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Abstract
Process safety is a critical component in various process industries. Statistical process monitoring techniques were 

initially developed to maximize efficiency and productivity, but over the past few decades with catastrophic industrial 
disasters, process safety has become a top priority. Sensors play a crucial role in recording process measurements, 
and according to the number of monitored variables, process monitoring techniques can be classified into univariate 
or multivariate techniques. Most univariate process monitoring techniques rely on three fundamental assumptions: 
that process residuals contain a moderate level of noise, are independent, and are normally distributed. Practically, 
however, due to a variety of reasons such as modeling errors and malfunctioning sensors, these assumptions are 
violated, which can lead to catastrophic incidents. Fortunately, multiscale wavelet-based representation of data 
inherently possesses characteristics that are able to deal with these violations of assumptions. Therefore, in this 
work, multiscale representation is utilized to enhance the performance of the Shewhart chart (which is a well-known 
univariate fault detection method) to help improve its performance. The performance of the developed multiscale 
Shewhart chart was assessed and compared to the conventional chart through two examples, one using synthetic 
data, and the other using simulated distillation column data. The results of both examples clearly show that the 
developed multiscale Shewhart chart provides lower missed detection and false alarm rates, as well as lower ARL1 
values (i.e., quicker detection) for most cases where the fundamental assumptions of the Shewhart chart are violated. 
Additionally, the relative simplicity of the proposed algorithm encourages its implementation in practice to help improve 
process safety.

Keywords: Process monitoring; Fault detection and diagnosis;
Shewhart chart; Multiscale representation; Wavelets

Introduction
Statistical process monitoring (SPM) plays a critical role in most 

process industries. Primary functions of SPM are to ensure that plants 
run safely within minimal down-time for maintenance, and to ensure 
that the end product is of a desired quality. SPM is generally carried out 
in two phases: fault detection, during which the faults in a particular 
process system are first identified, and fault diagnosis, during which 
the root cause of the fault is isolated and determined, after which action 
is taken to bring the process back to normal operating conditions [1]. 
Sensors play a crucial role as they need to ensure that the process 
operates as designed, and this is accomplished by monitoring different 
process variables to ensure the process are running smoothly. Quick, 
efficient, and accurate fault detection is required because it can help 
prevent major safety incidents from occurring, thus ensuring safety of 
life, property and economy. This paper currently only looks to examine 
and improve the fault detection aspect of process monitoring.

There are a number of methodologies that can be used to classify 
fault detection methods. Fault detection methods can be classified 
according to their dependency on models used. These can be 
quantitative model-based methods, such as observers or parity space 
[2], qualitative model-based methods, such as fault trees, digraphs, or 
even process engineering experts [3-6], or process-history (data-based) 
methods, such as Principal Component Analysis (PCA) and neural 
networks [7,8]. Accurate qualitative and quantitative model-based 
methods may not always be available, especially for complex processes 
with multiple process variables, and therefore data-based methods are 
often employed. Data-based methods rely on collecting fault-free data 
(under normal operating conditions), that are then used to design fault 
detectors, i.e., define the control limits. These limits are then applied 
on new process measurements (testing data), to detect potential faults 
(deviations or abnormalities) in processes. Data-based monitoring 

methods have been applied to detect anomalies in a wide variety of
applications, from medical sensors [9], to wind turbines [10], to the
petroleum industry [11]. Deviations in process variables can be due to 
a number of reasons, from faulty sensors to malfunctioning alarms, 
and therefore it is essential to address these concerns in order to pre-
vent catastrophic incidents.

Anomalies in processes can lead to catastrophic incidents. One
example of a catastrophic incident is the Texas City refinery explosion,
at the British Petroleum’s (BP) plant in Texas City, Texas, where an
explosion killed 15 people and caused nearly 180 injuries. Although
there were a number of factors that led to the incident, one of the main
contributing factors was the fact that multiple level indicators and
alarms in the raffinate tower malfunctioned, and provided incorrect
readings [12]. This led the tower to over-pressurize and eventually
explode once it came into contact with an ignition source [13]. Data-
based techniques are an efficient way of observing a process to monitor
deviations in multiple key process measurements, and this paper aims
to improve the fault detection capability of a very simple monitoring
chart, the Shewhart chart,in order to widen its applicability in practice,
and hopefully prevent major industrial disasters such as the incident
mentioned.
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Data-based techniques can be used to study trends of single 
process variables (univariate), or to analyze trends across multiple 
variables (multivariate). The Shewhart chart was one of the earliest 
(univariate) charts used for process monitoring purposes [14]. The 
chart is applied on process residuals, without the utilization of any 
filters. It is computationally simple to implement [15]. Other univariate 
charts, such as EWMA (Exponentially Weighted Moving Average)  and 
CUSUM (Cumulative Sum) charts utilize the application of linear filters, 
before carrying out fault detection and can be more computationally 
expensive [16-18]. These charts may also require one or more tuning 
parameters to be modified, thus making the design of these charts 
increasingly computationally expensive and tedious. Process noise is 
often a concern in most process industries and can adversely affect the 
accuracy of fault detection techniques [4,19,20]. Charts with process 
memory such as CUSUM and EWMA may be able to address concerns 
related to process noise as they utilize filters. However, these filters 
are linear and may not be very effective at removing different types 
of noise or errors as they define a frequency threshold and anything 
above this threshold may be considered noise. The presence of process 
noise is not the only concern of these control charts. They also assume 
that process residuals being analyzed are independent (uncorrelated), 
and follow a normal (Gaussian) distribution [21]. However, in practice, 
real measurements might not necessarily satisfy these assumptions. In 
the past, many authors have looked into improving the fault detection 
abilities of particular techniques when process data violate one of these 
assumptions [22,23]. However, in practice, it may be possible that actual 
process data violate one or more of these assumptions. Therefore, more 
effective fault detection techniques that are able to simultaneously deal 
with process data that violate multiple assumptions are required. In 
addition, it is desirable that the developed technique is computationally 
simple, and relatively easy to implement in order to broaden its 
applicability.

One way to deal with these limitations of the conventional 
univariate fault detection methods is using wavelet-based multiscale 
representation. Multiscale representation has been shown to effectively 
deal with real process data as it allows efficient separation of important 
features from stochastic noise and provides wavelet coefficients that 
are approximately decorrelated and more Gaussian at multiple scales. 
Thus, it can help address most of the assumptions of the conventional 
univariate fault detection or control charts [24,25]. These advantages 
of multiscale representation will be utilized in this work to develop 
a multiscale Shewhart chart algorithm that will provide improved 
performance. Even though the ideas presented in this paper can be 
directly extended to other univariate control charts, this work focuses 
on the Shewhart chart due to its popularity and its computational 
simplicity [26]. These advantages of multiscale representation have 
been exploited by [27] who developed wavelet-based multiscale 
CUSUM and EWMA charts with improved fault detection abilities 
using autocorrelated process data. These techniques have been shown 
to improve the out-of-control average run length (ARL1), which 
measures how long a particular technique takes to identify the presence 
of a fault. This is particularly important in terms of safety in process 
industries because faster detection allows more time to take corrective 
measures to bring a process back to its normal operating conditions. 
Other important metrics that can be used to assess the effectiveness of 
various fault detection techniques include the missed detection rate or 
the false alarm rate, which for certain applications can be as critical as 
the ARL1.

Therefore, a proper evaluation of any fault detection technique 
requires assessing its performance with respect to all of these 

metrics. Unfortunately, the effect of multiscale representation on the 
performance of univariate control charts (especially under violation of 
their basic assumptions) and using all evaluation metrics (i.e., missed 
detection rate, false alarm rate, and ARL1) has not been thoroughly 
studied. Therefore, the main objective of this work (which focuses 
on the Shewhart chart as an example of a univariate fault detection 
method) is to develop a multiscale form of the Shewhart chart that is 
easy to implement, and then assess its performance in comparison to its 
conventional counterpart under the violation of its three fundamental 
assumptions using various evaluation metrics. Such analysis should 
pave the road for similar ones using different univariate as well as 
multivariate fault detection methods.

This paper is structured as follows. First, an introduction to 
conventional univariate process monitoring is provided, along with a 
brief description of the Shewhart chart. Then multiscale wavelet-based 
data representation is explained, along with its advantages in process 
monitoring followed by a description of the developed multiscale 
Shewhart chart algorithm. The performance of the developed multiscale 
Shewhart chart is then analyzed through two illustrative examples, 
using simulated synthetic data, as well as process data from a simulated 
distillation column to validate its applicability and effectiveness in 
addressing safety concerns in the process industry. Finally, concluding 
remarks and future directions for research are presented.

Univariate Process Monitoring
Since this work focuses on extending the computationally simple 

Shewhart using multiscale representation, a brief overview of statistical 
and univariate process monitoring is needed. Most industries collect 
readings of process measurements through the utilization of multiple 
sensors. These sensors can monitor a number of different variables, such 
as temperature and pressure, to ensure that they are within acceptable 
limits for the purposes of plant safety and product quality. Univariate 
process monitoring methods can be implemented by following the 
algorithm illustrated in Figure 1.

As illustrated through Figure 1, process measurements collected 
from the sensors are initially compared to their model predictions (or 
desired values), creating process residuals. The process residuals are 
then used to compute a detection statistic. For the case of the Shewhart 
chart, the detection statistic is the process residuals themselves. For 
other univariate charts, such as the CUSUM or EWMA charts, the 
appropriate filter is applied in order to compute their respective 
detection statistics [28]. Using the distribution of the detection statistic, 
control limits (that can be used to determine the presence of absence 
of faults) can be computed. To test if new process measurements are 
faulty, the detection statistic is computed once again using the process 
residuals from testing data, which is then compared to these control 
limits. If the detection statistics computed from the testing data violate 
the control limits, a fault is declared. If the control limits are not violated 
by the detection statistic, the process is assumed to be operating under 
normal operating conditions, and no action is required.

For the Shewhart chart, the upper and lower fault detection control 
limits may be computed as follows [28]:

UCL, LCL=µ0 ± 3σ                                                                               (1)

Where, µ0 and σ are the mean and standard deviation of the 
detection statistic (which is the residuals for the Shewhart chart) 
obtained under normal operating conditions, respectively. The 3σ 
limits are commonly used for the Shewhart chart as they account for 
nearly 99.74% of all deviations in the data [29]. As stated previously, 
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the original signal with a low pass filter h, which is derived from a 
scaling basis function of the following form [41]:	

( ) ( )2 2j j
ij t t kφ φ− −= −  			                 (3)

where, the dilation and translation parameters are represented by j 
and k, respectively. The difference between the original signal and the 
scaled signal is the detail signal, and can be obtained by convoluting the 
original and subsequent scaled signal with a high pass filter g, which is 
derived from a wavelet basis function of the following form [41]:

( ) ( )2 2j j
ij t t kψ ψ− −= − 			                   (4)

After repeating these approximations, the original signal can be 
reconstructed by taking the sum of the final scaled signal and all detail 
signals, as follows [41]:

( ) ( )
2 2

1 1 1

J Jn J n

Jk Jk jk jk
k j k

x t a d tφ ψ
− −

= = =

= +∑ ∑∑ 		                   (5)

A number of researchers have utilized multiscale wavelet-based 
representation of data to improve fault detection. For example, [40] 
used multiscale representation to pre-filter the data, and then applied 
Principal Component Analysis (PCA) using the pre-filtered data. Pre-
filtering of the raw data, before employing a fault detection technique, 
improves the effectiveness of the approach. However, pre-filtering 
may remove features in the data that are important for fault detection. 
Multiscale representation of data has also been used to develop a 
multiscale PCA (MSPCA) algorithm with improved performance over 
the conventional PCA method [35]. This is primarily due to multiscale 
being able to efficiently separate feature from noise making the MSPCA 
algorithm more sensitive to anomalies in process measurements than 
the conventional one. On the other hand, the performances of the many 
conventional univariate monitoring techniques have been limited by 
their inability to efficiently handle violations in their fundamental 
assumptions, like the presence of measurement noise, autocorrelation, 
as well as non-normality of evaluated residuals. Dealing with these 
limitations will help satisfy the assumptions of the various univariate 
fault detection techniques, which will reflect on their performances. 
Multiscale representation is an effective tool that is able to help deal 

multiscale representation can help deal with violation in assumptions 
of most univariate monitoring methods. In the next section, multiscale 
wavelet-based representation of data is introduced, its advantages in 
fault detection are discussed, and a method to utilize these advantages 
to improve the effectiveness of the Shewhart chart is presented.

Multiscale Wavelet-Based Representation of Data
Practical process data, especially those collected from industrial 

processes are known to possess multiscale characteristics, i.e., they may 
contain noise or features that span wide ranges in both the frequency 
and time domains. For example a sharp change in the process data may 
span a narrow range in the time domain while spanning a much larger 
range in the time domain. Similarly, a slower change in the process 
data may span a wide range in the time domain, and a narrow range in 
the frequency domain [30]. Unfortunately, most commonly employed 
fault detection techniques in the process industry only operate on 
a single scale since they are applied on the time domain data, and 
therefore are unable to efficiently account for process data that may be 
multiscale in nature.

Multiscale wavelet-based representation of data is a powerful 
tool that has been used in data analysis. It is able to provide efficient 
separation of deterministic and stochastic features [31], and it has been 
successfully used to improve the accuracy of various process modeling, 
filtering, and state estimation techniques [32-34]. In multiscale 
representation, wavelet and scaling basis functions, which have the 
following form are used to represent time-domain functions and data 
at multiple resolutions and scales [35,36]:

( ) 1 t ut
ss

θ θ − =  
 

  				                      (2)

where, the dilation and translation parameters are represented by s and 
u, respectively. A variety of families of basis functions have been used 
to carry out wavelet decomposition, e.g., Daubechies and Haar [37-39]. 
Several researchers utilized the Haar wavelet in various applications, 
and it will be utilized in the examples presented in this work [35,39,40]. 
Given a time domain data set (or a signal), a coarser approximation of 
the signal (often called a scaled signal) can be obtained by convoluting 

Figure 1: Algorithm for univariate process monitoring.
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1t tx ax ε−= +         				                 (6)

where, a = 0.7 and ɛ is white noise following a standard normal 
distribution with zero mean and unit variance. The obtained data are 
then decomposed at multiple scales and the ACF is computed for the 
time domain data as well as for all detail signals as shown in Figure 
3. The first column of Figure 3 shows the time domain and detail 
signals, while the second column shows the ACF for all signals. Figure 
3a clearly shows that, even though the time domain data are strongly 
correlated as indicated by the ACF shown in Figure 3b, the detail signals 
are approximately decorrelated at multiple scales as indicated by their 
ACFs shown in Figures 3c-3h. The decorrelation of detail signals at 
multiple scales can be attributed to the application of high-pass filters 
during wavelet decomposition [42].

Ability to better follow a normal distribution at multiple scales: 
The Shewhart chart also assumes that process residuals obtained from 
fault-free data follow a normal distribution. In practice, measured data 
may not necessarily follow a normal distribution. Modeling errors 
that leave non-modeled process variations in the model residuals 
can also be a source of non-Gaussian errors. Fortunately, multiscale 
decomposition is able to help address the issue of non-Gaussian errors 
as it provides detail signals that are closer to normal (Gaussian) at 
different scales.

To illustrate the effect of multiscale representation of data on 
the distribution of the detail signals, histograms of a chi square 
distributed data set and the detail signals obtained from its multiscale 
decomposition are compared as shown in Figure 4. Figure 4a shows 
that, even though the distribution of the time domain data is far from 
normal (which is expected since they follow a chi- square distribution) 
as indicated by Figure 4b, the histograms of the detail signals are closer 
to normality as indicated by Figures 4c-4h. Distributions other than 
chi-square were also used to validate this observation [30,44].

Furthermore, it should be noted that the multiscale representation 
provides wavelet coefficients that are also closer to being stationary 
for non-stationary data [24,35]. In this section, it has been shown 
that multiscale representation possesses advantages that can help 

with these challenges and its advantages are described in the next 
section.

Advantages of multiscale wavelet-based data representation 

Ability to separate features from noise: A main assumption of 
the Shewhart chart is that the process data contains a moderate level 
of noise. One main benefit of multiscale representation is its ability to 
naturally separate noise from important features that may be present in 
the process data, which can be helpful from a fault detection perspective. 
This characteristic can be attributed to the successive application of 
high and low pass filters on the data in multiscale decomposition as 
illustrated in Figure 2. The noise-feature separation characteristic of 
multiscale representation and its advantages over other conventional 
linear filtering methods have been utilized in various applications, such 
as filtering time-series genomic data [41]. In this work, this separation 
ability of multiscale representation will also be employed in order to 
improve the performance of the conventional Shewhart chart, to widen 
its applicability in practice.

Ability to decorrelate autocorrelated data at multiple scales: 
Another fundamental assumption of the Shewhart chart is that the 
evaluated residuals are independent or uncorrelated. An important 
advantage of multiscale representation is that the wavelet coefficients 
obtained in multiscale decomposition are approximately decorrelated 
at multiple scales [42]. This can be illustrated by comparing the 
autocorrelation function (ACF) of an autocorrelated signal to the 
ACF of its details signals at multiple scales. The ACF, which plots the 
correlation between any two samples in a data set as a function of 
their separation, is usually used to quantify the autocorrelation in the 
data [43]. ACF measures the stochastic process memory in the data. 
Therefore, a white noise signal (which has independent samples) will 
have an autocorrelation function of zero for positions of lags other 
than zero, and a value of unity at lag zero, which indicates that the 
data set consists of completely uncorrelated samples. Conversely, 
correlated signals, such as those represented by autoregressive (AR) 
or autoregressive moving average (ARMA) models have non-zero 
ACF values at lags other than zero, which indicates that there is 
autocorrelation in the data [42]. To illustrate this characteristic, 
autocorrelated data are generated using the following AR (1) model [43]:

Figure 2: Schematic illustration of multiscale wavelet-based representation of data.
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Figure 3: Decorrelating auto correlated data at multiple scales.

Figure 4: Distribution of chi-square data becomes Gaussian at multiple scales.
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address many of the limitations that hinder the wide applicability of 
the Shewhart chart in practice. These advantages brought forward 
by multiscale representation are employed in this work to develop a 
multiscale Shewhart chart algorithm, which is described next.

Multiscale Shewhart chart fault detection algorithm 

This section presents a multiscale Shewhart chart algorithm that 
can be used to provide improved performance over the conventional 
Shewhart chart. The idea behind this algorithm is to apply the 
conventional Shewhart using the detail signals as well as the final scaled 
signal obtained from the multiscale wavelet-based decomposition 
[45,46]. The algorithm consists of two phases, training and testing, as 
illustrated in  Figure 5. In the first phase (training), fault-free training 
data are decomposed at multiple scales. The Shewhart chart is then 
applied using the detail signals at different scales and the final scaled 
signal, during which the control limits at each scale are computed 
(these limits will be used later in the testing phase). These control limits 
are used to threshold the wavelet coefficients (the detail signals) at each 
scale and the final scaled signal, and for any scale where any violation 
of limits is detected, all wavelet coefficients from that scale are retained. 
All retained signals are then reconstructed, and the Shewhart chart is 
applied once again on the reconstructed data set, where the control 
limits are computed once again. In the second phase (testing), the data 
are again decomposed at multiple scales (using the same wavelet filter 
utilized during the training phase). The control limits computed for 
each scale from the training phase are applied to the detail signals (and 
final scaled signal) for the testing data, and only the retained coefficients 
(after thresholding) are used to reconstruct the data set back in the time 
domain. Finally, the control limits obtained from the reconstructed 
training data are applied to the reconstructed testing data in order to 
detect any possible faults. This multiscale Shewhart chart algorithm is 
schematically represented in Figure 5.

It is important to note that for the wavelet reconstruction phase 
of the multiscale Shewhart fault detection algorithm, there are 
theoretically four alternative methodologies that can be used when 
deciding how to retain wavelet coefficients that violate the threshold 

limits at a particular scale [47]:

1.	 Retaining the entire scale of wavelet coefficients for both the 
training and testing data sets. 

2.	 Retaining the entire scale of wavelet coefficients for the 
training data set, but only retaining the wavelet coefficients from each 
scale for the testing data set. 

3.	 Retaining only the wavelet coefficients from each scale for 
both the training and testing data sets. 

4.	 Retaining only the wavelet coefficients for the training data 
set, but retaining the entire scale of wavelet coefficients for the testing 
data set. 

Methodology 2 was selected for the fault detection algorithm for 
the following reasons:

•	 Retaining the entire scale of wavelet coefficients during the training 
phase of the algorithm increases the number of observations 
available in the reconstructed training data set. This is particularly 
important from a fault detection perspective for the multiscale 
Shewhart chart, as a larger number of observations in the 
reconstructed training data set will give a more accurate estimation 
of the true standard deviation of the data. Retaining the entire 
scale of wavelet coefficients for scales that violate the threshold 
limits has the added advantage of only retaining scales that have 
important features and disregarding scales that do not contribute 
important features to the data set, thus acting similar to a filter.

•	 Since the standard deviation of the reconstructed data set is not an 
issue for the testing data, and we are only concerned with capturing 
faulty observations, retaining an entire scale when a threshold 
limit violation occurs is not necessary. If a fault is present in the 
testing data set, the final scaled signal will be able to detect the fault 
accurately, and reconstructing only coefficients that violate the 
threshold limits will show up as a clear pulse in the reconstructed 
testing data set, thereby violating the fault detection limits of the 
multiscale Shewhart chart.

Figure 5: Schematic illustration of the developed multiscale Shewhart chart fault detection algorithm.
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Illustrative Examples
This section compares the performance of the developed multiscale 

Shewhart chart to that of the conventional one using two illustrative 
examples: using synthetic data and using process data generated from 
a simulated distillation column. The simulated synthetic example 
examines the performance of both charts using data generated 
under a variety of conditions, in order to examine the robustness 
of the developed Shewhart chart, especially when the fundamental 
assumption of the conventional chart are violated.

Performance assessment under different levels of noise 

Process data are usually contaminated with errors or noise. An 
essential feature of any monitoring technique used in the process 
industry is that it needs to be able be able to handle process data that 
are contaminated with noise, since it can severely deteriorate the 
performance of the technique. The higher the noise level, the more 
challenging it becomes to distinguish the difference between random 
variations in the process and faults. Therefore, this section examines 
the performance of both Shewhart charts at different noise levels.

In order to carry out this assessment, training data (consisting of 
512 observations) that follow a standard normal distribution (of zero 
mean and unit variance), is used to compute the fault detection limits 
of both charts. Similarly, testing data (consisting of 512 observations) 
is generated, with additive steps faults of ± 3 added at two locations 
between observations 101-150 and 401-450, respectively. The 
simulation is then repeated using different noise standard deviations 
(σ=0.01- 5). This wide range of noise allows assessing the robustness of 
both charts to the presence of noise. A Monte-Carlo simulation of 5000 
realizations is carried for each level of noise to ensure that accurate 
results are obtained and meaningful conclusions can be drawn. At each 
noise level, the performance of both charts are assessed by computing 
three fault detection metrics: missed detection rate (%), false alarm 
rate (%), and out-of-control average run length (ARL1). Examining 
the performance of both charts, utilizing all three metrics allows us to 
assess their advantages and limitations.

The results of missed detection and false alarm rates for both charts 

are illustrated in Figure 6. These results show that even though the 
noise level does not change the false alarm rate, the missed detection 
rate increases at higher noise levels and can reach nearly 100% for 
very high levels of noise. Furthermore, it can also be seen that the 
false alarm rates are comparable for both techniques, and that the 
missed detection rate is consistently lower for the multiscale method 
than the conventional method. This can be attributed to the noise-
feature separation characteristic of the multiscale method highlighted 
previously. with improve the detection ability of the Shewhart chart 
providing a reduction in missed detection rate of approximately 40% 
for certain noise levels.

The ARL1 results on the other hand, are illustrated in Figure 7. 
These results show that for low to moderate levels of noise (σ=0.01-2), 
the conventional method provides comparable or slightly lower ARL1 
values than the multiscale method. However, for higher levels of noise 
(σ=2-5), it is evident that the multiscale method provides much lower 
ARL1 values, which are due to the noise-feature separation advantage 
of multiscale representation, especially at high noise levels. The 
advantage of using the multiscale Shewhart chart over the conventional 
one when dealing data that are contaminated with noise can be further 
demonstrated by comparing the time series evolutions of the two charts 
at different levels of noise as illustrated in Figure 8. The results shown in 
Figure 8 demonstrate that at low noise levels, e.g., 0.5, the performances 
of both charts are comparable, with both charts achieving nearly 100% 
detection see Figures 8a and 8b. However, at moderate levels of noise, 
e.g., σ=2.5, the multiscale Shewhart outperforms the conventional one 
with much better detection (Figures 8c and 8d). At even higher noise 
levels, e.g., σ=4.5, the multiscale Shewhart chart shows even better fault 
detection abilities and even quicker detection (i.e., smaller ARL1) as 
shown in Figures 7, 8e and 8f. These results clearly show that when 
process measurements are contaminated with noise, utilizing the 
multiscale Shewhart chart results in faster fault detection (lower ARL1), 
which would allow quicker response thereby increasing the chance of 
averting any catastrophic disasters.

Performance assessment under different levels of 
autocorrelation 

The second main assumption of the Shewhart chart is that the 

Figure 6: Performance comparison for the conventional and multiscale Shewhart charts for different noise levels 
(Missed Detection and False Alarm rates).
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process residuals being evaluated are uncorrelated (consecutive 
observations are independent). In practice, however, this assumption 
may not hold due to possible modeling errors or malfunctioning 
sensors that introduce correlation between consecutive observations, 
which can greatly affect the performance of the Shewhart chart. As 
described previously, multiscale, multiscale representation helps 
decorrelate autocorrelated data, which should provide the multiscale 
Shewhart chart an advantage when dealing with autocorrelated 

process measurements. This section presents a comparison and an 
assessment of the performances of both charts at different degrees of 
autocorrelation.

In order to carry out this assessment, an autoregressive AR (1) 
model (Equation 6) is used to generate training data (consisting of 512 
observations). Similarly, testing data (consisting of 512 observations) 
are generated, but with additive step faults of magnitude 3 added at 
two locations between observations 101-150 and 401-450, respectively. 

Figure 7: Performance comparison of the conventional and multiscale Shewhart charts for different noise levels (ARL1).

Figure 8: Time evolution comparison of the conventional and multiscale Shewhart charts for different noise levels.
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Then, the conventional and multiscale Shewhart charts are used to 
detect these faults. To provide a thorough assessment of the effect of 
autocorrelation and the robustness of both charts to autocorrelated 
data, the simulation is repeated for a wide range of autocorrelation (a = 
0.01-0.99). Once again, a Monte-Carlo simulation of 5000 realizations 
is carried out for each level of autocorrelation, to ensure that accurate 
results are obtained and meaningful conclusions can be drawn.

The results of the simulation for both charts with regards to the 
missed detection and false alarm rates are illustrated in Figure 9. As 
Figure 9 demonstrates, although both charts show that the false alarm 
rate remains relatively constant (except at extremely high values 
of autocorrelation), the missed detection rate increases (to nearly 
100%) as the degree of autocorrelation increases for both charts. 
Even though the false alarm rates are comparable for both charts, 
the missed detection rates obtained by the multiscale Shewhart chart 
are consistently lower than those obtained by the conventional chart 

(providing nearly 40% lower values of missed detection for a wide range 
of autoregressive coefficient). This advantage of the multiscale method 
is due to the ability of multiscale representation to decorrelate data at 
multiple scales as described in Section 3.1.3. Furthermore, Figure 10 
that illustrates the ARL1 values for both charts, shows that they provide 
comparable values over the entire range of autoregressive coefficient. 
This means that even though the multiscale Shewhart chart provides 
a better missed detection rate, it does not provide clear advantages in 
terms of the speed of detection.

The advantage of using the multiscale Shewhart chart over the 
conventional one when dealing when data that are autocorrelated, can 
be further demonstrated by comparing the time series evolutions of the 
charts at different levels of autoregressive coefficient as illustrated in 
Figure 11. The results illustrated in Figure 11 show that the multiscale 
Shewhart chart outperforms the conventional one at low and moderate 
autocorrelation levels (i.e., a=0.1 and a=0.5) as illustrated in Figures 

Figure 9: Performance comparison for the conventional and multiscale Shewhart charts for different autocorrelation levels (Missed Detection and False Alarm rates).
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Figure 10: Performance comparison for the conventional and multiscale Shewhart charts for different autocorrelation levels (ARL1).
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Figure 11: Time evolution comparison of the conventional and multiscale Shewhart charts for different autocorrelation levels.

11a and 11b for the case of a 0.1 and in Figures 11c and 11d for the case 
of a=0.5. At very high level of autocorrelation, however, as in the case 
where a=0.9, both charts fail to properly detect both faults in the data 
as illustrated in Figures 11e and 11f. This very high of autocorrelation 
is not very commonly encountered in practice, which makes the 
multiscale technique applicable in most practical situations. Therefore, 
utilizing the developed multiscale Shewhart when dealing with 
autocorrelated data is advantageous. Even though the response time is 
comparable (similar ARL1 values) for both techniques, the multiscale 
chart is able to provide significantly lower missed detection rates over 
a wide range of autocorrelation coefficient, proving to be more robust 
that the conventional chart.

Performance assessment with distributions of varying degrees 
of non- normality

The third main assumption of the Shewhart chart is that it assumes 
that the fault-free process residuals being evaluated follow a Gaussian 
(normal) distribution. Practical data, however, might not always satisfy 
this assumption, thereby degrading the performance of the Shewhart 
chart. This section assesses and compares the performances of both 
charts under violation of this assumption. In practice, non-Gaussian 
noise can be a result of malfunctioning sensors, which introduce a 
certain bias or skewed randomness to the process observations being 
monitored. Non-Gaussian noise may also be introduced to the data 
by modeling errors that leave non-modeled process variations in the 
model residuals. Therefore, this assumption also needs to be dealt 
with in order to carry out efficient and safe process monitoring. To 
assess the effect of the distribution on the quality of fault detection, 
distributions of different degrees of non-normality are needed, along 
with a metric to quantify the level or degree of normality. A chi-square 
distribution can be utilized for this purpose in order to obtain data sets 
with different degrees of normality. The chi square distribution has the 

following probability density function [29]:
1
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− −
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where, k represents the number of degrees of freedom. Adjusting the 
parameter k produces distributions with different degrees of normality. 
There are a number of metrics that can be utilized to test the normality 
of a given distribution. The Shapiro-Wilk metric is often considered to 
be one of the most powerful univariate normality tests [44], and hence 
it is used in this work to quantify the deviation from normality. The 
Shapiro-Wilk metric varies from zero to one, where a value closer to 
one implies that the distribution is closer to normality, and vice versa. 
Further detail on the Shapiro-Wilk and other metrics commonly used 
to quantify the deviation from normality can be found in [30,44]. In 
order to perform this assessment, the chi-square distribution is used 
to generate training data (consisting of 512 observations), which are 
used to compute the control limits for both charts. Testing data are also 
generated in a similar manner, and additive step faults of magnitude 
±3σ (where σ is the standard deviation of the generated training data) 
are added at two locations between observations 101-150 and 401-450, 
respectively. For this simulation it is important to generate the faults 
with opposite signs (one positive and one negative) in order to ensure 
that effect of the direction (bias) of skewness in the non-Gaussian 
distribution is eliminated when assessing both techniques. To examine 
the performance of both charts at different levels of non-normality, this 
simulation is repeated for a wide range of Shapiro-Wilk values (between 
approximately 0.75-0.99). Once again, a Monte-Carlo simulation 
of 5000 realizations is carried out for each value of Shapiro-Wilk, to 
ensure that accurate results are obtained and meaningful conclusions 
can be drawn. The results of the simulation for both charts with regards 
to the missed detection and false alarm rates are illustrated in Figure 12. 
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Figure 12 demonstrates that, for both charts, the missed detection and 
false alarm rates remain relatively constant at different degrees of non-
normality. This will be explained and visually illustrated later in Figure 
14. Figure 12 also shows that even though the false alarm rates are 
somewhat comparable for both charts, the missed detection rates for 
the multiscale methods are consistently better than the conventional 
method (with a reduction of nearly 30%) in the missed detection rate 
at some values of Shapiro-Wilk). These results can be attributed to 
the fact that multiscale representation provides detail signals that are 
approximately Gaussian at multiple scales even for non-Gaussian data 
[48]. On the other hand, Figure 13, that compares the ARL1 for both 
charts, shows that even though the multiscale Shewhart chart provides 
a better detection rate, it is unable to provide lower ARL1 values than 
the conventional chart, especially at lower values of Shapiro-Wilk. 
However, it should be noted that this increase in ARL1 for the multiscale 

Shewhart chart is for data which deviate considerably from normality, 
which is not very common in practice. This issue may be remedied by 
fine-tuning the decomposition depth of the multiscale technique to 
ensure that both techniques provide similar ARL1 values. An analysis 
of the choice of decomposition is presented in the upcoming section.

The advantage of using the multiscale Shewhart chart over the 
conventional one when dealing with data that deviate from normality, 
can be further demonstrated by comparing the time series evolutions 
of the charts at different degrees of deviation from normality (values 
of Shapiro-Wilk) as illustrated in Figure 14. These results indicate that 
even when the data are approximately normal, the multiscale Shewhart 
chart is able to outperform the conventional one, providing a reduction 
in the missed detection rate of nearly 30%. This advantage can also be 
seen for higher deviations from normality (i.e., for Shapiro-Wilk=0.87 

Figure 12: Performance comparison for the conventional and multiscale Shewhart charts for different cases of non-normality (Missed Detection and False 
Alarm rates).

Figure 13: Performance comparison for the conventional and multiscale Shewhart charts for different cases of non-normality (ARL1).
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and 0.75), but with narrow margins as illustrated in Figure 14c and 
14d for the case of a moderate deviation from normality (Shapiro-
Wilk=0.85) and in Figures 14e and 14f for the case of a high deviation 
from normality (Shapiro-Wilk=0.75). Additionally, it is important to 
note that the performance of the Shewhart chart is not highly affected 
by the deviation from normality of the data. This can be explained as 
follows: as the distribution of the data starts deviating from normality, 
the data becomes increasingly one-sided, and the control limits adjust 
to the direction of the distribution, which causes the performance of 
the conventional Shewhart chart to remain relatively constant over a 
wide range of non-normality as illustrated in Figure 14.

Effect of decomposition depth 

An important decision when it comes to implementing the 

multiscale Shewhart chart in practice is the choice of decomposition
depth, i.e., the number of scales to be used in the wavelet decomposition
of the data. This section studies the effect decomposition depth has
on the performance of the developed multiscale Shewhart chart. This
analysis is performed by first generating training data (consisting of
512 observations) using a standard normal distribution (having zero
mean and unit variance), which are then used to compute the control
limits of the chart. The testing data are generated in a similar manner,
and additive step faults of magnitude ±3σ are introduced at two
locations between observations 101-150 and 401-450, respectively,
where σ represents the standard deviation of the training data set. This
simulation is repeated for different decomposition depths, and a Monte-
Carlo simulation of 5000 realizations is run for each decomposition in
order to obtain accurate results and to draw meaningful conclusions. As
with the previous examples, the performance of the chart is evaluated

Figure 14: Time evolution comparison of the conventional and multiscale Shewhart charts for cases of non-normality.

Figure 15: Analysis of the effect of choice of decomposition on the performance of the multiscale Shewhart chart.
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using all three fault detection metrics. The mean value of all three 
metrics is computed from all 5000 realizations at each decomposition 
depth and the results are shown in Figure 15. The results show that 
the missed detection rate decreases as the number of scales increases, 
but up to a certain scale after which it settles to an almost constant 
value. Conversely, the false alarm rate increases as the number of 
scales increases. These observations are due to the fact that at coarser 
scales, more noise is removed and features are better detected, which 
decreases the missed detection rate. Also, at coarser scales, the control 
limits get tighter and tighter, which results in all the detail coefficients 
being retained. This would therefore not add any further detection 
advantage, but results in a slight increase in the false alarm rate. Figure 
15 also shows that the ARL1 is not greatly affected by the choice of 
decomposition depth. Therefore, in this example, an optimum depth 
of four can be selected. From practical experience, a depth of around 
half of the maximum possible decomposition depth is recommended.

Monitoring of a simulated distillation column using the 
Multiscale Shewhart chart

Although the illustrative examples presented thus far have made a 
strong case for using the developed multiscale Shewhart chart especially 
when dealing with process data that violate the assumptions of the 
conventional method, it is essential to examine how the charts perform 
in a practical situation. This section provides such an example where 
the performance of both Shewhart charts are assessed by applying them 
using process data from a simulated distillation column. Separation 
processes are a crucial part in many chemical plants, and distillation 
columns are often among the most commonly used separation units. 
The operation of distillation columns needs to be monitored to ensure 
that quality of products in the different streams meet the sought 
standards, and to ensure that the process is running safely.

It is possible for explosions to occur at distillation columns, if 
improper monitoring measures are in place. One such example is an 
explosion that took place on July 30, 2000, at a manufacturing company 
that produces specialty gases located in Dayton, NV. Although, no 
staff were injured at the facility, the building structure that housed 

the equipment was severely damaged [49]. The incident occurred in 
the distillation column that was used to separate residual fluorine 
and nitrogen gas from condensed nitrogen trifluoride. The incident 
occurred because the facility received liquid nitrogen that was much 
cooler than the nitrogen stored at the facility. The liquid nitrogen was 
used as a coolant in the heat exchanger and the colder temperature of 
the coolant forced the fluorine to liquefy. The incident investigation 
report concluded that condensed fluorine had reactor with the packing 
material made of stainless steel, and had caused an exothermic reaction 
to occur inside the reboiler/condenser of the distillation column. 
Combustion between the steel material and liquid nitrogen trifluoride 
was initiated, and the energy that was released from the exothermic 
reactions caused pressure and temperature to build up in distillation 
column, leading to an eventual explosion [49]. Therefore, it essential 
for streams in the distillation column, and other equipment in 
industrial facilities to be continuously monitored efficiently, to ensure 
incidents such as these do not occur or are minimized and handled 
before leading to more catastrophic ones. In this example, Aspen Tech 
7.2 was utilized in order to simulate distillation column data. The goal 
of the simulation was to monitor the distillate stream of the column. 
The distillation column consisted of 32 theoretical layers, including 
both a total condenser and a reboiler. The feed stream (which has a 
composition of 60 mole% isobutene and 40 mole% propane), enters 
the column at a flow rate of 1 kmol/s as a saturated liquid at at stage 
16. The nominal operating conditions for this distillation column are 
provided in [50]. In order to generate dynamic data, the reflux and 
feed flow rates are perturbed from the nominal values at which they 
operate, and step changes (with magnitude ± 2%) are introduced to 
the feed flow rate. Once the process has settled to a new steady state, 
similar perturbations are introduced in the reflux flow rate, and it is 
allowed to settle to a new steady state. A data set of 1024 observations 
is generated, which consists of the temperatures at different trays and 
the compositions in the product streams. These data are assumed to be 
noise-free and therefore are contaminated with Gaussian noise of zero 
mean. From a fault detection perspective, the goal of the simulation 
is to monitor the propane composition in the distillate stream (xD). 
It is essential that all streams in a chemical process meet the required 

Figure 16: Comparison in performance of the conventional and multiscale Shewhart charts for a step fault of magnitude σ=3.5 in the process residuals.
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specifications to avoid disastrous consequences.

The available process observations need to be compared to their 
reference values in order to compute the process residuals so that 
monitoring charts can be applied. A Partial Lest Squares (PLS) 
regression model was constructed and utilized in order to obtain the 
required process residuals. The process residuals are then split into 
two sets, 512 observations each, to be used as training and testing data 
sets. The training data are used to compute the fault detection (control) 
limits, which would then be utilized to detect faults in the testing data. 
Two step faults of magnitude ± σ 3.5 are added to the testing data at 
two locations between observations 51-100 and 401-450, respectively. 
Figure 16 illustrate the fault detection results for both the conventional 
Shewhart chart Figure 16a and the multiscale Shewhart chart Figure 
16b. As demonstrated in Figure 16, the multiscale Shewhart chart is 
more able to detect the fault, with a significantly lower missed detection 
rate (~ 0%) when compared to the conventional Shewhart chart, which 
also detects most of the faults. Figure 16 also shows that the multiscale 
Shewhart chart does provide a lower false alarm rate when compared 
to the conventional chart.

The same simulation was also repeated for a step fault of magnitude 
± 2.5 σ, again added between observations 51-100, and 401-450, 
respectively, and the results are illustrated in Figure 17. These results 
show that the conventional Shewhart chart is unable to detect most 
of the fault Figure 17a while the multiscale Shewhart provided nearly 
100% detection. Figure 17 also shows that the multiscale Shewhart 
chart provides lower false alarm rates than the conventional one.

As illustrated through this simulated distillation column example, 
the developed multiscale Shewhart chart does outperform the 
conventional chart for two different magnitudes of step faults, as it is 
able to better detect the fault in both scenarios. Therefore, implementing 
the multiscale Shewhart chart for monitoring real chemical industries 
is advantageous.

Conclusion
Most univariate process monitoring techniques are known 

to rely on three main assumptions: that the process residuals are 
normally distributed, independent, and only contain moderate levels 
of noise. Data collected from sensors may violate one or more of 
these assumptions, which affects the performance of most univariate 
monitoring techniques. Multiscale representation has been shown to 
improve noise-feature separation in data, approximately decorrelate 
autocorrelated data, and transform data so that they better follow a 
normal distribution and multiple scales. In this work, these advantages 
of multiscale representation were utilized to enhance the performance 
of the Shewhart chart, through developing a multiscale Shewhart 
chart algorithm that can deal with these assumption violations. The 
multiscale algorithm relies on decomposing the data at multiple scales 
and applying the Shewhart chart using all detail signals and the last 
scaled signal, before being reconstructed back to the time domain. The 
performance of both charts, conventional and multiscale was then 
compared through simulated examples, in which the fundamental 
assumptions of univariate charts were violated at different levels using 
Monte-Carlo simulations. The performance was evaluated using three 
different criteria: the missed detection and false alarm rates, and as well 
as the out-of-control average run length, ARL1. The results showed that 
the impacts of noise level and autocorrelation were most severe, as they 
led to missed detection rates of approximately 100% (at high levels of 
noise and autocorrelation) for the conventional chart. The impact of 
process residuals deviation away from normality was less critical. The 
results also showed that the multiscale technique was able to provide 
a reduction of approximately 40% in the missed detection rate over 
a wide range of noise levels, with a comparable false alarm rate, and 
lower ARL1 than the conventional technique. The multiscale technique 
also provides a reduction of over 40% in the missed detection rate for a 
wide range of autocorrelation (except at high levels of autocorrelation) 
and lower ARL1 values, while maintaining comparable false alarm rates, 
when compared to the conventional technique. Under violation of the 
normality assumption, however, the multiscale technique results in 
reductions in both the missed detection and false alarm rates for a wide 
range of non-normality, but in slightly higher ARL1 values than those 
obtained by the conventional technique. The choice of decomposition 

Figure 17: Comparison in performance of the conventional and multiscale Shewhart charts for a step fault of magnitude σ=2.5 in the process residuals.
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depth is also an important factor in the implementation of the developed 
multiscale technique, and after evaluation of both charts using the 
three performance criteria for a range of decomposition depths, it was 
concluded that the optimal decomposition depth would generally be 
approximately half of the maximum possible decomposition depth for 
a given data set. The developed technique was additionally applied to 
a real world application, in which it is used to monitor the operation 
of a distillation column using simulated data. When used to monitor 
the distillate stream composition at two different fault sizes (2.5σ and 
3.5σ), the multiscale approach was able to detect both faults with fewer 
missed detections and false alarms than the conventional technique. 
The relative computational simplicity of the proposed multiscale 
algorithm definitely encourages its implementation to improve process 
safety and product quality in a wide range of industrial processes. 
Although the developed algorithm does demonstrate significantly 
improved performance over the conventional technique, especially 
when the assumptions are violated, there are a few directions for future 
developments. The advantages obtained by the multiscale Shewhart 
chart algorithm can be extended to develop other univariate and 
multivariate multiscale monitoring techniques as well.
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