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INTRODUCTION

As a common nervous system disease, the clinical diagnosis and 
treatment of brain tumor have received extensive attention [1]. 
In clinical practice, doctors often need to use medical imaging to 
assess the location, shape, size, and relationship of brain tumors 
to surrounding tissues [2]. Magnetic Resonance Imaging (MRI), 
as a non-invasive, high-resolution medical imaging technology, 
is widely used in the diagnosis and monitoring of brain tumors 
because of its good contrast to soft tissue. The advantages of 
MRI are its non-invasiveness, absence of ionizing radiation and 
high sensitivity to soft tissue, especially for imaging brain tumors 
and surrounding tissues [3]. However, due to the diverse size, 
shape, and structure of brain tumors, as well as the blurring of 
boundaries with neighboring tissues, it has become extremely 
challenging to accurately and automatically segment brain tumors 
from MRI images.

However, manually analyzing brain tumor areas in MRI images 
is a time-consuming and subjective task that is susceptible 

to individual physician differences and fatigue levels, as well 
as possible inaccuracies [4]. In order to solve this problem, 
Computer Aided Diagnosis (CAD) technology came into being 
[5]. Among them, brain tumor detection and segmentation 
methods based on machine learning and image processing have 
developed rapidly in recent years and become a research hotspot. 
Anand, et al., adopted a multimodal strategy integrating machine 
learning with medical assistance [6]. They used geometric mean 
filters to remove image noise and ued the fuzzy c-means algorithm 
to partition the images into smaller blocks for more precise 
localization of brain tumors. On the other hand, Zhan, et al., 
proposed an approach that combines semi-supervised learning 
principles, image characteristics, and clinical prior knowledge [7]. 
Particularly effective when labeled data is scarce, they enhanced 
segmentation through co-training with multiple classifiers. 
Additionally, Thayumanavan, et al., designed a specialized median 
filtering technique optimized for skull separation in MRI [8]. This 
method can identify abnormal brain tissue even in low-contrast 
conditions and accurately locate the boundaries of diseased tissue, 
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ABSTRACT
In the pursuit of advancing the precision of brain tumor MRI image detection and segmentation for the purpose of 
fulfilling the requirements of automated medical analysis, this research introduces an enhanced Mask R-CNN method 
specifically tailored for high-precision brain tumor instance segmentation. The augmentation involves the incorporation 
of the Convolutional Block Attention Module (CBAM) hybrid attention mechanism, aimed at improving the model’s 
feature extraction capabilities and adaptively reinforcing its responsiveness to critical features. This enhancement 
facilitates a more precise capture of key tumor information. Furthermore, the integration of the Bi-directional Feature 
Pyramid Network (BiFPN) feature fusion technology ensures the model’s ability to accurately segment brain tumors of 
diverse sizes and shapes, thereby enhancing its capacity to identify and segment multi-scale targets. Through a series of 
rigorous experimental validations, the proposed model demonstrates notable improvements. The precision of the model 
attains 90.79%, marking a 0.67% enhancement compared to the original model. Similarly, the recall achieves 91.44%, 
indicating a 0.79% improvement, while the mean Average Precision (mAP) reaches 95.12%, reflecting a substantial 
increase of 1.88%. Beyond achieving accurate segmentation of brain tumor MRI images, the proposed method excels 
in precisely calculating the tumor’s area and diameter. Consequently, these findings furnish valuable reference data for 
medical research and diagnosis, underscoring the potential clinical significance of the developed methodology.
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MATERIALS AND METHODS

Data sets collection and processing

In this study, the publicly available brain MRI image dataset from 
the Kaggle international competition platform was selected to 
provide a data foundation for in-depth research on the detection 
and segmentation of brain MRI images [16]. This dataset 
comprises 1,280 brain MRI images categorized into two major 
groups: Healthy and brain tumor cases. It is worth noting that 
these images are not only sourced from medical imaging centers 
worldwide, ensuring geographic diversity, but also encompass 
various types of brain tumors, including benign, malignant, 
primary, and secondary tumors. To facilitate the analysis and 
application of images by researchers, all MRI images are stored 
in the widely used JPG format. Additionally, for more accurate 
and specific image interpretation, each image is accompanied 
by a JSON label file that provides detailed annotations of key 
information within the image, such as tumor location, size, 
shape, and other relevant details (Figure 1).

Image augmentation

Data augmentation is a method of artificially increasing the 
training data volume by applying various image transformation 
techniques, with the aim of enhancing the model’s generalization 
ability and reducing the risk of overfitting [17]. In brain MRI 
tumor images, obtaining high-quality tumor image data can be 
challenging, making data augmentation techniques particularly 
important. In this study, four primary data augmentation 
strategies were selected to enhance the robustness of model 
training, including rotation, mirroring, brightness, and noise as 
shown in Figure 2 [18,19]. Specifically, by applying rotations at 
different angles to the original images, tumor imaging features 
from various perspectives were stimulated, thus increasing data 
diversity. Horizontal mirroring of images generated slightly 
different new images from the original ones, aiding the model 
in capturing symmetric features more effectively. Altering the 
brightness of images can simulate different imaging conditions, 
such as lighting and exposure times. This approach allows 
the model to better adapt to variations in image brightness 
that occur in the real world due to different scanning devices 
or conditions. Adding random noise to images can simulate 
random perturbations during the image capture process, such 
as electronic noise from equipment or other factors, thereby 
improving the model’s robustness to noise (Figure 2).

Mask RCNN brain tumor MRI image instance 
segmentation model

Mask Region-based Convolutional Neural Networks (R-CNN) is a 
deep learning architecture proposed by the Facebook AI Research 
team for object detection and instance segmentation tasks [20]. 
It is an extension of Faster R-CNN, with an additional branch 
for predicting segmentation masks, enabling it to simultaneously 
output object bounding boxes and segmentation masks [21]. The 
overall structure includes a backbone network, a Region Proposal 
Network (RPN), and two prediction branches. The backbone e 
network typically utilizes deep convolutional neural networks 
such as ResNet or VGG to extract features from input brain 
tumor MRI images. To achieve multi-scale feature extraction 
and enhance feature representativeness, the backbone network 

enabling further analysis of texture and morphological features of 
brain tumors. Alam, et al., developed a Template-Based K-Means 
and Improved Fuzzy C-Means (TKFCM) algorithm model for 
human brain tumor detection in MRI images [9].

In recent years, deep learning techniques have demonstrated 
immense potential in MRI brain tumor segmentation. Specifically, 
the application of Convolutional Neural Networks (CNNs) 
has made the identification and segmentation of brain tumors 
from complex brain MRI images more accurate and efficient 
[10,11]. These networks can automatically learn tumor features 
from large training datasets and apply them to new, unknown 
images, achieving high segmentation accuracy. Researchers have 
proposed various network architectures and training strategies 
tailored to different types of brain tumors. For instance, 
Deng, et al., introduced a novel brain tumor segmentation 
method that integrates unquantifiable local features into the 
Fully Convolutional Neural Network (FCNN) for fine-grained 
boundary segmentation [12]. Compared to traditional MRI 
brain tumor segmentation methods, this approach significantly 
improves segmentation accuracy and stability. Zheng, et al., 
improved the segmentation performance of the U-Net network 
by introducing Hybrid Dilated Convolution (HDC) modules 
and enhanced connectivity between modules in two sequential 
networks, achieving higher-precision semantic segmentation of 
brain tumors [13]. Ranjbarzadeh, et al., designed a flexible and 
efficient brain tumor segmentation system that significantly 
reduces computation time through local image preprocessing 
[14]. They also improved tumor segmentation accuracy by 
using a Cascade Convolutional Neural Network (C-CNN) and 
the Distance-Wise Attention (DWA) mechanism. Zhao, et al., 
integrated Fully Convolutional Neural Networks (FC-NNs) and 
Conditional Random Fields (CRFs) into a unified framework, 
developing a novel brain tumor segmentation method that 
achieves brain tumor segmentation results with both appearance 
and spatial consistency [15].

Despite significant technological advancements in the 
aforementioned methods, brain tumor segmentation tasks still 
face numerous challenges. Firstly, there is a noticeable variation 
in the quality of MRI images. Differences in equipment or 
variations in patient positioning can result in substantial changes 
in image contrast, resolution, and noise levels. This necessitates 
algorithms with strong adaptability and robustness to handle 
various image quality variations. Secondly, the heterogeneity of 
brain tumors presents segmentation challenges. Brain tumors 
can be benign or malignant, primary or recurrent, and exhibit 
significant variations in morphology, size, and growth patterns. 
Furthermore, tumors may be located deep within critical 
brain functional areas, making precise boundary detection an 
important task. Addressing these challenges, this paper proposes 
an efficient instance segmentation method tailored for brain 
tumor MRI images. On one hand, it optimizes brain tumor MRI 
images to ensure their efficiency and accuracy in detection and 
segmentation. Moreover, this method goes beyond meeting basic 
segmentation requirements; it also provides substantial diagnostic 
tools for medical professionals. This includes in-depth analysis 
of pathological features on MRI images, precise estimation of 
tumor size, and calculation of total tumor area, thereby offering 
comprehensive data support for medical diagnostic decision-
making.
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is often combined with a Feature Pyramid Network (FPN). FPN 
utilizes feature maps from shallow to deep layers to ensure good 
performance in handling tumors of various scales. The Region 
Proposal Network (RPN) operates on the extracted feature 
maps to predict and generate potential tumor bounding box 
proposals. These proposals are based on global image features 
and incorporate local details to ensure accuracy. Once these 

proposals are obtained, Mask R-CNN uses RoIAlign technology 
to precisely extract fixed-size features from the feature maps of 
the backbone network. These features are then fed into two 
prediction branches. 

One branch predicts the position and class of the tumor bounding 
box, while the other branch generates the segmentation mask of 
the tumor (Figure 3).

Figure 1: Brain MRI image dataset. (A): Healthy brain MRI image; (B): Tumor brain MRI image; (C): Tumor brain MRI images with corresponding 
labels.

Figure 2: Brain tumor MRI Image Data Augmentation. (A): Rotate; (B): Mirror; (C): Light; (D): Noise.
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attention to both local and spatial information, reducing the 
weight assigned to irrelevant features, CBAM ultimately improves 
the accuracy of brain tumor MRI image instance segmentation. 
Its overall structure is illustrated in Figure 4.

In the research of brain tumor MRI image instance segmentation, 
the selection of input feature channels is important. Effective 
channel selection helps the model focus on features closely 
related to the tumor while excluding redundant or irrelevant 
information [26]. Channel attention primarily determines which 
channels are more important by capturing different feature 
descriptions through global average pooling and global max 
pooling, and assigns a weight to each channel based on this 
information. The specific operation is illustrated in Figure 5. For 
the input feature map (with height (H), width (W), and channels 
(C)), it first obtains two 1 × 1 × C channel mappings using global 
average pooling and global max pooling. Then, it computes 
the weights for each channel through a shared Multi-Layer 
Perceptron (MLP) consisting of two layers. Finally, an element-
wise sum is performed, and the result goes through a Sigmoid 
activation function to generate the new channel feature Mc. In 
this way, the model adaptively weights each channel, emphasizing 
features most relevant to brain tumor detection and recognition 
while ignoring channels with low discriminative power or weak 
association with the target (Figure 5).

The calculation formula is represented as Equation 1, where 
σ denotes the Sigmoid activation function, MLP stands for 
multi-layer perceptron, Avgpool represents the average pooling 
operation, and Maxpool represents the maximum pooling 
operation.

( ) ( )( )( ) ( )( )CM F MLP AvgPool F MLP MaxPool Fσ= + ......(1)

Following the application of channel attention processing, a 
subsequent utilization of spatial attention is implemented to 
further accentuate pivotal spatial positions within the input feature 
map. Spatial attention serves the primary purpose of determining 
the regions of heightened importance within the input feature 
map, typically accomplished through the employment of a small 
convolutional network for calculating weights associated with 
each spatial position. The specific operation is illustrated in Figure 
6. Initially, for the feature map derived from channel attention 
(possessing dimensions of height H’, width W’, and C’ channels), 
two H’ × W’ × 1 channel mappings are acquired through global 
average pooling and global max pooling, with the resulting 

Improved brain tumor MRI image instance segmentation 
model

In the task of brain tumor MRI image instance segmentation, the 
traditional Mask R-CNN model has certain limitations. Firstly, 
brain tumors in MRI images can exhibit various shapes and 
sizes, and the surrounding brain tissue structures are complex, 
which increases the difficulty of segmentation. These detailed 
features may not receive sufficient attention in the traditional 
ResNet backbone network. To address this issue, an attention 
mechanism was incorporated into the backbone network. The 
attention mechanism allows the model to focus more on the 
detailed features of the brain tumor, enhancing the model’s 
ability to extract features from these abnormal regions, thereby 
significantly reducing interference from background noise and 
other unrelated brain tissues [22]. Secondly, the original Mask 
RCNN utilizes FPN (Feature Pyramid Network), which may not 
capture all important contextual information in certain complex 
scenarios. Brain tumor instance segmentation requires not 
only the recognition of large, prominent tumor masses but also 
consideration of the edges and finer tumor details. To effectively 
address this challenge, the Bidirectional Feature Pyramid 
Network (BiFPN) was adopted as an alternative to the traditional 
FPN [23]. BiFPN, through bidirectional feature fusion, effectively 
captures brain tumor information at different scales, ensuring 
that the model can comprehensively and accurately capture and 
segment brain tumors.

CBAM attention mechanism: The Convolutional Block 
Attention Module (CBAM) is an attention mechanism 
introduced into convolutional neural networks to enhance 
the model’s sensitivity to input features [24,25]. This attention 
mechanism does not simply amplify certain features; instead, it 
allows the model to automatically determine which features are 
more important through specific strategies and computations, 
assigning them higher weights. This ensures that when the model 
processes brain tumor MRI images, it can focus more on the 
decisive and critical features, thereby improving the overall model 
performance. CBAM consists of two main components: Channel 
Attention Module (CAM) and Spatial Attention Module (SAM). 
In the task of brain tumor MRI image instance segmentation, 
determining the subtle pathological conditions of brain tumors 
requires the model to deeply consider the local information in 
convolutional features. However, accurately locating brain tumors 
relies more on spatial information. By enhancing the model’s 

Figure 3: Mask RCNN Brain tumor instance segmentation model.
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for brain tumor MRI images. The specific implementation 
method is illustrated in Figure 7. First, CBAM’s channel 
attention helps the model identify which channel features are 
important for detecting brain tumor regions, such as edges, 
textures, and shapes, thereby enhancing the influence of these 
channels. Secondly, spatial attention allows the model to focus 
more on specific locations of the brain tumor, such as the tumor 
core, tumor boundaries, or other abnormal structural regions, 
improving segmentation accuracy. Additionally, due to CBAM’s 
adaptability, it provides consistent performance improvements to 
the model across different levels and contrasts of MRI images. 

Overall, integrating CBAM into the Mask R-CNN backbone 
network not only enhances segmentation accuracy for brain 
tumors but also improves the model’s robustness when dealing 
with various brain structures and abnormal conditions (Figure 7).

mappings concatenated. Subsequently, a 7 × 7 convolutional 
operation followed by a Sigmoid activation function produces 
the new spatial feature denoted as Ms. This method enhances the 
model’s ability to pinpoint regions pertinent to brain tumors with 
increased precision, thereby markedly mitigating interference 
from irrelevant areas and augmenting the overall accuracy of the 
model’s detection capabilities (Figure 6).

The calculation formula is represented as Equation 2, where   
denotes the convolution operation, and 7 × 7 is the size of the 
convolution kernel.

( ) ( ) ( )( )( )7 7 ;SM F f AvgPool F MaxPool Fσ ×=     ......(2)

Integration of attention modules with the backbone network: 
In this study, CBAM was incorporated into the backbone network 
of Mask R-CNN to enhance its instance segmentation capabilities 

Figure 4: CBAM attention module structure.

Figure 5: Channel attention implementation method.

Figure 6: Spatial attention implementation method.
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to feature fusion were removed. This approach retained only the 
intermediate feature layers that genuinely contributed to feature 
fusion, thereby reducing the consumption of computational 
resources. Additionally, during the downsampling process, when 
fusing shallow features with deep features, an extra connection 
to the output nodes at the same level but containing deep 
information was added. To ensure comprehensive feature 
exploration across scales, a single bidirectional fusion was not 
deemed sufficient. Instead, the bidirectional fusion paths were 
utilized as a feature extraction layer and stacked three times to 
achieve deeper scale fusion. Specifically, given five feature layers 
C1, C2, C3, C4, and C5, after three repetitions of bidirectional 
fusion operations, a three-layer deep structure P1, P2, P3, P4, and 
P5 was obtained, achieving high-level scale fusion of features. The 
specific BiFPN structure is illustrated in Figure 9. This strategy 
captures all features from fine to macroscopic in brain tumor 
MRI image instance segmentation, significantly enhancing 
segmentation accuracy and stability (Figure 9).

The loss function for brain tumor MRI image instance 
segmentation: To achieve optimal performance in brain tumor 
MRI image instance segmentation, a thorough investigation 
and adjustment of the loss function is crucial. In this study, 
by combining classification loss clsL , regression loss regL  and 
segmentation loss maskL , this study ensure that the model excels in 
both tumor recognition, localization, and precise segmentation. 
The specific implementation is as follows in the following 
formulas.

( )
^ ^

log 1 log 1cls i ii ii
L p p p p    = − + − −        

∑
  ...................(3)

^

1 ireg L ii
L smooth t t = − 

 
∑

 ......................................(4)

( )
^ ^

log 1 log 1j jmask j jj
L m m m m    = − + − −        

∑
 .........(5)

cls cls reg reg mask maskL L L Lλ λ λ= + +
 ......................(6)

Bidirectional feature fusion network: In the field of computer 
vision, feature fusion is a critical factor in determining model 
performance. The original Mask R-CNN achieves feature multi-
scale fusion through FPN (Feature Pyramid Network). FPN 
considers the combination of deep and shallow feature maps, 
allowing the model to effectively detect and segment objects 
in images. However, FPN has some limitations. While shallow 
feature maps contain rich detail information and deep feature 
maps provide high-level abstractions of the image, FPN fails to fully 
integrate the advantages of both. To overcome these limitations 
and better fuse features from different layers, this study introduces 
the BiFPN [27]. Unlike FPN, BiFPN, while maintaining top-down 
and bottom-up connections, introduces cross-layer connections 
between feature maps. Figure 8 illustrates the sub-module 
structures of FPN and BiFPN. This structure enhances feature 
integration capability and improves computational efficiency 
with fewer parameters. More importantly, the design of BiFPN 
allows for multiple bidirectional fusions, ensuring comprehensive 
feature integration across different scales [28]. Each bidirectional 
path is treated as a feature network layer and is stacked repeatedly 
to achieve deeper scale fusion (Figure 8).

For the instance segmentation of brain tumor MRI images, 
preserving both image details and high-level information is 
important. Brain tumor structures may exist at different scales in 
MRI images, and the bidirectional fusion mechanism of BiFPN 
can help capture the detailed structures and locations of these 
tumors. This means that BiFPN effectively combines high-level 
semantic information with shallow detail information, providing 
more accurate features for brain tumor instance segmentation 
in MRI images. The proposed Bidirectional Feature Pyramid 
Network (BiFPN) introduces an optimization strategy with cross-
scale connections to further enhance feature fusion. Specifically, 
to improve computational efficiency and feature quality, three 
key improvements were made to the traditional FPN structure. 
First, during the upsampling and fusion of shallow features, 
nodes that only served as single inputs and did not contribute 

Figure 7: Integration of CBAM into the backbone network.



7J Med Diagn Meth, Vol.13 Iss.4 No:1000482

Foun MH OPEN ACCESS Freely available online

adjusted based on different tasks.

Experimental environment and hyperparameter settings

The instance segmentation networks were all constructed, 
trained, and tested using the PyTorch deep learning framework, 
ensuring efficient and stable overall performance. The 
experimental environment was set up on a Windows 10 
operating system, equipped with an Intel (R) Core (TM) i9-
11900KF central processing unit and 2 NVIDIA GeForce RTX 
2080Ti graphics processing units. All coding work was done in 
a Python 3.8 environment, and to accelerate the model training 
process, CUDA 11.3 and cuDNN 8.4.1 were configured. The 
hyperparameters for model training are shown in Table 1, with a 
total of 180 epochs trained to achieve maximum convergence of 
the models (Table 1).

Formula 3 represents the classification loss, which aims to ensure 
that the model can accurately distinguish different categories, such 
as tumor and non-tumor regions. In this formula, pi represents 
the true class label, and pi is the predicted probability by the 
model. Formula 4 is the bounding box regression loss, which 
measures the difference between the predicted bounding boxes 
and the true bounding boxes to accurately locate the tumor in the 
MRI image. ti represents the coordinates of the true bounding 
box, and ti represents the coordinates of the model’s predicted 
box. Formula 5 is the instance segmentation loss, which ensures 
that the predicted segmentation mask closely matches the actual 
tumor shape. mj represents the true labels for each pixel, and 
mj represents the predicted pixel probabilities by the model. 
Formula 6 is the overall loss function of the model, which is used 
to determine the performance of tumor recognition, localization, 

and segmentation. clsλ , regλ  and maskλ  is weight coefficients that are 

Figure 8: FPN and BiFPN sub-module structure.

Figure 9: Improved BiFPN module structure.
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rate. Nevertheless, as the learning rate was reduced, the model’s 
mAP oscillations noticeably stabilized, indicating better robustness 
and generalization performance. Additionally, the transfer learning 
strategy validated the effectiveness of freezing certain layers during 
the early training stages. Freezing layers ensured that the pre-trained 
weights were not significantly altered in the initial training, thereby 
mitigating issues such as overfitting or convergence difficulties 
during the early stages (Figure 10).

Analysis of brain tumor MRI image instance segmentation 
results

The improved Mask RCNN demonstrates outstanding 
performance in brain tumor MRI image instance segmentation. 
After optimization and training, the model not only accurately 
identifies and locates tumors but also provides in-depth analysis 
of tumor morphology and size. In practical use, the model first 
generates detection boxes for tumor regions. These detection 
boxes provide precise information about the tumor’s location in 
the MRI image. Unlike traditional methods, the improved model 
offers higher localization accuracy, enabling medical professionals 
to quickly and accurately pinpoint the lesion area. For doctors 
and radiology technicians, this serves as an intuitive tool for 
rapid identification of the tumor’s location. Moreover, the size 
of the detection box allows the calculation of the diameter of the 
tumor lesion area, providing essential reference information for 
subsequent treatment planning. However, the detection box can 
only provide approximate information. To obtain more detailed 
information about the tumor’s structure and morphology, the 
model further generates a mask. This mask is a binary image 
in which the tumor area is labeled as 1, while other areas are 
labeled as 0. This means that through the mask, it is possible to 
not only obtain the accurate area of the tumor but also analyze its 
morphology more clearly, such as the presence of lobulation, the 
uniformity of the tumor, and more. This information is crucial 
for determining the malignancy level of the tumor, its growth 
pattern, and potential risks. Figure 11 illustrates the results of 
the improved Mask RCNN brain tumor MRI image instance 
segmentation analysis.

Ablation experiments

To comprehensively analyze the impact of various strategies on the 
segmentation performance of brain tumor MRI images, ablation 
experiments were devised for each strategy. All experiments 
were conducted with consistent hyperparameters and operating 
environments to ensure the validity and comparability of the 
results. The outcomes are presented in Table 2. It is evident 
from the table that employing either the BiFPN or CBAM 

Evaluation metrics

To ensure comprehensive validation of the models proposed 
in this study, several commonly used performance evaluation 
metrics were chosen, including Precision, Recall, F1 Score, 
and mAP (mean Average Precision). These metrics provide 
a comprehensive and accurate assessment of the model’s 
performance from various perspectives. The calculation formulas 
for these metrics are as follows:

Precision TP
TP FP

=
+  ..................................(7)

TPRecall
TP FN

=
+  .....................................(8)

1 2 Precision RecallF Score
Precision Recall

×
= ×

+  ..............(9)

( )
1

N
ii

seg

AP
mAP

N
== ∑

 .....................................(10)

In the formulas, TP, FP  and FN represent the number of correctly 
detected tumors, the number of incorrectly detected tumors, 
and the number of tumors that were not correctly detected, 
respectively. Precision indicates the probability of true tumors 
among the detected tumor regions. Recall represents how many 
tumor targets in the image were detected. F1 Score is the harmonic 
mean of Precision and Recall, providing a single performance 
evaluation value that combines information from both metrics. 
A higher F1 Score indicates better model performance, with a 
maximum value of 1. mAP provides the average precision across 
various categories and serves as an intuitive indicator of the overall 
model performance, considering multiple classes simultaneously.

RESULTS AND DISCUSSION

Model accuracy

Model accuracy is an important metric for evaluating its performance, 
typically analyzed by observing the loss values during the training 
process. To optimize the model and expedite its convergence, a 
transfer learning strategy was employed using pre-trained weights 
from the COCO dataset as initial weights and freezing the model’s 
fully connected layers for the first 15 epochs. The model training 
process is illustrated in Figure 10. Over the course of the 180 training 
epochs, the model’s loss values were relatively high during the initial 
10 epochs. However, as training progressed, a gradual decrease in 
loss values and a corresponding improvement in the model’s mAP 
(mean Average Precision) values were observed. It’s worth noting 
that during the first 50 epochs, the model’s mAP exhibited some 
oscillations. This could be attributed to the initially high learning 

Parameter Value

Optimizer SGD

Learning rate 0.004

Learning rate decay (25, 60, 100, 130)

Batch size 32

Label smoothing 0.005

RPN anchor scales (16, 32, 64, 128, 256)

Table 1: Training parameters and values.
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indicates that these two strategies complement each other, 
collectively enhancing the model’s segmentation capabilities when 
dealing with MRI images depicting complex tumor structures and 
diverse morphologies. Compared to the original Mask RCNN 
model, the enhanced model exhibited improvements of 0.67% 
in Precision, 0.79% in Recall, 1.14% in F1 Score, and 1.88% 
in mAP. These experimental findings unequivocally demonstrate 
the effectiveness of our proposed enhancement strategy in 
elevating the instance segmentation performance of brain tumor 
MRI images. This offers robust support for subsequent in-depth 
research and clinical applications (Table 2).

attention mechanism independently significantly enhances the 
performance of Mask RCNN. BiFPN excels in capturing intricate 
image details, while CBAM automatically concentrates on crucial 
areas such as tumor edges and structural intricacies. Notably, the 
CBAM attention mechanism exhibits a slight advantage across 
all metrics. This is attributed to its ability to effectively focus on 
specific tumor areas during the processing of brain tumor MRI 
images, thereby enhancing model segmentation accuracy. When 
both BiFPN and CBAM were implemented in the segmentation 
of brain tumor MRI images, the model demonstrated optimal 
performance in Precision, Recall, F1 Score, and mAP. This 

Figure 11: Analysis of segmentation results of brain tumor MRI images.

Algorithms Precision (%) Recall (%) F1 Score (%) mAP (%)

Mask RCNN 90.12 90.65 91.23 93.24

Mask RCNN+BiFPN 90.37 90.96 91.71 94.13

Mask RCNN+CBAM 90.54 91.21 91.98 94.79

Mask 
RCNN+BiFPN+CBAM

90.79 91.44 92.37 95.12

Table 2: The impact of different optimization strategies on model performance.

Figure 10: The loss value of the model and the change curve of mAP during the training process. Note: (A): Loss curve; (  ): loss; (  ): lr; 
(B): mAP curve; (  ): mAP.
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Comparison of different model performances

To further validate the efficacy of the enhanced Mask RCNN 
model in instance segmentation of brain tumor MRI images, a 
comparative analysis was conducted with two prominent instance 
segmentation models, namely YOLACT and SOLO. To ensure 
fair evaluation, consistent hyperparameter configurations were 
maintained across all models, including batch size, learning 
rate, weight decay, and other factors. Each model underwent 
exhaustive training until convergence. The performance of these 
models is outlined in Table 3. The tabulated results reveal that the 
enhanced Mask RCNN model outperforms both YOLACT and 
SOLO across all four metrics. Notably, the improved Mask RCNN 
achieved a remarkable mAP of 95.12%, showcasing a significant 
superiority over the other two models. In the context of processing 
MRI brain tumor images, the ability to capture detail and guide 
attention proves pivotal for enhancing model performance. 
Despite the commendable performance of YOLACT and SOLO 
in various scenarios, they still fall behind our improved model in 
this study. This comparative analysis underscores the substantial 
superiority of the proposed enhancement strategy in the task of 
segmenting MRI brain tumor images (Table 3).

Factors affecting model performance

Impact of tumor shape on model performance: The 
configuration of brain tumor shapes, indicative of biological 
structural variations, significantly influences model performance. 
To elucidate the impact of different tumor shapes on the 
performance of the enhanced Mask RCNN brain tumor instance 
segmentation model, tests were conducted on two prototypical 
tumor morphologies: Circsular and irregular shapes. Figure 
12 illustrates the experimental results. In scenarios involving 
circular tumor structures, characterized by regularity and 
continuity facilitating image segmentation, the enhanced Mask 
RCNN model showcases exceptional performance. It accurately 
identifies circular tumors and maintains high-precision 
segmentation, demonstrating the improved model’s sensitivity 
and accuracy in handling regular structures. In instances of 
irregular-shaped tumors, the increased morphological variability 

presents greater challenges to image segmentation. Nevertheless, 
the enhanced Mask RCNN model exhibits robustness in this 
complex environment. While minor recognition errors may 
occur in specific areas, the model effectively performs tumor 
identification and segmentation tasks overall. Based on these 
experimental findings, it is concluded that the enhanced Mask 
RCNN brain tumor instance segmentation model maintains 
outstanding performance under both circular and irregular 
tumor morphologies. This robust performance establishes a 
reliable foundation for practical applications in medical image 
analysis, ensuring accurate segmentation results when diagnosing 
tumors of diverse shapes (Figure 12).

Effect of the number of brain tumors on model performance: 
The number of brain tumors is directly related to the complexity 
and challenges of medical image analysis. To systematically assess 
the impact of varying numbers of tumors on the enhanced 
Mask RCNN instance segmentation model, MRI images 
containing both single and multiple brain tumors were tested. 
The experimental results, as shown in Figure 13, demonstrate 
that the model exhibits excellent segmentation performance for 
images with a single brain tumor. This is mainly attributed to the 
relatively simple and clear structural features provided by a single 
tumor, allowing the model to easily capture and achieve high-
precision segmentation. However, when multiple brain tumors 
are present in the image, especially accompanied by smaller 
tumors, the situation becomes more complex. In the context 
of multiple tumors, small tumors are often more challenging to 
detect due to their small size and variable shapes. Despite the 
challenges, the improved Mask RCNN model still demonstrates 
its superior performance. The attention mechanism can provide 
more focus on small tumor targets, and the ability to extract 
multi-scale features enables accurate detection and segmentation 
even in complex backgrounds. Based on our experimental 
results, it can be concluded that the improved Mask RCNN brain 
tumor segmentation model performs excellently in both single 
and multiple tumor scenarios. This further emphasizes the value 
of the improved Mask RCNN model in medical image analysis, 
providing more accurate and reliable diagnostic tools for medical 

Algorithms Precision (%) Recall (%) F1 Score (%) mAP (%)

YOLACT 90.33 91.01 90.87 91.92

SOLO 89.7 90.76 90.23 91.37

Improved Mask RCNN 90.79 91.44 92.37 95.12

Table 3: Comparison of different model performances.

Figure 12: Effects of brain tumors with different shapes on model performance.
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professionals (Figure 13).

CONCLUSION

In this research, a precise method is proposed for detecting 
and segmenting brain tumors in MRI images. Recognizing the 
limitations of conventional Mask RCNN models in handling this 
task, the CBAM (Convolutional Block Attention Module) hybrid 
attention mechanism has been integrated to enhance the model’s 
capability to identify and extract crucial features. This integration 
ensures a more accurate capture and enhancement of tumor 
features in MRI images, making the model more responsive to 
such features. Additionally, to optimize feature extraction, the 
BiFPN (Bidirectional Feature Pyramid Network) feature fusion 
technique has been incorporated, ensuring accurate segmentation 
of brain tumors across various scales and shapes. Comparative 
analysis with the original Mask RCNN model demonstrates 
significant improvements in multiple performance metrics in our 
enhanced approach. Specifically, precision has reached 90.79%, 
indicating a 0.67% increase over the original model. Recall has 
reached 91.44%, reflecting a 0.79% improvement, and mAP 
(mean Average Precision) has reached 95.12%, showcasing a 
1.88% increase. To establish the superiority of our method, 
comparisons were made with instance segmentation models like 
YOLACT and SOLO, revealing that the enhanced Mask RCNN 
outperforms them in the instance segmentation of brain tumor 
MRI images. Finally, leveraging the instance segmentation results, 
a detailed analysis is conducted to extract key medical indicators 
of brain tumors, including area and diameter, providing crucial 
reference data for the medical field.
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