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Abstract

Stroke is a devastating and potentially fatal complication to sickle cell Anemia. Strokes are difficult to explain on
the basis of the central pathological process in SCA, namely the occlusion of small vessels by deformed sickled
cells. We examined whether Single Nucleotide Polymorphism (SNP) variants in the MCP-1 or CCR2 genes
independently or in combination are associated with occurrence of Cerebrovascular Accidents (AVC) in SCA
Tunisian patients.

Material and methods: 100 SCA patients among whom 19 have AVC were enrolled in this study. Clinical
diagnosis of stroke was performed by the use of Transcranial Doppler ultrasonography (TCD). The genotyping of
rs1026611 in the MCP-1 gene and V64| of CCR2 was performed using PCR/RFLP.

Results: Our findings showed no association of the polymorphisms studied with occurrence of AVC in SCA

Tunisian patients.
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Introduction

Stroke remains one of the important complications of SCA and is
especially critical in the care of children with this disorder. The
epidemiology of stroke and primary and secondary prevention
strategies based on transfusion have recently been established in large
multicenter studies, but treatment of acute stroke and a basic
understanding of what causes cerebrovascular disease in this
hemoglobinopathy have progressed very little in recent years [1].
Interestingly, the hypothesis of modifier gene in SCA can help the
researchers to understand this disease [2]. Herein we focused on two
chemokine’s namely Monocyte chemo attractant protein 1 (MCP-1),
with its receptor chemokine receptor 2 (CCR2). MCP-1 acting in
concert with its receptor CCR2, promotes recruitment of macrophages
into atherosclerotic plaque [3]. Chemokine’s, which play an important
role in inflammation, are families of cytokines that are important
mediators of leukocyte trafficking [4]. MCP-1 is a member of the C-C
beta chemokine family that is produced by macrophages, fibroblasts,
and endothelial cells to stimulate chemo taxis of monocyte/
macrophages and other inflammatory cells. The human MCP-1
regulates the infiltration of monocytes, memory T cells and
macrophages and other inflammatory cells by binding to the
membrane CC chemokine receptor 2 (CCR2) [5-8]. MCP-1 protein
may be regulated by a Single Nucleotide Polymorphism (SNP)
occurring at position —2518 of the AMCP-1 gene promoter. The
-2518A/G polymorphism (rs1026611) in the AMCP-1 gene can
influence plasma MCP-I concentration and has been suggested as a
risk factor for atherosclerosis [9-14]. Numerous studies have been
performed on the association of the -2518 A/G Polymorphisms in the
MCP-1 gene with atherosclerosis susceptibility.

In the last few years, genetic determinants have been shown to
influence the risk of stroke and many SNPs in different genes have
been found to be associated with ischemic stroke (Table 1).

The presence among the risk factors of genes already associated
with stroke in the general population, such as SELP, suggests that
some genetic factors predisposing to stroke may be shared by both
SCA patients and stroke victims in general [15-17].

Material

Our study enrolled 100 sickle cell patients among whom 19
presented confirmed AVC. Patients were selected on the basis of
homozygosity for p*-globin gene. Demographic, hematological and
clinical data of subjects studied are summarized in Table 1.

SCA patients SCA patients P

Without AVC With AVC

N=81 N=19
Range of Age 5-25 5-25 1
Sex ratio 41/59 9/10 0.12
Hb (g/dl) 9.7+0.7 9.3+0.5 0.42
RBC (10"2L) 3.29+0.9 2.89+1.02 0.08
MCV(fl) 79.7+0.9 742+13 0.095
MCH(pg) 349+21 35.7 £1.02 0.075
RDW(%) 4.83+05 5.29 £1.02 0.12
HbA 0 0 1
HbS (%) 86 +0.3 86.4+04 1
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HbF(%) 0.82

HbA2 3+0.1 1

Hb: hemoglobin, RBC: red blood cell, MCV: mean corpuscular volume, MCH:
mean corpuscular hemoglobin and RDW: red blood distribution

Table 1: Hematological, demographic and clinical data of studied
population

Methods

Clinical events

Data and clinical events were taken from patient’s history via search
of the clinical registry. Screen all children with SS ages 2-16 using
TCD.

Laboratory methods

Venous blood samples of 2.5 ml volume were drawn from the study
subjects and were collected in K2-EDTA anticoagulant containers.
SCA was diagnosed on the basis of cation-exchange high performance

confirmation by means of DNA studies. The complete blood counts
including counts of Red Blood Cells (RBC), White Blood Cells (WBC),
and the measurement of Hemoglobin (Hb), Mean Corpuscular
Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean
Corpuscular Hemoglobin Concentration (MCHC), and Red Cell
Distribution Width (RDW) were performed using an automated cell
counter (ABX pentra 60*). Genomic DNA was extracted from
peripheral blood using the standard phenol-chloroform procedure. {3*-
globin gene was performed by Restriction Fragment Length
Polymorphism (RFLP) as previously described by Romana M et a/
2000 [18]. We determined total and fetal Hemoglobin (Hb F)
concentrations by HPLC (D10 BioRad).

Polymorphisms genotyping

A 25 pl PCR mixture contained 1.75 mM MgCl,, 0.2 mM of each
dNTP, 0.25 mM of each primer, 1XPCR buffer and 1.5 U Taq
polymerase (Invitrogen, life technologies, Carlsbad, CA, USA) and 150
ng of total DNA as template. The PCR amplification was performed
using a Biometra thermal cycler (TPersonal, Germany). The primers,
the size of PCR product and the PCR working protocol cycle of each
polymorphism were summarized in Table 2.

liquid chromatography (HPLC) (D10, Biorad) and further
Polymorphisms Primers Product length Cycling conditioned for 25pl
(5-3)
-2518 A/G of MCP-1 F : GCTCCGGGCCCAGTATCT 689pb 94°C 10 mn
R : GGCCATCTCACCTCATCTTCC 35x(94°C 1 mn
62°C 1 mn,72°C 1 mn) 72°C 10 mn
V64| of CCR2 F : TTGTGGGCAACATGATGG 222pb 95°C 10 mn

R : TGAAGAAGATTCCGCCAAAA

38x(95°C 30s
57°C 30s,72°C 1 mn)72°C 10 mn

Table 2: PCR conditions of studied polymorphisms

Detection of polymorphism MCP1-2518A/G was performed by
PCR/RFLP. The PCR products were digested by Pvull (New England
Biolabs, U.K.) which yields 507 pb and 182 pb when G is at position
-2518. The products were separated on polyacrylamide gel, stained
with ethidium bromide.

CCR2 -V64I was analyzed by PCR/RFLP. The PCR products were
digested by Bsabl (New England Biolabs, U.K.) which yields 204 pb
and 18 pb when mutant allele A is found. The products were separated
on polyacrylamide gel, stained with ethidium bromide.

Statistical analysis

The sample of patients was divided into two groups according to
the presence or absence of AVC. The demographic and hematologic
data were normally distributed, so we calculated means and standard
deviations using SPSS (18.0). We compared demographic and
hematological and clinical data between the two groups of patients
applying the t test. All SNPs were tested for deviation from the Hardy-
Weinberg equilibrium using the software package Arlequin (version
3.01). Chi Square test or fisher test was used to determine genetic
differences between patients using compare 2(version 1.02).
Stratification of different combination of genotypes found according

to the presence or absence of AVC was evaluated by logistic regression
model using SPSS (18.0) and statistical significance was defined as
p<0.05.

Results

Patients chosen for the molecular methods were selected on the
basis of homozygosity for B globin gene. The two groups of patients
stratified accordingly to the occurrence of AVC were compared for
age, sex ratio and hematological data including HbF. No significant
association was found (p>0.05) (Table 1).

Polymorphisms analysis

For each polymorphism the samples were found to be in Hardy-
Weinberg equilibrium (p>0.05).

The analysis of the rs1026611 in the MCP-I gene showed the
presence of three genotypes namely: AA, AG and GG among SS
patients without AVC. Whereas, GG was absent among SS patients
with AVC (Figure 1a).
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Figure 1a: Polyacrylamide gel electrophoresis for the genotyping of
MCP-1-2518A/G after enzymatic digestion (Pvull) 1: PCR product
without digestion, 2: mutant homozygote GG, 3: heterozygote AG,
4 normal homozygote AA, M: size marker 100 pb

The analysis of the V641 CCR2 showed the presence of three
genotypes namely: GG, GA and AA in both patient groups (Figure 1b).
Our findings showed no significant association between patients and
controls according to genotypic and allelic profile of the two
polymorphisms studied (Table 3).

AVC Presence P
Absence N=19
N=81
MCP1-2518A/G
A 0.802 0.789 1*
G 0.198 0.211 1
AA 54 11 1*
AG 22 8 0.408
GG 5 0 1
CCR2-V64I
G 0.0.901 0.789 1*
A 0.099 0.211 0.512
GG 68 13 1*
AG 10 4 0.269
GG 3 2 0.208

Table 3: Genotypic and allelic distribution of studied polymorphisms
according to the presence or the absence of AVC
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Figure 1b: Polyacrylamide gel electrophoresis for the genotyping of
CCR2V64l after enzymatic digestion (BsaBl); 1: mutant
homozygote AA, 2: heterozygote AG, 3: normal homozygote GG, 4:
PCR product without digestion, M: size marker 100 pb

Discussion

Previous studies have suggested that genetic heterogeneity influence
the susceptibility to AVC in SCA [14-15,18-22]. Some studies attempt
to suggest the role of TGF-beta signaling s pathway in increasing risk
of stroke. They have showed the association of variants in TGFBR3
and in beta receptor II (TGFBR2), which have essential, non-
redundant roles in TGF-beta signaling. Interestingly, BMP6 is part of
the TGF-beta super-family, and three previous have reported that
variants in BMP6 are associated with increased risk of stroke. This
conjecture is further supported by the association of stroke with
Colony Stimulating Factor 2 (CSF2), a protein necessary for the
survival, proliferation and differentiation of leukocyte progenitors.
Other genes involved according to this study are ADCY9, chemokine
(C-C motif) ligand 2 (CCL2), endothelin converting enzyme 1 (ECE1),
v-ets erythroblastosis virus E26 oncogene homolog (ERG), hepatocyte
growth factor receptor (MET) and TEK tyrosine kinase (TEK). As for
the polymorphism MCP1-2518A/G, this is the first report on the
association of this polymorphism and occurrence of AVC in SCA. Our
results show the lack of significant association among our studied
population. Whereas for the CCR2 V641 polymorphism, only one
previous study on American SCA patients have reported no
association between the latter polymorphism and AVC. Herein, we
found the same results.

Conclusion

The novelty of this report is that it is the first time that a similar
study was made on the SCA Tunisian patients. The results showed no
significant association between patients and controls according to
genotypic and allelic profile of the two polymorphisms studied. To
further define the genetic basis of stroke, more SNPs in candidate
genes of different functional classes might be examined in our
population with the likelihood of having a stroke.
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