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Introduction
The first decade of the 21-century has witnessed innumerable 

advances in the medical knowledge and practice. Yet there are multiple 
diseases eluding current treatments. Glioblastoma (GBM) is one of 
them [1,2]. Standard care for GBM, the most common and highly 
malignant adult brain pathology consists of surgical resection of the 
tumor mass followed by chemo and/or radiotherapy. The median 
survival for patients with GBM is 12-18 months. Due to its invasive 
nature, lack of a defined tumor edge and sensitive location complete 
removal of tumor tissue is virtually impossible. Furthermore, GBM is 
inherently difficult to treat partially due to the blood-brain barrier, and 
tumors easily develop resistance to both chemo- and radio-therapies 
[3,4].  

Gene therapy as an alternative approach for glioma therapy has 
yielded encouraging results in preclinical studies and promising safety 
profiles in phase I/II clinical trials [5]. Therapeutic efficacy in phase 
III trials is currently being investigated [6]. Retroviral and adenoviral 
vectors for therapeutic/cytotoxic gene delivery for glioma treatment 
have been dominating the field.  Oncolytic viruses (herpes simplex 
virus, adenovirus, reovirus, poliovirus, Newcastle disease virus and 
measles virus) have been used to a lesser extent. 

Main avenues of anti-glioma genetic therapy are: 1. Conditional 
cytotoxic approaches, based on introduction of non-toxic enzyme into 
tumor cells which upon prodrug administration convert the prodrug 
into toxic compound capable of killing tumor (herpes simplex virus 
type-1 thymidine kinase (HSV1/TK)/ganciclovir (GCV), cytochrome 
P450/CPA, cytosine deaminase (CD)/5-fluorocytosine(5-FC)) [7-
9]; 2. Targeting toxins to the receptors overexpressed on glioma cells 
(IL13Ra2, the urokinase-type plasminogen activator (uPA) receptor, 
the epidermal growth factor (EGF) receptor, transferrin receptor) 
[10,11]; 3. Suppression of angiogenesis [12,13]; 4. Immune stimulation 
(enhancement of the immune response using cytokines such as GM-
CSF, interleukins or interferons for T cell activation or dendritic cells 
mobilization) [14-16]; 5. Delivery of transgenes commonly mutated 
in glioma to correct the genetic alterations (P53/ARF/human MDM2, 

P16/Rb/cyclinD/CDK4, the receptor tyrosine kinase (RTK/Ras and 
PI3K/PTEN/Akt pathway) [17,18]; and 6. Combination approaches 
(e.g. HSV1/TK+ganciclovir and fms-like tyrosine kinase-3 ligand, 
Flt3L)[19,20].

In pre-clinical studies, experimental murine models of GBM 
are utilized. These are either based on transplantable cell lines or 
represent genetically engineered animals.  The former category can 
be subdivided into syngeneic GBM models generated by implantation 
of murine glioma cell lines in an immunocompetent corresponding 
(i.e. strain matched) mouse host or human xenografts into immune-
compromised animals (athymic nude or SCID).  Gene targeted animal 
models have been generated by modifying genes known to be altered in 
human gliomas (inactivating p53, PTEN, NF1 and/or overexpressing 
growth factors such as PDGF, EGFR and their cognate tyrosine kinase 
receptors) [21-25]. 

Recombinant adeno-associated virus (rAAV) has gained reputation 
as a safe and highly efficient gene therapy reagent in numerous disease 
models and in the clinical trials for Leber’s Conjenital Amaurosis, 
hemophilia B, and aromatic L-amino acid decarboxylase deficiency 
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Abstract
Glioblastoma (GBM) is a deadly primary brain tumor. Current treatment, consisting of surgical removal of the 

tumor mass followed by chemotherapy and/or radiotherapy, does not significantly prolong survival. Gene therapies 
for GBM are being developed in clinical trials, for example using adenoviral vectors. While adeno-associated virus 
(AAV) represents an alternative vector system, limited gene transfer to glioma cells has hampered its use. Here, we 
evaluated newly emerged variants of AAV capsid for gene delivery to murine glioma. We tested a mutant AAV2 capsid 
devoid of 3 surface-exposed tyrosine residues, AAV2 (Y444-500-730F), and a “shuffled” capsid (ShH19, containing 
sequences from several serotypes) that had previously been selected for enhanced glial gene delivery. AAV2 (Y-F) 
and ShH19 showed improved transduction of murine glioma GL261 cells in vitro by 2- to 6-fold, respectively, over 
AAV2. While AAV2 gene transfer to GL261 cells in established tumors in brains of syngeneic mice was undetectable, 
intratumoral injection of AAV2 (Y-F) or ShH19 resulted in local transduction of approximately 10% of tumor cells. In 
addition, gene transfer to neurons adjacent to the tumor was observed, while microglia were rarely transduced. Use 
of self-complementary vectors further increased transduction of glioma cells. Together, the data demonstrate the 
potential for improved AAV-based gene therapy for glioma using recently developed capsid variants.
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(AADC) [26-29]. In terms of CNS gene transfer, AAV vectors have 
been primarily tested for neurodegenerative disorders (Parkinson 
disease, Alzheimer disease, Huntington disease, amyotrophic lateral 
sclerosis, Canavan disease) due to the high natural affinity of the viral 
capsid to neurons [30]. Attempts to utilize AAV for brain malignancies 
have shown promising results. Okada et al. demonstrated 35-fold 
reduction in the mean volume of tumors formed by U-251SP human 
glioma cells stereotactically injected into the brains of nude mice and 
treated with rAAV-TK-IRES-IL2 vector injected into tumor coupled 
with ganciclovir (GCV) treatment [31,32].  Several labs reported 
remarkably prolonged survival of mice with the same xenograft 
model after repeated injections of AAV-IFN-β into the tumor or after 
systemic delivery of IFN-β [33-35]. Of particular importance is the fact 
that AAV effectively penetrates solid tumors.  For example, Enger et 
al. have compared AAV2 and adenovirus (Ad) 5 recombinant vectors 
on glioma spheroids in vitro and demonstrated distinct superiority of 
AAV2 over Ad5. This was also seen in vivo in human patient biopsies 
xenografted into nude rats and evaluated by MRI and histologic 
analysis [36]. In a follow up study, the same group tested alternative 
AAV serotypes, (AAV4 and AAV5) on five different glioma lines, 
spheroids generated from glioblastoma patient biopsies, and spheroid 
xenografts. Ultimately, AAV2 was found to be more efficient than the 
other serotypes [37-39]. In other work, AAV1 and AAV6 exhibited 
similar efficiencies compared to AAV2 [38].  AAV9 and AAVrh.10 
serotypes have been shown to transduce astrocytes in the brain 
following peripheral delivery due to their ability to cross the blood-
brain barrier [40]. Their utility for gene transfer to glioma cells remains 
to be investigated. Using in vitro studies, gene transfer to glioma cells 
based on variants derived from these vectors showed only very modest 
improvement over AAV2 [39]. 

In an effort to improve on AAV gene transfer to glioma, we set 
out to test two recently described AAV capsid variants. One is AAV2 
devoid of 3 surface-exposed tyrosine residues, which are potential 
sites for phosphorylation, a known signal for ubiquitination [41-44]. 
This modified capsid shows reduced proteasomal degradation upon 
cellular entry, thereby enhancing translocation of the virus to the 
nucleus, which in turn increases transduction efficiency [45].  The 
second variant, ShH19, is a “shuffled” capsid based on AAV2 but with 
sequence elements from several other serotypes. This capsid had been 
obtained through repeated selection of a capsid library on primary 
astrocytes from the adult human cerebral cortex for enhanced gene 
transfer to glia [46]. 

The murine GL261 glioma model has histopathologic similarities 
to human glioblastoma [47].  Initially produced by implantation of 
carcinogen 3-methylcholantrene into brains of C57BL/6 mice and 
maintained by serial intracranial and subcutaneous transplantations of 
small tumor pieces on the syngeneic mouse strain, GL261 was adopted 
to grow in vitro and became a widely used syngeneic cell line with 
reproducible growth rates that allows an accurate knowledge of the site 
of the tumor after injection. Using the GL261 murine glioma model, we 
found that AAV vectors with surface-exposed tyrosine modifications 
or ShH19 capsid variants transfer genes more effectively than AAV2 to 
glioma cells in vitro and in vivo.

Materials and Methods
Viral vectors

Three variants of rAAV capsid were used for vector production: 
wild-type AAV2 (WT), AAV2-Y444-500-730F and ShH19, kindly 
provided by Dr. David Schaffer, University of California, Berkeley. 

The following transgenes were packaged: CBA-RFP, scCBA-GFP 
and CBA-Luc-mApple. Viral vectors were produced by the method 
of transfection of HEK-293 cells with liposomes. Liposomes were 
prepared from DOTAP and DOPE (Avanti Polar Lipids) in 2:1 ratio 
in the Rotavapor according to Avanti protocol. Viral particles were 
purified on step Iodixanol gradients and concentrated in the Apollo 
20 ml centrifugal concentrators [48]. Viral titers were determined by 
dot blot assay and validated by visualizing the capsids by Western Blot 
after PAGE.

Cells

Murine GL261 glioma cells [47] were maintained in RPMI-1640 
medium (Cellgro, Mediatech) supplemented with 10% FBS, 1% 
Penicillin/Streptomycin, 4 mM L-Glutamine and grown at 370C with 
5% CO2. To generate GL261 stably expressing GFP, GL261 cells were 
transfected with pTR-UF5 (CMV-GFP) plasmid [49], and individual 
clones were selected in the presence of G418 (400 µg/ml). GFP/GL261 
tumor cells had growth characteristics similar to the parent GL261 cells.

Animals

C57BL/6 mice (6-8 weeks old) were used in the study. CX3CR1(+/-) 
heterozygous C57BL/6 mice were as previously described [50]. In 
these mice all cells normally expressing CX3CR1 also express GFP. 
All procedures involving animals were carried out in accordance with 
the guidelines of the University of Florida Institutional Animal Care 
and use Committee (IACUC). GL261 glioma cells or GL261/GFP cells 
(1 × 105) in a total volume not exceeding 3 microliters were injected 
3 mm deep into the right cerebral hemisphere (2 mm posterior and 
1.5 mm lateral from Bregma). Two weeks later 109 vector genomes 
were delivered directly into the tumor. Ten days after virus injections, 
animals were euthanized using sodium pentobarbital (32 mg/kg) 
and subsequently perfused with saline and ice-cold 4% PFA in 0.1 M 
Phosphate buffer (PB), pH 7.4. 

Tissue processing

Following perfusion brains were removed and postfixed for 
4 hours, then tissues were incubated in 30% sucrose solution at 4°C 
overnight followed by freezing in 2-methylbutane at (-42 to -45°C) for 
1 to 2 min and stored at (-80°C) until sectioned.  Frozen whole brains 
were cut into 40-micron sections using a Leica CM3050S freezing 
microtome and collected in Walter’s anti-freeze solution. Free-floating 
sections were washed in PBS/0.9%NaCl/0.25% Triton x-100, some 
processed for immunohistochemistry and mounted onto Superfrost 
Plus microscope slides [51].  For each brain approximately 100 sections 
were analyzed (10 slides × 10 sections per slide). The sections were 
examined using Leica AF6500 confocal laser-scanning microscope. 
Sequential scanning was used to suppress optical cross talk between the 
fluorophores in stationary structure colocalization assays. Adjustments 
of contrast and illumination were made utilizing Adobe Photoshop CS 
software.

Results and Discussion
Alternative AAV capsids improve in vitro transduction of 
murine glioma cells 

Recombinant Adeno-associated vectors (rAAV) expressing Red 
Fluorescent Protein (RFP, mApple) under control of CMV enhancer/
chicken b-actin promoter (CBA) were generated: rAAV2-WT-CBA-
RFP, rAAV2-TRP-CBA-RFP and rAAV-ShH19-CBA-RFP. Triple-
mutant rAAV2-TRP (Y444+500+730F) is a capsid variant of AAV 
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serotype 2 in which tyrosine residues at positions 444, 500 and 730 
are substituted with phenylalanine (Y-F).  Tyrosine phosphorylation 
of intact AAV particles by epidermal growth factor receptor tyrosine 
kinase (EGFR-PTK) interferes with intracellular trafficking of the 
virus from cytoplasm to the nucleus by tagging it for ubiquitination 
and proteasome-mediated degradation thus significantly reducing 
therapeutic potential of the vector.  Replacement of tyrosine residues 
with phenylalanine can substantially improve transduction of various 
cell types , such as hepatocytes,  fibroblasts, retinal cells and  mesenchymal 
stem cells, among others, both in vitro and in vivo [41,45,52]. rAAV-
ShH19 is a product of molecular evolution for transduction of 
astrocytes (which increased efficiency 5.5-fold compared to parental 
rAAV2) [46]. Vectors based on both capsid variants alongside with 
rAAV2-WT, which has been shown to be a relatively better serotype in 
different glioma cell lines (U87-MG, A172, D37, GaMg, HF-66, U373 
[32-34]) were used to infect GL261 cells in vitro.  Infection was done at 
three different MOIs: 100, 1000, and 10,000. At the highest MOI, ~1.4% 
of AAV2, ~2.5% of AAV2-TRP and ~8.5% of AAV-ShH19 infected 

cells tested RFP positive by flow cytometry (Figure 1). Use of an MOI 
of 10,000 for in vitro transduction was in the range reported by others 
for different glioma cell lines [38,39,53].  Both rAAV2-TRP and rAAV-
ShH19 demonstrated higher transduction efficiency for GL261 cells in 
vitro compared to rAAV2-WT (2- and 6-fold, respectively).

Alternative AAV capsids substantially improve in vivo 
transduction of murine glioma cells 

Due to the fact that glioma tumors are highly necrotic (and tumor 
affected brain sections are extremely fragile), our strategy for in vivo 
evaluation was to minimize post viral injection manipulation and 
utilize systems for detection of co-localization of gene transfer with 
glioma cells. Thus, we generated GL261 cells stably transfected with 
a GFP reporter. GL261-GFP cells had growth characteristics similar 
to the parental cell line and formed tumors in the recipient animals 
in predictable manner. For all experiments, 1×105 GL261 or GL261-
GFP cells were injected stereotaxically into the brain of C57BL/6 mice 

Figure 1: In vitro infection of GL261 mouse glioma cells with recombinant rAAV2-WT-CBA-RFP, rAAV2-TRP-CBA-RFP and rAAV-ShH19-CBA-RFP viruses. 
A. Fluorescent microscope images of GL261 cells in 12-well plates infected with rAAV2-WT-CBA-RFP, rAAV2-TRP-CBA-RFP and rAAV-ShH19-CBA-RFP viruses at 
the MOI 10,000 (Original magnification: 100x). AAV2-TRP is AAV2 capsid with Y(444, 500, 730)F tyrosine mutations (“triple mutant”). B. Representative low cytometry 
results. C. Summary of the flow cytometry data for three different MOIs. Data are average ± SD for triplicate measurements.
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followed by intratumor injection 13 days later with 1×109 vg in 1-2 µl 
of vector solution. Initially, three virus vectors, rAAV2-WT-CBA-RFP, 
rAAV2-TRP-CBA-RFP and rAAV-ShH19-CBA-RFP were tested in 
healthy mouse brain or in parental GL261 tumor-bearing brain (not 
marked by GFP). RFP expression could be easily detected 7 days post 
gene transfer, with no further increase by day 10; while no transgene 
expression was observed at day 3 (data not shown).  Therefore, we 
proceeded with in vivo gene transfer to GL261-GFP brain tumors in 
C57BL/6 mice, followed by tissue analyses 7-13 days later.  As shown 
in figure 2, RFP expression was easily detected in the tumor from all 
vectors tested (at least 4 animal per vector were analyzed; 3-4 slides 
with tumor-containing brain sections/animal; 10 sections/slide). 
However, only rAAV2-TRP (Figures 2B and 2E) and rAAV-ShH19 
(Figures 2C and 2F) vectors transduced GL261 glioma cells as judged 
by co-localization of RFP delivered by the virus and GFP expressed 
by glioma cells (yellow/orange cells in representative panels). Within 
the area of the tumors positive for transgene expression, the efficiency 
of transduction of glioma cells was approximately 10% for both 
capsid variants as quantified using Leica AF6500 software. Presence 
of additional exclusively red fluorescent cells indicate a level of viral 
transduction of non-glioma cells within the tumor. In order to achieve 
more widespread transduction throughout the tumor, improvements 
in the injection/delivery technique, vector formulation, and perhaps 
further modification of the capsid sequence are required. 

In vivo transduction is not restricted to glioma cells

In addition, rAAV2-TRP and rAAV-ShH19 vectors (but not 
rAAV2-WT) transduced neurons at the edge of the tumor (Figure 
3A; while not labeled by specific antibody, these RFP expressing cells 
had characteristic morphologic appearance of neurons as shown more 
clearly in a representative example in Figure 3B). In normal brain, 
AAV2 is known to predominantly target neurons and epithelia within 

the central nervous system due to the receptor-based tropism, as 
heparan sulphate proteoglycan (HSPG) is prevalent on neuronal cell 
surfaces [54]. When tested in the healthy (non-tumor baring) brains, 
rAAV2-TRP and rAAV-ShH19 retained the ability to transduce 
neurons and showed a larger spread of transduction from the site of 
the injection than what was observed for rAAV2-WT (Figure 4). This 
may explain the spread of viral transduction for these two capsids 
beyond the tumor, reaching the layer of neurons outlining the tumor. 
In contrast, the traditionally reported low spread of rAAV2 in the brain 
may have restricted rAAV2-WT distribution and prevented neuronal 
binding away from the intratumor injection site.  Thus, capsid 
variants rAAV2-TRP and rAAV-ShH19 demonstrated a substantial 

Figure 2: In vivo transduction of GL261 tumor cells. Confocal microscopy 
images of representative brain sections from glioma-bearing C57BL/6 mice 
receiving rAAV vectors injections into the GL261-GFP tumor.  
(A,D) rAAV2-WT-CBA-RFP. (B,E) rAAV2-TRP-CBA-RFP. AAV2-TRP is AAV2 
capsid with Y(444, 500, 730)F tyrosine mutations (“triple mutant”). (C,F) rAAV-
ShH19-CBA-RFP. Green signal is GFP stably expressed in glioma cells, red 
signal is RFP delivered by rAAV infection. Yellow/orange signals (cells marked 
with asterisk,*) indicate co-localization of RFP and GFP (i.e. rAAV-mediated 
transduction of GL261 cells). Original magnification: 600x.

rAAV2-WT rAAV2-TRP rAAV-Sh H19

Green ---- GFP expressed in GL261 glioma
Red --- RFP delivered by AAV vector
Orange/Yellow --- GFP and RFP in the same cell

Figure 3: In vivo transduction of neurons in proximity to GL261 tumors. 
A. Confocal microscopy images of representative brain sections from glioma-
bearing C57BL/6 mice receiving rAAV2-TRP-CBA-RFP (upper panels) or 
rAAV-ShH19-CBA-RFP (lower panels) vectors injected directly into GL261-
GFP tumor. AAV2-TRP is AAV2 capsid with Y(444, 500, 730)F tyrosine 
mutations (“triple mutant”). Green signal is GFP stably expressed in glioma, red 
signal is RFP expressed from vector. Original magnification: 200x. B. Higher 
magnification image of cells with neuron morphology transduced with rAAV-
ShH19-CBA-RFP as a representative example of gene transfer to neurons. 
Original magnification: 300x. 
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improvement of gene delivery to mouse glioma in vivo relative to 
traditional AAV2 vector, although overall transduction efficiency was 
modest. Nonetheless, transduction of additional cells in close proximity 
to the tumor may further enhance anti-glioma therapy for strategies 
based on expression of secreted therapeutic compounds, resulting in 
bystander effects. Consistent with data in the literature, we found that 
ShH19 vector also transduced astrocytes when injected in healthy brain 
(data not shown) [46]. 

The CNS is typically classified as an immune-privileged organ. The 
absence of conventional lymphatic drainage, low levels of constitutive 
expression of MHC class I and II molecules, production of powerful 
immunosuppressive factors such as TGF-β or other factors that 
activate regulatory T cells, and scarcity of dendritic cells all contribute 
to immune hypo-responsiveness in the brain [55]. Furthermore, 
during tumorigenesis, brain tumors develop powerful means of 
down-regulating immune responses, which may be elicited against 
the tumor [56]. Immune stimulation aimed at the patient’s immune 
system to destroy tumor cells is one of the strategies of gene therapy 
for glioma [55]. Microglia are the main resident immunological cells 
of mesodermal origin in the CNS. In normal brain, AAV2 does not 
transduce murine microglia [57]. There have been reports of in vitro 
transduction of primary rat microglia at high MOI  (10,000) [58,59].  
Improving gene transfer to microglia would be desirable goal of gene 
therapy for glioma.

Mice heterozygous for CX3CR1 deficiency (C57BL/6CX3CR1/GFP), in 
which one allele of the CX3CR1 gene is replaced with the GFP [50], 
express GFP in microglia; using these mice we have established that 
GFP-positive microglia are present in significant numbers within 

intracranial GL261 tumors [60]. Therefore, co-localization of RFP 
expressed from the vector and GFP present in microglia would indicate 
microglia transduction. All three vectors only rarely transduced 
microglia in healthy brain or within the tumor (Figure 5A).  Besides 
“true” co-localization events of the cytoplasmic gene products (RFP 
delivered by the virus and GFP transgenically expressed in microglia), 
indicating transduction, we also observed red and green fluorescence 
located in different compartments of the same cell without co-
localization (Figure 5B). Similar observations have been reported for 
uptake of fluorescently labeled rAAV2-Cy3 virus by microglia [57]. 
We speculate that activated microglia, faithful to their role as antigen 
presenting cells, might have engulfed virus-infected cells. 

Use of scAAV vectors further improves glioma cell 
transduction

Although AAV capsid mutants increased transduction efficiency 
of glioma over rAAV2-WT, further improvement of efficiency is 
desirable. Utilization of the self-complementary (double-stranded) 
genomes in AAV vectors circumvents second-strand DNA synthesis 
or complementary strand recruitment limitations [61] and increases 
the effective dose of the vector [62]. In order to assess whether this 
strategy could be useful for glioma transduction, we performed in vitro 
infections of GL261 cells using rAAV2-WT-scCBA-GFP, rAAV2-
TRP-scCBA-GFP and rAAV-ShH19-CBA-GFP self-complementary 
vectors. As shown in figure 6, at a low MOI of 500 vg/cell, ~32% of the 
rAAV2-WT, ~48% of the rAAV2-TRP and ~86% of the rAAV-ShH19 
infected cells tested GFP positive by flow cytometry. Nearly identical 
results were obtained in a second independent experiment, where 
GFP+ cells were manually counted (data not shown). Therefore, use of 
scAAV vectors should further increase efficacy but is limited to small 
transgenes that fit into the packaging limits for self-complementary 
genomes (<3 kb).  The increase of in vitro transduction efficiency by 
using the scAAV vector was remarkable (~ 2-log). It is possible that the 

Figure 4: In vivo transduction of normal brain. Confocal microscopy images 
of sections of normal brain (no tumor) after AAV vector injections into C57BL/6 

CX3CR1/GFP mice (which expresses GFP in their microglia). Original magnification: 
200x. A. rAAV2-WT-CBA-RFP. B. rAAV2-TRP-CBA-RFP. AAV2-TRP is AAV2 
capsid with Y(444, 500, 730)F tyrosine mutations (“triple mutant”).  C. rAAV-
ShH19-CBA-RFP gene transfer.
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comparatively low fluorescence intensity of the RFP transgene product 
caused us to underestimate the in vitro performance of the ssAAV 
vectors. Nonetheless, transduction with scAAV was substantially more 
robust, which warrants future in vivo studies with these vectors.  

In summary, two capsid-modified variants of rAAV2 have been 
tested for gene delivery to GL261 mouse model of glioma. Both 
rAAV2-TRP and rAAV-ShH19 mutants demonstrated superior 
transduction of GL261 cells in vitro and in vivo. Further improvement 
of in vivo gene transfer may be required, depending on the therapeutic 
strategy, which may involve use of higher vector doses, scAAV vectors, 
improved delivery techniques, and further optimization of the viral 
capsid.  Transduction of neurons in the vicinity of tumor cells may be 
an advantage or an undesired effect for the therapy, depending on the 
strategy and therapeutic mechanism.  
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