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Abstract

Major histocompatibility complex (MHC) class II antigen presentation is a key component in eliciting a CD4+ T-cell
response. Precise prediction of peptide-MHC (pMHC) interactions has thus become a cornerstone in defining
epitope candidates for rational vaccine design. Current pMHC prediction tools have, so far, primarily focused on
inference from in vitro binding affinity. In the current study, we collate a large set of MHC class II eluted ligands
generated by mass spectrometry to guide the prediction of MHC class II antigen presentation. We demonstrate that
models developed on eluted ligands outperform those developed on pMHC binding affinity data.

The predictive performance can be further enhanced by combining the eluted ligand and pMHC affinity data in a
single prediction model. Furthermore, by including ligand data, the peptide length preference of MHC class II can be
accurately learned by the prediction model. Finally, we demonstrate that our model significantly outperforms the
current state-of-the-art prediction method, NetMHCIIpan, on an external dataset of eluted ligands and appears
superior in identifying CD4+ T-cell epitopes.

Keywords: MHC class II; Ligand prediction; CD4+; Epitope; Pan-
method; Machine learning; Mass spectrometry; Peptidomics

Introduction
CD4+ T helper (Th) lymphocytes constitute an important subset of

immune cells that help eliminate pathogens present in infected cells.
Th lymphocytes carry out their important helper functions through the
interaction with a specialized antigen presentation system termed the
Major Histocompatibility Complex class II (MHCII) antigen
presentation pathway [1,2]. The role of this pathway is to display
digested exogenous protein antigens as peptides bound to the MHCII
molecule to the CD4+ T-cells together with a number of co-
stimulatory factors for eliciting a profound immune response. MHCII
molecules are assembled in the endoplasmic reticulum and are
structurally composed of an alpha and beta chain which come together
to form a binding groove [3]. Peptides capable of binding to this
groove are then transferred to the cell surface of primarily professional
antigen presenting cells (APCs), such as macrophages, dendritic cells
(DCs) and B lymphocytes, for T-cell recognition [4]. Peptides capable
of T-cell recognition and thus eliciting an immune response are termed
T-cell epitopes, and the identification of these is of great importance in
the context of therapeutic research areas such as vaccine design [5,6].

Approaches to speed up development and improve the design of
vaccines and immunotherapeutics include the creation of algorithms
that can accurately predict immunogenic T-cell epitopes [7,8]. With
ligand binding to MHCII molecules being an important characteristic

of Th cell epitopes, predicting features of this binding interaction have
been of great interest, thus making peptide-MHCII (pMHCII) binding
the most studied part of antigen presentation by Th lymphocytes [9].
This has resulted in a growing amount of binding data which has made
prediction algorithms increasingly reliable [10,11].

However, despite encouraging improvements in the predictive
performance of pMHCII binding algorithms, several studies have
demonstrated an inferior performance to MHC class I (MHCI)
binding prediction tools [9]. Multiple biological factors challenge the
development of accurate algorithms for predicting pMHCII binding
[4]. MHCII molecules are extremely polymorphic with almost 5000
alpha and beta chain alleles known as of April 2018 [12]. The MHCII
alleles are encoded by three polymorphic genes (HLA-DR, HLA-DQ
and HLA-DP) in humans, and the combinatorial of the alpha- and beta
chains results in a much larger complexity for MHCII molecules
compared to MHCI [5]. Furthermore, the binding groove of MHCII
permits the binding of a diverse range of peptides of variable lengths,
partly because of its open conformation [2]. This contrasts with the
MHCI molecule which accommodates peptides based on a much more
stringent length criterion [1]. The pMHCII binding is primarily
governed by the interactions between the MHCII binding groove and a
9 amino acid ‘core’ in the peptide. However, the open conformation of
the binding groove complicates the interpretation of pMHCII
measurements, as it is not clear which peptide register is bound within
the groove. The high MHCII complexity underpins the need for pan-
prediction tools that are capable of extrapolating pMHCII binding
preferences to uncharacterized MHCII molecules.
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The state-of-the-art pan method for prediction of peptide binding
affinity to MHCII molecules is the Net MHCIIpan tool [11,13]. Net
MHCIIpan is based on ensembles of artificial neural networks trained
on quantitative binding affinity data from the Immune Epitope
Database (IEDB) [10]. Net MHCIIpan accounts for the challenges that
lie in the polymorphism of the MHCII molecule by including the
sequence of the MHCII molecule in the model, while the identification
of the 9-mer peptide cores is handled using the NNalign method [14].
However, although prediction algorithms are capable of accurately
predicting in vitro pMHCII binding, its predictive performance on
antigen presentation in vivo is limited. Especially, peptide processing,
length preference and loading on to the MHCII molecules are major
factors not accounted for when only considering pMHCII binding. In
line with earlier work on pMHCI prediction [14,15] we present a pan-
prediction framework that incorporates both pMHCII binding affinity
data and mass spectrometry (MS) based eluted MHCII ligands from
the surface of antigen presenting cells. As eluted MHCII ligands
undergo processing and loading on to MHCII as well as transport to
the cell surface, these inherently contain essential biological
information, thus addressing some of the limitations of in vitro
pMHCII affinity data.

Methods

MHC class II datasets
Eluted ligands and quantitative pMHC affinity data (IC50) were

retrieved from IEDB [10] and filtered to the subset associated with
MHC alleles with at least a four-digit resolution on their identifiers.
The IEDB data were supplemented with a large set of in-house eluted
ligands.

To eliminate spurious data from the eluted ligands, we generated
MHC allele-specific ligand lists and processed them using Gibbs
Cluster [16] with 1, 2, 3, 4 and 5 clusters, respectively, and a discard
pile. For each list of ligands, the Gibbs Cluster run yielding the highest
Kullback-Leibler divergence was applied to flag and remove spurious
ligands. The ligand length profile was computed and constrained to the
subset that constitutes more than 0.5% of the total number of eluted
ligands, resulting in ligands spanning from 9 to 21 amino acids. In
total, the data comprised 51,269 affinity measurements across 31 MHC
molecules and 142,267 eluted ligands across 25 MHC molecules. While
each in vitro affinity measurement can be uniquely assigned to an
MHC molecule, the in vivo experimental design may not restrict the
eluted ligand to a single MHC molecule. Among the eluted ligand
experiments, 15 restrict the eluted ligands to a single MHC molecule.
This subset of the data will be referred to as the mono-allelic fraction.

As a consequence of the eluted ligand detection methodology, no
negative data exists, which complicates training and learning from this
dataset. Thus, a negative complement to the eluted ligand data was
established by randomly sampling k-mers from proteins in the
Swissprot database [17]. To enable the recognition of the ligand length
preference, the peptides were sampled with a uniform length
distribution ranging from 9 through 21 in line with earlier work [14].
For each length and for each MHC molecule, we sampled three times
as many peptides as the most frequent ligand length i.e., a total of 39
times as many random peptides as the most frequent ligand length.
The dataset comprising pMHC affinity data is denoted ‘IC50’, the eluted
ligand data is denoted ‘LIGAND’, and the concatenated dataset is
denoted ‘IC50+LIGAND’.

MHC class II peptidome analysis
Purification of HLA-bound peptides: Frozen pellets (1-5e9) from

cell lines (IHW9013, IHW9022, IHW9031, IHW9087,C1R
(IHW9208), JESI or JESTHOM (IHW9004)) were ground in a Retsch
Mixer Mill MM 400under cryogenic conditions, resuspended in 1%
IGEPAL (Sigma), 50 mM Tris pH 8, 150 mM NaCl and protease
inhibitors (Complete Protease Inhibitor Cocktail Tablet; Roche
Molecular Biochemicals) as previously described. Lysates were cleared
by ultracentrifugation and HLA-peptide complexes purified using
sequential protein A (GE Healthcare) columns bound to specific HLA
mAbs. Lysates were first passed over protein A bound to LB3.1 (anti-
DR), SPV-L3 (anti-DQ) and B721 (anti-DP). Bound HLA complexes
were eluted from each column by acidification with 10% acetic acid.
The eluted mixture of peptides and HLA chains was fractionated on a
4.6 mm internal diameter × 50 mm (or 100 mm) long reversed-phase
C18 endcapped HPLC column (Chromolith Speed Rod, Merck) using
an ÄKTAmicro™ HPLC system (GE Healthcare) running on a mobile
phase buffer A of 0.1% TFA and buffer B of 80% ACN/0.1% TFA. The
HLA-peptide mixtures were loaded onto the column at a flow rate of 1
ml/minute with separation based on a gradient of 2 to 40% B for 4
minutes, 40 to 45% for another 4 minutes, and a rapid 2 minutes
increase to 100% B. Fractions (500 µl) were collected, vacuum
concentrated to 10 µl and diluted in 0.1% formic acid to reduce the
concentration of acetonitrile (ACN). HLA typing of the cell lines is
provided in Table S1.

LC-MS/MS: For LC-MS/MS acquisition, peptide-containing
fractions were loaded onto a microfluidic trapcolumn packed with
ChromXP C18-CL 3 μm particles (300 Å nominal pore size;
equilibrated in 0.1% formic acid/2% ACN) at 5 μl/min using a
NanoUltra cHiPLC system. An analytical (75 μm × 15 cm ChromXP
C18-CL 3 μm, 120 A, Eksigent) microfluidic column was switched in
line and peptides separated using linear gradient elution of 0-80%
ACN over 90 minutes (300 nl/min). Separated peptides were analysed
using an AB SCIEX 5600+TripleTOF mass spectrometer equipped
with a Nanospray III ion source and accumulating up to 20 MS/MS
spectra per second. The following experimental parameters were used:
ion spray voltage (IS) was set at 2400 V, curtain gas at 22 L/min, ion
source gas at 8 L/min and an interface heater temperature setting of
150℃. MS/MS switch criteria included ions of m/z >200 amu, charge
state +2 to +5, intensity >40 cps and the top 20 ions meeting these
criteria were selected for MS/MS per cycle.

LC-MS/MS data analysis: LC-MS/MS data was searched against the
human proteome (Uniprot/Swissprot v2016_12) using the Protein
Pilot™ software (AB SCIEX) [18] and resulting peptide identities
subject to strict bioinformatic criteria including the use of a decoy
database to calculate the false discovery rate (FDR). A 5% FDR cut-off
was applied, and the filtered dataset was further analysed manually to
exclude redundant peptides and known contaminants as previously
described [19]. The following protein pilot search parameters were
used: no cysteine alkylation, no enzyme digestion (considers all
peptide bond cleavages), instrument-specific settings fTripleTOF (MS
tolerance 0.05 Da, MS/MS tolerance 0.1 Da, charge state +2-5), species
Homo sapiens, biological modification probabilistic features on, Swiss-
Prot database (version v2016_12), thorough ID algorithm, detected
protein threshold 0.05, see Supplementary Data.
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Model framework
We adapted the NNalign approach [20] to accommodate an

architecture with two output neurons. The motivation was to enable
combined training on affinity and ligand data as described in [14].
Bootstrap sampling from the ligand dataset was performed at the
beginning of every training epoch, such that a matched number of
affinity and ligand examples were presented to the model at every
epoch in a randomized order. The affinity scores were transformed to
suitable target values in the range from zero to one using‘1-log
(affinity[nM])/log (50,000)’ as we have described in earlier work
[21,22]. Since the binding strengths of the eluted ligands are unknown,
we assigned the eluted ligands a target value of one, and negative
peptides were assigned a target value of zero. The input to the model
was encoded similarly to the scheme employed by [23]. The MHC
molecule pseudo-sequence and the 9-mer peptide cores were encoded
using normalized log-odds scores derived from the BLOSUM50
substitution matrix. N- and C-termini peptide core flanks of up to
three amino acids were encoded by their average BLOSUM50
encoding, and the length of the flank by 0.85*L/3+0.05, with L
denoting the flank length. The peptide length was encoded using 1/
(1+exp ( (P-15)/2)), with P denoting the peptide length.

Deconvolution of multi-allelic data
The eluted ligands that are non-uniquely assigned to one MHC

molecule were instead assigned by inference. For this purpose, model
ensembles were trained for 300 epochs on the mono-allelic fraction of
the data with 10 different random initialization seeds and 40 hidden
neuron Percentile rank conversion of the raw prediction scores is
required in order to make the amplitude of the predictions comparable
across MHC molecules [14]. The percentile rank conversion was
established by predicting on 200,000 random peptides for each of the
lengths 9 through 21 amino acids and each of the MHC molecules to
be subject to deconvolution. MHC molecule assignment was then
inferred for each ligand independently based on the best percentile
rank prediction. The negative sampled peptides were randomly
assigned to the MHC molecules in the same ratio as the eluted ligands.
The resulting deconvoluted dataset was merged with the mono-allelic
fraction and used for the nested cross-validation and to train the final
model. An overview of the performance of the mono-allelic models on
the data to be deconvoluted is shown in Figure S1.

Nested cross-validation
A conservative estimate of the predictive performance is achieved

by evaluating on unseen MHC molecules and unseen peptides. This
has traditionally been achieved by a computationally demanding leave-
one-out cross-validation strategy [13,22]. We defined a novel nested
cross-validation strategy to efficiently attain a performance estimate on
unseen MHC molecules and peptides. The strategy relied on data
partitioning along two axes; namely, MHC molecules and peptides, as
depicted. In the MHC molecule partitioning scheme, we randomly
assigned each MHC molecule and its associated peptides to one
partition. In this way there are no shared MHC molecules between the
partitions along this axis. The peptide partitioning was carried out by
first clustering the peptides according to shared 9-mer motifs as
described in [24]. Secondly, the peptide clusters were randomly
agglomerated into size-balanced partitions. In this way, there are no
shared 9-mer motifs between the peptide partitions. We employed five
MHC molecule partitions and six peptide partitions, yielding a matrix
with 30 partitions. For each rotation in the cross-validation, one of the

30 partitions was kept as the left-out evaluation set and its
corresponding rows and columns in the matrix were removed since
they contained shared MHC molecules or peptides. The rest of the data
was used as the training set. We employed this partitioning scheme on
the joint dataset ‘IC50+LIGAND’ and, subsequently, split it into the
‘IC50’ and ‘LIGAND’ while preserving the partitioning.

For each evaluation set, we trained five models using five different
random initialization seeds and used the model ensemble for
prediction on the evaluation set. Models were trained with 40 hidden
neurons and for 300 epochs for each of the datasets ‘IC50’, ‘LIGAND’
and ‘IC50+LIGAND’. We constrained the evaluation to the mono-allelic
subset of the data, such that the data subjected to deconvoluted does
not enter into the performance estimation.

Ligand length preference
For each of the MHC molecules covered by the mono-allelic

fraction of the data, we predicted on a set of 200,000 random peptides
for each of the lengths 9 through 21. The peptide length frequency was
computed from the top 1% of the predictions. Subsequently, the
inferred length preference was compared to that found in the eluted
ligand data.

Validation on external datasets
A final implementation was trained for 300 epochs on the

‘IC50+LIGAND’ dataset with 40 hidden neurons and 10 random seeds.

Two external datasets were established to make a comparative study
between our final implementation and the state-of-the-art
NetMHCIIpan [13]. The first dataset comprises an unpublished set of
in-house eluted ligands and was preprocessed with GibbsCluster, as
described above. The second dataset was retrieved from IEDB and
comprises CD4+ T-cell epitopes measured by the multimer/tetramer
assay in an infectious disease setting. The CD4+ epitopes were filtered
to the subset with length 15 and associated with MHC molecules at 4-
digit resolution. Eluted ligands and CD4+ T-cell epitopes, that share a
9-mer with any peptide in our ‘IC50+LIGAND’ dataset, were removed.

Performance evaluation
The performance was evaluated using the area under the receiver

operating characteristics (AUC) or the F-rank. The F-rank is defined as
the percentile rank of the positive prediction in the complete set of k-
mers from the source protein, thus the lower the F-rank the better the
performance. The performance was evaluated per MHC molecule to
avoid coverage biases. Differences in predictive performances were
tested using the binomial test.

Results
We developed a novel pan-specific model based on the NNalign

framework [20] for predicting the interactions of peptides and MHC
class II alleles through the integration of pMHC affinity data and MHC
eluted ligands. This combined training was enabled by expanding the
NNalign framework to accommodate two output neurons, one for each
data type. In line with the observations on MHCI by [14], we similarly
find that this architecture with a shared hidden layer enables the
models to synergistically learn from both data types. A flow chart
describing the model development is depicted in Figure 1.
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Figure 1: Flow-chart of the study. Peptide-MHC binding affinity
data (IC50) and eluted ligands (Ligands) are curated from the IEDB
and in-house resources. The eluted ligand data is subject to quality
assessment and filtering using Gibbs Cluster. A comparative study
of combined training on both data types versus IC50 data or Ligands
in isolation is conducted by cross-validation. Finally, a competitive
study with the state-of-the-art method is carried out on external
datasets of eluted ligands and CD4+ T-cell epitopes, respectively.
Shaded boxes represent models, while unfilled boxes represent data.

High quality eluted ligand data reveal MHC binding
preferences

We employed Gibbs Cluster to inspect the quality of the eluted
ligand experiments (Figure 2). The resulting clusters represent linearly
separable specificities. Thus, we expect a single cluster to best describe
the data, if data originates from an experiment utilizing a mono-allelic
cell-line or a cell-line harboring MHC molecules with similar
specificity profiles. In contrast, multiple clusters indicate that multiple
specificities are present in the data. We found that a single cluster
yielded the highest Kullback-Leibler divergence in 23 out of the 26
curated experiments, while three experiments had two clusters as their
optimum. Two of these experiments were expected to hold two
specificities as the applied cell-line was HLA-typed with two MHC
molecules targetable by the applied antibody. These MHC alleles are
HLA-DPA1*01:03/DPB1*04:01;DPB1*03:01 and HLA-DRA*01:02/
DRB1*12:01;DRB3*02:02, respectively. The last experiment with two
inferred specificities should only pull down a single MHC molecule
(DQA1*01:01/DQB1*05:01) based the HLA-typing and DQ-specific
antibody. Sequence logos for each of the Gibb’s clusters for two of these
cases are presented. The MHC molecules have a preference for certain
ligand lengths, which can be described as a Gaussian-like length
distribution centered at 15 amino acids with minor offsets and density
differences between the MHC molecules (Figure 3). In contrast, the
pMHC affinity data is almost exclusively measured on peptides of
length 15 (Figure 3A).

Figure 2: Quality assessment and filtering of eluted ligand data.
Assessment was done with Gibb Cluster-1.0 using 1 through 5
clusters. Each cluster represents a linearly separable specificity
model. The highest Kullback-Leibler divergence indicates the
optimal set of clusters in the dataset. Most of the cases have a single
cluster as the optimum. The three cases that have two clusters as
their optimum are indicated with arrows and the MHC molecules
labels are highlighted by underlining.

Figure 3: Overview of curated dataset. (A) Length distribution of
the peptides measured by the peptide-MHC affinity assay (IC50).
(B) Length distribution and ligand coverage of the respective MHC
molecules covered by the curated eluted ligand dataset. (C) MHC
molecule coverage for the respective MHC loci covered by the
peptide-MHC affinity data and eluted ligand data.

Synergistic training improves predictive performance
A conservative performance estimate relies on carrying out

predictions on unseen MHC molecules and unseen peptides. This has
traditionally been accomplished by a leave-one-out cross-validation
strategy which is computationally demanding. We defined a new
nested cross-validation scheme to more efficiently assess the pan-
specific potential as illustrated in Figure 4.
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Figure 4: Nested cross-validation strategy for efficient evaluation on
unseen MHC molecules and peptides. Partitioning along two axes:
MHC molecules and 9-mer peptide motifs visualized as a 2D-
matrix. For each rotation, one entry is selected as the evaluation set
and the corresponding rows and columns are omitted from the
training set, since they share MHC molecules or peptide core motifs
with the evaluation set.

Figure 5: Nested cross-validation experiment. (A) Receiver
operating characteristics demonstrating the ability of the models to
distinguish eluted ligands from random natural peptides. (B)
Average rank of the predictions of the eluted ligands relative to
length-matched k-mers from their source proteins with lower ranks
being better. Both evaluations demonstrate an improved
performance for the model based on the combined data
(‘IC50+LIGAND’) compared to the models trained on the two data
types in isolation (‘IC50’ and ‘LIGAND’). The evaluation was
constrained to the mono-allelic subset.

Our nested cross-validation scheme requires a total of 30 partitions
while the number of partitions in the leave-one-out scheme scales with

the number of MHC molecules to evaluate. Models were generated
based on the ‘IC50’, ‘LIGAND’ and ‘IC50+LIGAND’ datasets and
evaluated for their ability to distinguish the eluted ligands from the
random natural peptides. The ‘IC50+LIGAND’ model outperforms the
models trained on each of the data types in isolation (‘IC50’ and
‘LIGAND’), see (Figure 5A). Furthermore, the output neuron
designated to the ligand likelihood (‘IC50+LIGAND, LIGAND’)
demonstrates superior performance to that of the pMHC affinity
(‘IC50+LIGAND, IC50’). Thus, the ligand output neuron should be used
for the ligand inference.

The uniform length distribution of the negative set was designed for
the models to learn the specificity along two axes of information;
namely, sequence binding motifs and peptide length. To test the
performance of the models solely based on the sequence motif axis, we
rank the prediction of the eluted ligands relative to those of all length-
matched k-mers from the respective source proteins. This evaluation
again demonstrates that the joint model ‘IC50+LIGAND’ has superior
performance (lowest F-rank), (Figure 5B).

Learning the MHC class II length preferences
Since the pMHC affinity data is almost exclusively based on

measurements using peptides of length 15 as depicted in (Figure 2A),
we hypothesize that it does not provide the means to learn the ligand
length preference of an MHCII molecule. To investigate this, we
applied our models on 200,000 artificial peptides for each of the
lengths 9 through 21 and computed the length profile of the top 1% of
the predictions for each MHC molecule covered by the monoallelic
fraction of the data. The inferred length preference based on the
respective models is superimposed on the true length preference
established from the eluted ligands, (Figure 6A). It is clear that the
model trained solely on the pMHC affinity data (‘IC50’) infers a ramp-
like length profile with a bias towards longer peptides. Without the
ability to properly learn the length preference (average PCC~0.32), the
longer peptides will naturally rank better given the higher probability
of hosting a good 9-mer binding motif. In contrast, the models which
learned from eluted ligand data (‘IC50+LIGAND’ and ‘LIGAND’) have
the ability to infer the length profile (average PCC~0.94) (Figure 6B).

Validation on external datasets
Finally, a competitive study was conducted with the state-of-the-art

pan-method NetMHCIIpan [13], and we trained the final model
implementation on the full ‘IC50+LIGAND’ dataset.

A new eluted ligand dataset was generated and reduced to the
subset that did not share a 9-mer peptide motif with the
‘IC50+LIGAND’ dataset. An overview of this external ligand dataset is
presented. Our model outperforms NetMHCIIpan-3.1 by a large
margin of 9.6% F-rank (p<0.05, binomial test) (Figure 7A).
Furthermore, similar performance is demonstrated on the external
dataset as that estimated on in the cross-validation, which confirms the
validity of the cross-validation scheme. To complement the evaluation
on eluted ligands, we retrieved a dataset of CD4+ epitopes measured
by the multimer/tetramer assay from the IEDB. The performance of
our model was again found superior to NetMHCIIpan with the gain on
the CD4+epitopes being more moderate with a margin of 3.3% F-rank,
(Figure 7B). It should be noted that both models have a higher
variability in the CD4+ epitope performance than for the eluted
ligands. Thus, on this limited benchmarking set covering seven MHC
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molecules, the difference is not found to be statistically significant
(p>0.05, binomial test).

Figure 6: Learning the ligand length preference of MHC class II. (A)
Distributions of the inferred MHC preferences superimposed with
the median of the length profile of the eluted ligand dataset. (B)
Correlation between the inferred length profile and that of the
pMHC affinity data, eluted ligand data and the combined data,
respectively.

Figure 7: Competitive evaluation with state-of-the-art on external
dataset. (A) Evaluation on an external eluted ligand dataset. (B)
Evaluation on an external CD4+ epitope dataset measured with the
tetramer assay. In both cases our model outcompetes
NetMHCIIpan-3.1. The performance is given as the percentile rank
of the positive example in a set of length-matched k-mers from the
source proteins. A lower F-rank signifies better predictive
performance.

Discussion and Conclusion
In this study, we present a novel model for the prediction of

pMHCII interactions. The model is developed by combined training

on pMHC affinity data and eluted ligand data. The two datasets each
have their strengths. The pMHC affinity dataset is quantitative in
nature and has a larger MHC molecule coverage at the time of writing,
(Figure 3 C). On the other hand, the eluted ligands represent peptides
that are bound to the MHC molecule in a natural setting and thus
inherently contain a wealth of information regarding peptide
processing, peptide length preferences and potentially modulated
sequence specificity due to chaperone-assisted docking [4].
Additionally, the peptide coverage for each MHC molecule is larger for
the eluted ligand datasets. However, the eluted ligands solely provide a
snapshot of the antigen presentation, and, as of yet, they do not carry
direct information on their binding strength as it is confounded by the
background peptide abundance [25]. Future efforts to collect paired
MS peptidomes and expression data may assist in elucidating the
binding strength of eluted ligands. Collectively, we consider the eluted
ligand datasets to provide the most accurate representation of antigen
presentation. We demonstrate that the rules governing pMHC
recognition can be synergistically learned by training on the pMHC
affinity and eluted ligands simultaneously to increase predictive
performance beyond that attainable by training on the two data types
in isolation.

We believe that as long as eluted ligands are only covered by a
limited set of MHC molecules, the pMHC affinity data can supplement
the eluted ligands to assist the models to generalize better to unseen
MHC molecules. Furthermore, we showcase that the increased
performance can be attributed to both increased inference of the
sequence specificity and the peptide length preference of the respective
MHCII molecules. Notably, the MHCII molecules appear to have more
similar length preferences than that observed for MHCI molecules
[14]. With the open binding groove of MHCII, one may envision that
the length preference is defined by the ligand processing machinery to
a larger extent as compared to MHCI. Finally, we show that our model
has an unprecedented performance by outcompeting the state-of-the-
art NetMHCIIpan on external datasets of eluted ligands and CD4+ T-
cell epitopes. It should be noted that the CD4+ T-cell epitopes likely
have been selected based on prediction or in vitro measurements of
pMHCII affinity, and they may thus yield an overestimated
performance. However, the conditions are similar for the two methods,
and this bias will probably disproportionally inflate the performance of
NetMHCIIpan. Future efforts to improve performance should revolve
around harnessing more of the information kept in the eluted ligands,
e.g. ligand processing as illustrated by [26].

The holy grail of immunoinformatics is to infer epitopes to develop
disease treatment regimes for e.g., allergy, infectious diseases,
autoimmune diseases and cancer. This has especially become highly
interesting with the increased focus on precision medicine [6]. To meet
these challenges, a model should ultimately incorporate the
recognition of pMHC by the T-cell receptors (TCR). This goal is
currently limited by the lack of data on pMHC-TCR interactions and
limited availability of cost-effective high-throughput assays [27]. It
should be noted, however, that efforts to curate the available pMHC-
TCR data is ongoing [10,28].
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