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Commentary
As previously reviewed by Kang et al. [1], dysregulated persistent

expression of IL-6 leads to chronic inflammatory diseases, therefore,
IL-6 targeting therapy is useful for the treatment of chronic diseases.
Moreover, accumulated evidence suggests that IL-6 is a potential target
molecule for the treatment of severe inflammatory response syndrome
(SIRS) including sepsis [2]. However, the molecular mechanisms
through which IL-6 is excessively or persistently produced remain
unknown. In this commentary, we highlight on the involvement of a
novel RNA-binding molecule (Arid5a) on dysregulated IL-6 synthesis.

Cytokines are small molecules that mediate cell to cell
communication in immune responses and also regulate migration of
immune cells at the site of infection, trauma and tissue injury [3]. In
general, an appropriate regulation of cytokines production is an
important event in host defenses and maintenance of immune
homeostasis. However, exaggerative elevation of cytokine production
might lead to the onset or development of acute inflammatory diseases.
Sepsis is severe systemic inflammatory response upon infection,
leading to excessive pro-inflammatory cytokine production such as
IL-6, TNFα and IFNγ [4,5]. Upon infection, IL-6 and TNFα are highly
expressed by innate immune cells including macrophages and
dendritic cells, whereas IFNγ is produced by IL-12−derived T helper
type 1 (Th1) cells. Recently, genetic contributions of IL-6 has been also
identified that single nucleotide polymorphism (SNP) at IL-6 promoter
has been related to IL-6 production and associated with the risk of
sepsis [6] Collectively, these findings suggests the therapeutic potential
of blocking of these cytokines in development of sepsis.

Interleukin-6 (IL-6), which is originally identified as B cell
stimulatory factor-2 (BSF-2), plays an important role in early phase of
acute immune responses and hematopoiesis by activating lymphocytes,
hepatocytes and hematopoietic cells to protect the body against
invasion of pathogens. By contrast, persistent production of IL-6 leads
to development of various chronic diseases, including rheumatoid
arthritis, juvenile idiopathic arthritis and Castleman disease [7,8].

On the basis of the pathological involvement of IL-6 in chronic
diseases, tocilizumab, a humanized anti-IL-6 receptor antibody was
developed and various clinical trials proved its outstanding efficacy for
those chronic immune disorders. This biologics is also expected to
become a novel therapeutic drug for severe inflammatory response
syndrome (SIRS) including sepsis, since extremely high level of IL-6 is
well documented to be associated with severity and prognosis of sepsis
[2]. Moreover, tocilizumab is shown to be very efficacious for cytokine
release syndrome (CRS), accompanied by T-cell engaged therapy.

Figure 1: Pathological role of Arid5a in acute inflammatory diseases
Mφ; macrophage, Th1; helper T1 cell.

IL-6 interacts with two different receptors, namely, IL-6 receptor
(IL-6R) and the signal-transducing receptor subunit gp130. IL-6R
exists in two forms, an 80-kDa transmembrane form and a 50-55 kDa
soluble form (sIL-6R). Transmembrane type of IL-6R interacts with
gp130 and triggers a downstream signals upon binding of IL-6, which
referred as “classical IL-6 signaling pathway. sIL-6R is present in
human serum, and also binds to IL-6; this complex transduces the IL-6
signal on gp130 expressing cells, which is known as “trans IL-6
signaling pathway”[9,10]. IL-6 stimulation activates gp130
downstream signaling molecules, that is, the Janus kinase (JAK)-Signal
transducers and activator of transcription 3 (STAT3) pathway and
JAK-SH2 domain containing protein tyrosine phosphatase 2 (SHP2)-
mitogen-activated protein kinase (MAPK) pathway. During infection
or tissue injury, IL-6 is synthesized very rapidly, resulting in
elimination of invading pathogens.

Upon inflammatory stimuli, transcription of IL-6 are regulated by
several factors such as nuclear factor kappa B (NF-κB), specificity
protein 1 (SP1), nuclear factor IL-6 (NF-IL6), activator protein 1 (AP1)
and interferon regulatory factor 1 (IRF-1). Recently, our group and the
Akira group clarified the post-transcriptional regulatory mechanisms
of IL-6 mRNA by two counteractive molecules [11,12]. Akira et al.
found that Regnase-1, a kind of nuclease, which binds at the site 3'-
untranslated region (3'-UTR) and destabilizes of IL-6 mRNA. By LPS
stimulation, Regnase-1 is phosphorylated following then get
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degradation by ubiquitination. This protein also acts as a negative
regulator by binding to the stem loop site of the 3'-UTR of Regnase-1
mRNA itself.

Our group identified that Arid5a, which is a counteractive partner
to Regnase-1, is a stabilizer in terms of binding to the 3'-UTR of IL-6
mRNA [5]. The expression of Arid5a is quickly induced in
macrophages upon LPS stimulation (Figure 1). As expectedly, genetic
deletion of Arid5a in mice displayed significantly less production of
IL-6 in a LPS-induced endotoxin shock model. Collectively, these
findings strongly suggest that modulation of IL-6 post-transcription is
related to pathogenesis of sepsis. Additionally, we found the significant
involvement of Arid5a in the differentiation of naïve helper T (Th) cells
into Th17 cells in a murine experimental autoimmune
encephalomyelitis (EAE) model, by controlling by stability of STAT3
mRNA [13].

More recently, we also observed not only therapeutic effects of
blockade of two different cytokines, IL-6 and IFNγ, against sepsis
development, but also the novel function of Arid5a in the development
of naïve T cells into Th1 cells by stabilizing T-bet mRNA [14]. Arid5a-
deficient mice in Propionibacterium acnes-primed endotoxin shock
model, which elicit Th1 responses, showed lower levels of IFNγ, IL-6
and TNFα, with higher survival rate. These findings implicate that
both IL-6 and IL-6 mRNA regulator, Arid5a are target molecules for
the treatment of septic shock [15].
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