimates, an average model built with the procedure type only 
was used as the baseline model, termed average procedure-specific 
model, in stage 1. This average procedure-specific model closely 
reflects the scenario of surgeon estimates used by the hospital. All 
built models were evaluated with R-square (R2), mean absolute 
error (MAE), percentage overage (actual > prediction), underage 
(actual < prediction) and within (absolute duration differences 
falling within a threshold) on the validation set and time-wise 
testing set, respectively. The results of R2 and MAE are reported in 
Table 4. The average procedure-specific model had a R2 value of 
0.68 and a MAE of 41.3 min on the time-wise testing set. Since no 
other feature was taken into consideration in this baseline model 
except the procedural duration of surgical cases that happened in 
the past, it exhibited higher prediction error and lower accuracy. 
A linear regression (Reg) model was built by including 20 input 
variables shown in Table 3. 

The R2 value increased to 0.72 and the MAE decreased to 38.2 
min on the time-wise testing set. This indicates that predictive 
performance of the model improved when other information 
was taken into consideration. However, Reg model is still not 
complicated enough to consider various types of interactions 
between input variables in a real-world situation. ML algorithms 
are helpful in making predictions in a more complicated scenario. 
The random forest (RF) model and extreme gradient boosting 
(XGB) model were trained subsequently to improve predictions. 

Table 3: Surgical cases from the above specialties were used to develop ML 
models to predict surgical case durations.

Specialties included for model development

1. Body science and metabolic disorders

2. Trauma and acute care surgery

3. General surgery

4. Orthopedics

5. Urology

6. Neurosurgery

7. Colorectal surgery

8. Thoracic surgery

9. Obstetrics and gynecology

10. Otorlaryngology, head and necy surgery

11. Ophthalmology

12. Plastic and reconstruction surgery

13. Cadiovascular surgery

14. Breast surgical oncology

Table 4: The results of R-square (R2) scores and mean absolute errors (MAE) of multiple models evaluated on validation and time-wise testing sets. 
Procedure: average procedure-specific model; Reg: regression; RF: random forest; XGB: extreme gradient boosting.

 Validation set Time-wise testing set

Metric Procedure Reg RF XGB Procedure Reg RF XGB

R2 0.68 0.72 0.74 0.77 0.68 0.72 0.74 0.77

MAE (min) 38.9 36.4 32.8 31.7 41.3 38.2 36.5 34.5
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The performance of both the RF and XGB models was better than 
the Reg and the baseline models. For the RF model, the R2 value 
was 0.74 and the MAE was 36.5 min. For the XGB model, the 
R2 value was 0.77 and the MAE was 34.5 min. Among all the 
trained models, the XGB outperformed the others in terms of R2 
and MAE values. Moreover, the performance of the XGB on the 
time-wise testing set was similar to the validation set (R2=0.77 and 
MAE=32.8 min) even though the time-wise testing set (March-
April, 2020) was temporally segregated from the training and 
validation sets (2016-2019). This also reflects that the XGB model 
generalized well during the pandemic period. For percentage 
within, two criteria were used to define the tolerance threshold: 
0.15 x prediction or 30 minutes. In both criteria, percentages of 
overage and underage were decreased while percentage within was 
increased when comparing the XGB model to the baseline model 
(Figure 2).

When 0.15 x prediction was used as the threshold, there was an 
18% increase in percentage within for the XGB model compared 
to the baseline model. Meanwhile, a 10% increase in percentage 

within was observed in the XGB model compared to the baseline 
model when 30 min was used as the threshold.

Bland-Altman (BA) plots using the time-wise testing set for the 
baseline model and the XGB model are shown in Figure 3. The BA 
plots clearly show that predictions generated by the XGB model 
had smaller and less scattered errors (actual - prediction) compared 
to the average model of procedure for the XGB model, the range 
of ±1.96 x standard deviation for errors (red dashed lines) is also 
narrower.

These demonstrates that the XGB model is more accurate than the 
baseline model in predicting surgical case duration. Overall, the 
XGB model had the best performance. Hence, subsequent analysis 
an interpretation were focused on the XGB model. The XGB 
algorithm was then used to build models that predict durations for 
cases with 1 or ≥ 2 procedures in stage 2.

Stage 2

Model development in stage 2 was conducted in attempt to test if 
building two separate predictive models to predict durations for 

 Figure 2: Machine learning algorithms improved predictions of surgical case duration. The performance of all models was evaluated on a time-wise 
testing set (data not included in the original data set for model training) by using percentage overage (actual duration longer than prediction), underage 
(actual duration shorter than prediction) and within (absolute duration differences falling within a threshold). Two criteria were used to define the 
tolerance thresholds for predictions to be considered as within: 0.15 x prediction or 30 minutes. For both criteria, percentages of overage and underage 
were decreased while percentage within was increased when comparing the extreme gradient boosting (XGB) model to the average model for procedure. 
Procedure: average procedure-specific model; Reg: regression; RF: random forest; XGB: extreme gradient boosting.

Figure 3: Predictions produced by the extreme gradient boosting (XGB) model were closer to actual surgical case durations compared to predictions 
produced by the average procedure-specific model. The Bland-Altman plots of (A) the average procedure-specific model and (B) the XGB model reveals 
that predictions made by the XGB model had smaller and less scattered errors (actual - prediction) based on the results of the time-wise testing set. The 
range of ±1.96 x standard deviation for errors (indicated by red dashed lines) is also narrower for predictions generated by the XGB model compared to 
the average model.
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cases with 1 procedure or ≥ 2 procedures would further improve 
predictions. When focusing on the time-wise testing set, the 
two ML models, XGB1 and XGB2, produced similar within, 
overage and underage percentages as the XGB model regardless 
of whether the tolerance threshold of 0.15 X prediction or 30 min 
was used. Although the percentages were similar, the prediction 
errors (actual - prediction) made by the XGB, the XGB1 and 
XGB2 models might be different. Hence, we compared the 
prediction errors for cases which were categorized as overage 
or underage, respectively. Prediction errors of the XGB1 model 
were compared to prediction errors of the XGB model on the 
cases with 1 procedure extracted from the time-wise testing 
set. Similarly, prediction errors of the XGB2 model were 
compared to prediction errors of the XGB model on the cases 
with ≥ 2 procedures extracted from the time-wise testing set. 
Prediction errors for overage or underage as well as the respective 
percentages of outliers were analyzed and compared [4]. For the 
XGB1 model, both prediction errors and the percentages of 
outliers were not improved compared to XGB model (results 
not shown). For the XGB2 model, the percentages of outliers 
for overage were similar to the XGB model but the percentages of 
outliers for underage were reduced compared to the XGB model 
(Figure 4). In addition, the prediction errors of the outliers for 
underage were significantly lower (p-value > 0.05, non-parametric 
ranksum test) in the XGB2 model compared to those of the 
XGB model when using the tolerance threshold of 30 min. As 
XGB2 were able to reduce prediction errors for cases with ≥ 2 
procedures, the XGB model will be used to predict surgical case 

durations for cases with 1 procedure while the others will be 
predicted by the XGB2 model.

Model interpretation

To uncover the global importance and the impact of each 
feature on the XGB, XGB1 and XGB2 model output, we 
applied SHAP to explain the model. SHAP adopts the 
classical Shapley values estimation methods, which satisfy 
the desirable properties of local accuracy, missingness and 
consistency [21,23]. It explains model output by computing the 
contribution of each feature to the prediction. Figure 5A shows 
feature impact on model output based on SHAP value while 
Figure 5B-D shows the top 20 one-hot encoded features with 
the largest average SHAP value magnitude for the XGB, XGB1 
and XGB2 model, respectively. Procedure type, anesthesia type, 
no. of procedure, specialty and in-/out-patient were the 5 most 
important features in the XGB model (Figure 5). 

Specific code names are used to represent the full names of 
features in the figure. The features' full names can be referred 
to Table 3. Features labeled with red boxes were the features 
(belong to anesthesia type or procedure type) contributed to longer 
duration while features labeled with black boxes contributed to 
shorter duration. (C) The top 20 one-hot encoded features with 
the largest average SHAP value magnitude in the XGB1 model. 
(D) The top 20 one-hot encoded features with the largest average 
31 SHAP value magnitude in the XGB2 model. AnaValue_GA: 
general anesthesia; Ana Value_LA: local anesthesia; AnaValue_
IG: intravenous anesthesia; P\_83046: spinal fusion with spinal 

Figure 4: The percentages (red text) and the range (*) of errors (actual - prediction) for outliers were reduced in predictions made by the XGB2 model 
compared to the XGB model for underage cases with ≥ 2 procedures. Errors between actual and predicted durations were compared among the XGB, 
XGB1 and XGB2 models. Predictions made by the XGB1 model were not significantly improved compared to the XGB model and were not included in 
this figure. Errors of cases categorized as overage (A) or underage (B) for ≥ 2 procedures were plotted using boxplots. Cases were categorized as overage/
underage when their actual durations were either 15 % (red) or more than 30 min (blue) longer/shorter than predicted durations. The percentages shown 
in the boxplots indicate the percentages of outliers in different conditions. In the XGB2 model, the percentages of underage outliers were reduced. For 
underage cases and actual durations more than 30 min shorter than predicted durations, the errors of outliers were also significantly reduced (* p-value < 
0.05, nonparametric ranksum test) compared to those of the XGB model.
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instrumentation ≤ 6 segments; P_56019: brain and spinal surgery 
applying microscope; P_64245 removal of internal fixator; 
P_74004: laparoscopic appendectomy; P_48005: Debridement 
(5-10 cm); P_79410-J: radical prostatectomy with bilateral pelvic 
lymph node dissection; P_83045: spinal fusion without spinal 
instrumentation.

Notably, 3 of the top 5 important variables were attributed to 
operative information (i.e., procedure type, anesthesia type 
and no. of procedure). Moreover, two of the features that we 
computed from the surgeon data (i.e., total surgical minutes and 
the no. of previous surgeries performed by the surgeon within 
the last 7 days) had important contributions to model output as 
they were included within the top 10 list of feature importance. 
SHAP value was applied in this study to reveal feature 
importance because it is informative in providing quantification 
and visualization of the impact (negative or positive) of each 
feature on the final output for each case as well as the variations 
in feature contribution relative to changes in feature value.

Since procedure type and anesthesia type were the two most 
important feature in the XGB model, we focused on the 
importance and impact of the categories, i.e. one-hot encoded 
features, under these two critical features. In Figure 5B-D, one-
hot encoded features related to anesthesia type or procedure 
type that contributed to longer case durations (positive impact) 
are labeled with red boxes while those that contributed to 
shorter case durations (negative impact) are labeled with black 
boxes. In all the three models (XGB, XGB1 and XGB2), 
general anesthesia (GA) was the most important feature 
that contributed to longer case durations. In contrast, local 
anesthesia (LA) and intravenous anesthesia (IG) contributed to 
shorter durations. IG had higher negative impact in cases with 
1 procedure (XGB1) while LA had higher negative impact in 
cases with ≥ 2 procedures (XGB2). For procedure type, those 
that contributed to shorter durations were mostly revealed in 
the top 20 important features of XGB1 (5C). Removal of internal 
fixator (code: 64245), laparoscopic appendectomy (74004) and 

Figure 5: Procedure type, anesthesia type, no. of procedure, specialty and in-/outpatient were the top 5 important features used by the extreme gradient 
boosting (XGB) model to make predictions. Features were arranged and ranked in descending order according to SHAP value magnitude. (A) SHAP 
values of all categories within a categorical feature (e.g., procedure type, anesthesia type, specialty, in-/out-patient, ICD code, gender, BMI category, ASA, 
day of the week, time of day and hypertension) were added to obtain the total SHAP value for that categorical feature. This reveals the total importance 
for each of the 20 features in the XGB model. (B) The top 20 onehot encoded features with the largest average SHAP value magnitude in the XGB model. 
Each dot corresponds to a case in the time-wise testing set. Features with long positive tails tended to increase model output (longer surgical case duration) 
when feature values were either high (for numerical feature) or 1 (for categorical feature). 
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debridement of 5-10 cm (48005) had negative impact on surgical 
case durations in cases with 1 procedure. Meanwhile, spinal fusion 
without spinal instrumentation (83045) had negative impact 
on the case durations of cases with ≥ 2 procedures. Contrarily, 
spinal fusion with spinal instrumentation ≤ than 6 segments 
(83046), brain and spinal surgery applying microscope (56019), and 
radical prostatectomy with bilateral pelvic lymph node dissection 
(79410-J) had positive impact on the model outcome of XGB2 
(5D).

While SHAP summary plot provides global interpretability 
reflecting the general behavior of the features in the model, the 
specific behavior of the features in a subset of model predictions 
was explored on complex cases. Surgical cases with procedure 
numbers ≥ 2, team size ≥ 2 and in-patient cases were considered 
as complex cases. This is because complex cases usually contain 
multiple procedure types in a case and involve more surgeons. 
Meanwhile, in-patient cases usually involve patients with more 
complications and serious conditions. These complex cases were 
extracted from the time-wise testing set for local interpretability 
in the XGB model ( Figure 6).

Surgeons with shorter total surgical time and performed more 
surgical cases in a week were associated with shorter surgical case 

durations. (E) SHAP interaction value for no. of procedure and 
procedure type of brain or spinal surgery that used microscope 
(P_56019). Brain or spinal surgeries that used microscope were 
associated with shorter durations for cases with ≥ 3 procedure 
numbers. (F) SHAP interaction value for no. of procedure and 
procedure type of spinal fusion with spinal instrumentation ≤ than 
6 segments (P_83046). Regardless of the no. of procedure, longer 
durations were consumed for cases with this procedure code.

A heatmap showing SHAP interaction values of one-hot 
encoded features for the extracted complex cases. One-hot 
encoded features with top 12 largest SHAP interaction values 
are reported in the figure. Features with higher and interesting 
interactive effects were highlighted in red boxes and their 
SHAP interaction values were plotted in Figure 6B-F. From 
these SHAP interactive value plots, a few interesting phenomena 
were observed. In general, complex surgical cases that used GA 
consumed longer duration than cases that used other anesthesia 
types. However, surgical cases using GA from the Orthopedics 
specialty were shorter than GA cases from other specialties. 
Total surgical minutes (‘Optoltime_7d’) interacted strongly with 
total no. (‘Optolcount_7d’) of previous surgeries performed 
by the surgeon within the last 7 days. Surgeons with higher 

Figure 6: Shapley additive explanations (SHAP) interaction value disclosed interactions between various one-hot encoded features for more complex cases 
(i.e., procedure numbers ≥ 2, team size ≥ 2 and in-patient cases). (A) A heatmap summarizing SHAP interaction values of one-hot encoded features for 
complex cases extracted from the testing set. One-hot encoded features with top 12 largest SHAP interaction values are shown. Note that the interaction 
effects are shown off-diagonal and symmetrically. Higher and interesting interaction effects are highlighted with red boxes. (B) SHAP interaction value 
for no. of procedure and anesthesia type of general anesthesia (AnaValue_GA). Surgical cases that used GA consumed longer duration and most surgical 
cases with 5-6 procedure numbers were performed with patients under GA. (C) SHAP interaction value for anesthesia type of GA and Orthopedics 
(DivNo_322). In general, surgical cases using GA were longer than those using other anesthesia types, but surgical cases using GA from Orthopedics 
specialty were shorter than others. (D) SHAP interaction value for total surgical minutes (Optoltime_7d) and no. (Opcount_7d) of surgeries performed 
by the surgeon within the last 7 days. 
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‘Optoltime_7d’ and higher ‘Optolcount_7d’ were associated 
with longer case durations. However, surgeons with moderate 
‘Optoltime_7d’ and higher ‘Optolcount_7d’ were associated 
with shorter case durations. For brain or spinal surgeries that 
used microscope, they were associated with shorter durations 
for cases with ≥ 3 procedure numbers. For procedure type of 
spinal fusion with spinal instrumentation ≤ than 6 segments, the 
presence of this procedure increased surgical case durations for 
different no. of procedure.

DISCUSSION
Clinical unmet needs

Clinical unmet needs related to OR scheduling can be identified 
based on 4 aspects: hospital management, surgical supporting 
staffs, patients and surgeons [24]. For the perspective of hospital 
management, it is difficult to strike a balance between decreasing 
idle time and avoiding overtime of staff to maximize OR utility as 
well as to reduce costs. Idle time is harmful to maintaining a cost 
effective OR because time available for a surgical procedure to be 
performed is not being used. Meanwhile, OR over-utilization is 2.5 
times more costly than under-utilization [25]. For surgical supporting 
staffs, they have to work unexpected overtime and under stressful 
circumstances when actual durations are significantly longer than 
scheduled durations. This leads to job dissatisfaction and higher 
turnover rate, which may subsequently affect the quality of care 
and safety provided by supporting staffs as they are overloaded or 
overworked. From the perspective of patients, the uncertainty of 
not knowing when is the start time of their surgeries can introduce 
additional stress and may lead to significant patient dissatisfaction. 
As for younger surgeons, who are not assigned to have the first 
case, are more mindful of scheduling accuracy. They may need to 
wait on a prior case to be finished by a different surgeon when 
actual durations are longer than scheduled durations. Continued 
delays in the same OR may also result in lack of staff to cover late 
cases.

Insights and applications

Owing to the above mentioned needs, accurate prediction 
of surgical case duration plays a vital role in increasing OR 
efficiency, reducing costs, maintaining hospital reputation, as 
well as improving patient and surgeon satisfaction. This study 
not only helps to improve the accuracy of OR case prediction 
but also provides meaningful insights on how predictions were 
made by the developed ML model. It has both clinical and 
technical novelties in the following aspects. For the clinical 
perspective we modeled OR events as dependent events instead 
of independent. We extracted some additional information 
from surgeon data, e.g., previous working time and no. of 
previous surgeries of the primary surgeons within the last 7 days 
and 24 hr, and this information was taken into consideration 
during model building. Furthermore, while other past studies 
reported how they developed and evaluated their predictive 
models [7,15,16,26,27], global and local interpretability on model 
prediction were conducted in this study. Interpretation on model 
output unraveled those most surgical cases using anesthesia type 
of GA took longer time to be completed. GA was consistently 
revealed to be the most important feature contributing to longer 
durations in SHAP analysis of XGB, XGB1 and XGB2 model 
output. However, Figure 6C showed that GA cases from the 
Orthopedics specialty were shorter than GA cases from other 
specialties. When focusing on cases within the Orthopedics 
specialty, SHAP interaction value revealed that GA cases were 
indeed shorter than cases that used spinal anesthesia (results 
not shown). This is because GA was mostly used in upper-limb 
surgeries while spinal anesthesia was mostly used in lower-limb 
surgeries in Orthopedics specialty. Lower-limb surgeries can be 
quite challenging and usually consumes longer durations. On 
the other hand, brain or spinal surgery using microscope were 
shorter for cases with 3-6 procedure numbers. Spinal fusion with 
spinal instrumentation ≤ 6 segments was associated with longer 
durations in most cases. 

Figure 7: The mode of deployment of the machine learning (ML) models developed in this study. The ML models (XGB and XGB2) are deployed as a 
stand-alone machine intelligence (MI) server connected by the electrical medical record (EMR) system of the hospital. Upon receiving operational info in 
the EMR system, the EMR system collects data from various databases and converts them into compatible format for data processing. Subsequently, input 
variables are delivered to the MI server, where a prediction of surgical case duration is made by the XGB (for cases with 1 procedure) or XGB2 (for cases 
with ≥ 2 procedures) model. Subsequently, the MI server sends the output back to the EMR as a suggestion for the user to book a surgery on the calendar.
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For the technical part, the data set used in this study contained 
approximately 80,000 cases (after exclusion) and more than 
500 different types of surgical procedures, establishing a new 
benchmark for a massive quantity of data with high diversity. 
The maximal number of cases that had been used in other 
studies was in the range of 40,000 to 60,000 [7,16]. By using a 
large data set with huge diversity and variability, more powerful 
ML models could be developed. Interpretation on the ML 
model built with such a large and diverse data set subsequently 
aids in providing various clinically related information, which 
may not be disclosed by a simple ML model and is not 
discussed in the past studies [7,15,16,27]. Moreover, the 
developed XGB and XGB2 models are deployed as stand-alone 
machine intelligence (MI) server connected by the EMR of 
the hospital (Figure 7). Upon receiving relevant operational info, 
the EMR system collects data from various databases and converts 
them into compatible format for data processing. Subsequently, 
input variables are delivered to the MI server, where a prediction 
of surgical case duration is made by the XGB (for cases with 
1 procedure) or XGB2 (for cases with ≥ 2 procedures) model. 
The MI server then sends the output back to the EMR as 
a suggestion for the user to book a surgery on the calendar. 
As the XGB1 model was not observed to improve predictive 
performance, the original XGB model is thus used to predict 
durations for cases with 1 procedure. All selected cases were used 
to train the XGB model while ∼55% of the cases was used to 
build the XGB1 model and ∼45% of the cases for the XGB2 
model. For cases with 1 procedure, reducing training data size 
might have sacrificed some variations in the data that could be 
learned by the ML algorithm. On the contrary, cases with ≥ 2 
procedures are relatively more complicated and contain more 
variations than cases with 1 procedure. Hence, removing cases 
with 1 procedure from training data did not sacrifice much data 
variation but indeed allows ML algorithm to focus on learning 
the various details in cases with ≥ 2 procedures.

Currently, surgical cases at CMUH are scheduled according 
to estimates made by primary surgeons, which were modeled 
as the averages for procedure in this study. However, many 
factors beyond expectation will not be taken into consideration. 
The performance of the average procedure-specific model, as 
reported in Figure 3, clearly showed that the predictions had 
larger and more scattered errors. When 20 feature variables 
(Table 3) were included in model development, the R2, MAE, 
and percentages of underage, overage and within were improved 
substantially. When determining the tolerance threshold for 
percentage within, we set the criterion to be absolute duration 
differences falling within 0.15 x prediction or 30 minutes. 
Thirteen-minute difference in duration is usually considered 
as an acceptable periodic range for accurate booking. However, 
30 minutes may be an excessively stringent standard for more 
complex and longer surgeries. Hence, 0.15 x prediction was also 
applied in the evaluation because a 15% error in prediction can 
typically be adapted by the operational management [15].

It has been reported in the past studies that primary surgeons 
contributed the largest variability in surgical case duration 
prediction compared to other factors attributed to patients 
[15,16,26]. These studies provide evidence and rationale that 
more factors relating to primary surgeons should be added as 
input variables in the development of ML models. Moreover, 
extensive feature engineering usually improves the quality of ML 
models and can be independent of the modeling technique 

itself. As a result, in addition to the primary surgeon’s age 
and year of practice, we computed previous working time and 
number of previous surgeries performed by the same primary 
surgeons within the last 7 days and 24 hr. These variables 
extracted from primary surgeon data were significantly (p-value < 
0.05) correlated with surgical case duration based on a regression 
analysis. The SHAP value distribution (Figure 5B) and SHAP 
interaction values (Figure 6D) of these features suggested that 
surgeons with moderate previous surgical time and more no. 
of surgical cases within a week took shorter time to complete 
the surgery. A practice effect was observed in these surgeons in 
whom they conducted similar surgeries multiple times and were 
able to finish the surgery in shorter duration. Whereas surgeons 
who had similar previous surgical time but lower no. of previous 
surgical cases in a week took longer time to complete the surgery.

While some studies included surgeon identity and operating 
location as input variables in their models [15,28], these were 
not included in feature inputs in this study. By doing so, our 
models can be generalized to new surgeons or new operating 
location in the hospital. Moreover, our models may be able to 
applied to other hospitals. However, there is no external data 
from other hospitals at the moment to verify the generalization 
of our models. There may be a need to fine-tune the model 
to better fit the settings of new environments or update our 
models after a while to fit the changes in medical technology. 
In terms of timing, we recommend updating the models 
annually by using surgical cases performed in the most recent 3 
years as training data.

LIMITATIONS
One limitation in this study is that we selected predictor variables 
that could only be extracted from preoperative data. The scheduling 
system needs to be improved in order to be able to predict surgical 
case duration dynamically. For example, blood loss during surgery 
may affect case duration since an unexpected increase in blood 
loss may cause surgeons to take a longer time to complete the 
surgery. Therefore, it would be better if intra-operative data are 
incorporated during ML model development, and the prediction 
made by the ML model can be updated during surgery. 

Meanwhile, one main reason that we only selected features 
which can be obtained pre-operatively is because the goal of 
building a predictive model is to improve and automate surgery 
scheduling before surgeries The model, however, does not serve 
to affect or restrict surgeons on how much time they would need 
to complete the surgery. Furthermore, one common issue in 
all ML studies in terms of predicting surgical case duration, 
including our study, is that ML models were developed 
using data from a single center. These ML models may have 
limitations in generalization since surgical team, facilities and 
patient populations are different across entities. A custom-made 
model has to be built for given and patient populations are 
different across entities. A custom-made model has to be built 
for a given facility itself. The other interesting issue of applying 
ML in surgical duration estimation is that medical technologies 
quickly evolve. Hence, how frequently an ML model needs to be 
updated still remains to be answered.

CONCLUSION
The XGB model was superior in predictive performance when 
compared to the average, Reg and RF models. Another ML 
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model, XGB2, was able to reduce prediction errors for cases 
with ≥ 2 procedures. We validated all models using a time-wise 
testing set in addition to the internal validation procedures. We 
validated all models using a time-wise testing set in addition to the 
internal validation generalized well to the time-wise testing data 
set even during the COVID-19 pandemic period. When external 
evaluation is not feasible, time-wise evaluation serves as a useful 
tool to better validate the predictive power of ML models. In 
addition to model development and evaluation, global and 
local interpretation on model output was conducted. Global 
interpretation aided in identifying features, e.g. anesthesia and 
procedure types that have important contribution and impact 
to surgical case durations while local interpretation revealed 
unique feature effects for a specific division or a subset of cases 
with specific conditions.
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