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Introduction
Neurodegeneration usually refers to a progressive impairment of 

the structure and function of nerve cells ultimately leading to their 
damage and death. The consequences of such neurodegenerative 
processes are usually observed as loss in motor neuron functions, 
impaired sensory abilities, decline in memory and cognitive abilities 
along with hindrances in functioning of several organs and organ 
systems. Some of the common neurodegenerative disorders include 
alzheimer’s disease, Parkinson’s disease, Huntington’s disease and a 
comparatively rarer condition called Amyotrophic Lateral Sclerosis 
(ALS). However, these comprise the most prominent nervous disorders 
amongst the rest. Huntington’s disease is occasionally encountered by 
juveniles, while the majority of these neurodegenerative disorders are 
seen in aged and elderly people with (familial) or without (sporadic) 
a history of occurrence in their family. Therefore, the science of 
ageing relies significantly on addressing such ageing and senescence-
linked neurodegenerative disorders. Nevertheless, better healthcare 
and medical facilities have reinforced our idea of living a better and 
healthier aged life with higher life expectancy. Additionally, given the 
slow onset and progressive increase in the disease phenotype, a major 
limitation in the treatment of neurodegenerative disorders has been 
the delayed diagnosis at the clinics and careless attitude of patients and 
their family towards initial signs and symptoms at home or work place.

Therefore, the needs for understanding the biology of these disorders 
are enormous and unfortunately till date we have succeeded very little in 
this direction. Cases with neuronal diseases are on the rise and the lack of 
an effective therapeutic strategy has limited our approach in responding 
to these disorders effectively. Usually neurodegenerative disorders are 
complex in nature, involving both genetic and environmental paradigms 
and thus hinders in designing and development of therapeutics. This 
review paper aims to bridge the gap in understanding the causative factors 
and their interactions among themselves leading to neurodegenerative 
disorders. It becomes highly imperative to understand the disease 

biology, identify unique signature marks and look for molecules and 
structural entities associated with such diseases to develop an effective 
remedy targeted against neurodegenerative disorders.

Epigenetics of Neurodegeneration
Neurodegenerative diseases exhibit multifactorial pathology 

involving genetic and epigenetic components working together in 
response to environmental stimuli. Of which genetic factors are the 
unalterable causal elements and the epigenome encompasses the 
factors which are more dynamic, modifiable and heritable (when found 
in germ cells). These changes, such as acetylation, phosphorylation, 
methylation, sumoylation or ubiquitination of histones/ histone tails/
DNA are executed by their respective writer, reader and eraser enzymes 
like HDACs (Histone deacetylases), HATs (Histone acetyl transferases), 
Sumo1/2 (Sumoylation factors ), DNMT (DNA methyl transferases) 
etc. Such events of variable histone and DNA modifications are 
believed to establish a “histone-code” instructing the genes to be either 
transcriptionally active or inactive. Environmental influences in form 
of chemical, physical or nutritional factors participate in enriching or 
depleting these histone codes depending on the cellular context and 
even can target the proteosomal degradation of host cellular proteins 
via ubiquitin deposition. Therefore the expression of genes especially 
those at labile genomic regions potentially affects the adult phenotype. 
Since the epigenome presents a landscape of cellular and genomic 
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plasticity, it constantly fluctuates within cells and tissues in response to 
changing environmental cues. In this section we specifically focus on 
epigenetic modifications as central mediators of the nexus between the 
environment, genes and host system. The role of epigenetics in regulation 
of various neurobiological and cognitive processes like development of 
early brain, creation of memory, learning as well as synaptic plasticity 
have been well documented in recent years. Moreover, incidences of 
many neurological disorders, including Alzheimer’s, Huntington and 
Parkinson’s diseases have also been established to be a consequence of 
pathologically modified epigenetic milieu of the causal genes.

Epigenetics and Biology of Neurodegeneration
Alzheimer’s disorder

Alzheimer’s disease International reports approximately 44 
million people (i.e., 1 in 4 individuals) worldwide to be suffering from 
Alzheimer’s disease with highest prevalence exhibited in Western 
Europe (http://www.alz.co.uk/research/world-report-2015) (Figure 
1). It is also one of the leading causes of physical and cognitive 
disabilities among elderly individuals with 2 women reported for every 
3 Alzheimer’s patients [1]. The disease initiates gradually with several 
discernible symptoms like short term memory loss (Figure 1) [1]. In 
addition, with the progression of disease several other noticeable 
symptoms including difficulty in language usage and processing, 
disorientation, inability in self-care, volatile mood swings and acute 
dementia are exhibited (Figure 1) [2]. In the later stages, the patients 
often show critical symptoms of complete speech and memory loss 
and become dependent on the caregivers lacking the competence to 
perform even simple tasks independently (Figure 1).

With respect to the age of onset and the associated genetic 
predisposition, Alzheimer’s is usually categorized into two types. The 
early onset familial Alzheimer’s comprises only 5-10% of all the cases 
and exhibits an autosomal dominant inheritance pattern. The physio-
pathology of the disease involves contributory effects from many genes 
(Figure 1). Typically, the occurrence of intracellular neurofibrillary 
tangles along with the phosphorylated Microtubule Associated Protein 
Tau (MAPT) and extracellular plaques carrying aggregated Amyloid 
beta (Aβ) protein characterizes the presence of the Alzheimer’s 
Disorder (Figure 1) [3-5]. Usually the early onset subtype is noticed 
within mid-40s and 50s and is attributable to mutations in any of three 
key genes like Amyloid Precursor Protein (APP) (Figure 1), Presenilin 
1 (PSEN 1) and Presenilin 2 (PSEN 2) [6]. Increased production of 
Aβ-42 protein due to mutations in PSEN 1 or aberrations in PSEN2 
leading to alteration in the homeostatic ratio of Aβ-42 to Aβ-40 are 
associated with familial Alzheimer’s [7]. In addition, TREM 2, has also 
been known to increase the susceptibility of an individual 3 to 5 times 
for developing the early onset familial Alzheimer’s [8]. 

While only a few cases of Alzheimer’s comprise the familial type, 
the majority i.e., 90-95% of the cases are late onset (occurring after 60-
65 years of age) and non-familial kind. Risk factors attributable to such 
cases originate from environmental triggers and genetic factors leading 
to sporadic cases of the disease. Located on the chromosome 19q13, 
the APOE (Apolipoprotein E) gene has been linked to the incidence 
of non-familial, sporadic Alzheimer’s. The APOE ε4 allele enhances 
the predisposition for disease although less than 50% of the late onset 
cases are carriers of this allele. On contrary, ε2 and ε3 alleles have been 
designated to confer a relative protection from the neurodegenerative 
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Alzheimer’s Disease 
Huntington’s Disease Parkinson’s Disease Amyotrophic Lateral Sclerosis 

Figure 1: The common neurodegenerative disorders and their associated disease hallmarks. In this paper we have discussed in details about Alzheimer’s disease, 
Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis. This figure summarizes there statistical prevalence, disease onset and progression 
phenotype and the hallmark features like formation of intracellular fibrillary tangles, extracellular plaques and Lewy bodies. The representative images are brain MRIs 
of each specific neurodegenerative disorder.
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disorder [9]. In addition, recent genome wide association studies 
(GWAS) have brought forth a total of 19 candidate genes that pose risk 
for onset of sporadic, late onset Alzheimer’s Disorder [10].

Epigenetics and Alzheimer’s disease

Patients with Alzheimer’s disease frequently exhibit insufficient 
levels of serum folate along with deficiencies of S- adenosylmethionine 
(SAM) and methionine S-adenosyltransferase in the cerebrospinal fluid 
(CSF) leading to atrophic cerebral cortex. A further elevated level of 
S-adenosylhomocysteine (SAH) (a methyltransferase inhibitor) has 
been observed in the brain of Alzheimer’s patients (Figure 2) [11]. 
Such an inhibition of methyltransferase results in the silencing of 
genes ultimately leading to aberrant gene transcription and cognitive 
failure, as observed in the disease. In addition, the promoter region of 
the APP gene in patients below 70-years bear significantly lesser DNA 
methylation (5 mC i.e., 5-methylcytosine) in comparison to those above 
70 years, substantiating the possibility of elevated Aβ deposition and 
disease progression (Figure 2). Fuso et al. in an in vitro study confirmed 
that insufficiencies of folate and vitamin B12 in culture medium 
regulate DNA methylation of the BACE1 and PSEN1 genes leading 
to an increased production of Aβ (Figure 2). Additionally Alzheimer’s 
patients exhibit altered 5 mc levels in the brain and lymphocytes 
along with altered expression of genes like APOE and PSEN1 
(required for Aβ processing), DNA methyltransferase-1 (DNMT1) 
and methylenetetrahydrofolate reductase (MTHFR- required for 
methylation homeostasis) (Figure 2). Moreover, the adult human 
brain with Alzheimer’s exhibits globally enhanced hypermethylation, 
increased 5 mC and 5 hmC (5-hydroxymethylcytosine; oxidation 
product of 5 mC) levels in neurons but not in microglia and astrocytes. 

Apart from the much explored role of DNA methylation, there are 
indications of role of HATs HDACs, HMTs, HMDs and HPRTs as 
modulators in Alzheimer pathology (Figure 2). For example, recent 
findings from a clinical trial have shown a strong negative correlation 
of the levels of SIRT1 (Sirutinin-1 belonging to HDAC III family) 
with that of Aβ and fibrillary tau proteins in the cerebral cortex of 
Alzheimer’s patients. This implies that this HDAC family of proteins 
can help to ameliorate the signature marker and progression of AD. 
Further a recent study Turner et al. have shown that resveratrol can 
effectively and safely cross the blood brain barrier to induce cerebral 
effects and in case of a randomized double blind-placebo controlled 
study, it has shown to downregulate the levels of AD biomarkers like 
Aβ 40/42 and hyperphosphorylated tau both in blood plasma and CSF.

Parkinson’s disorder

Amongst all neurodegenerative disorders, the Parkinson’s disease 
is the second most common after Alzheimer’s. According to the 
Parkinson's disease Foundation (PDF), with an average onset age of 
60 years, it affects more than 4 million people worldwide [11]. The 
gender-based prevalence of Parkinson’s with age reflected a steep bias 
in favor of males with higher incidence rates within the age brackets 
of 60-69 years than that of 70-79 years for females (Figure 1). The 
effect is speculated to be due to the presence of higher estrogen level 
in females. Interestingly, a greater extent of heterogeneity has been 
noticed for patients above 80 years as the disease varies in an age and 
gender-dependent manner during later years of life [12]. Parkinson’s 
disease primarily afflicts the motor neurons of the central nervous 
system. Characterized by four cardinal symptoms – resting tremors, 
Bradykinesia (slow and decreased movement), muscular rigidity as well 
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• Nuclear fractions of motor 
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Figure 2: List of major and significant epigenetic changes associated with different neurodegenerative disorders. Each of the four neurodegenerative disorders 
namely Alzheimer’s  disease,  Parkinson’s  disease,  Huntington’s  disease  and  Amyotrophic  Lateral Sclerosis have different forms of epigenetic modifications like 
methylation, acetylation, ubiquitination and interference of microRNAs etc. This figure highlights the key modifications.
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as postural inability, patients display a loss of dopaminergic neurons in 
substantia nigra region of the midbrain, often reflected as involuntary 
writing movements (Figure 1) [13]. Characteristically, there is an 
eosinophilic intracellular accumulation known as α-synuclein protein 
that form Lewy Bodies (Figure 1) [14,15]. The genetic risk factors 
for the development of familial forms Parkinson’s include 16 genes, 
ranging from PARK1 to PARK16. These genes have been known to be 
correlated with the autosomal (dominant and recessive) and X-linked 
variants of the disease [16,17]. Collectively, the genes of this group code 
for various proteins such as α-synuclein (SNCA/PARK1 or 4), parkin 
(PRKN/PARK2), leucine-rich repeat kinase 2 (LRRK2/PARK8), PTEN-
induced putative kinase 1 (PINK1/PARK6), protein deglycase (DJ-1/
PARK7) and probable cation-transporting ATPase 13A2 (ATP13A2/
PARK9) [17]. Specifically events like point mutations, gene duplication 
or triplication of SNCA and point mutations in LRRK2 have been 
implicated in the autosomal dominant forms of the disease. The 
autosomal recessive form of this disease is associated with DJ-1 and 
PINK1 mutations [18-21].

In contrast, preponderance of the sporadic form of Parkinson’s 
largely arises from a combination of genetic and environmental triggers 
rendering it non-heritable. Mutations of the promoter region of SNCA 
(Fuchs et al.), polymorphisms located in DJ-1 (De Marco et al.), point 
mutation variants of LRRK2 (Chan et al.) and MAPT expression of Tau 
protein (Towin et al.) predispose an individual for Parkinson’s Disease 
in older years of life.

Epigenetics and Parkinson’s disease: In Parkinson’s Disease, a 
correlation between neurodegeneration and epigenetics has not been 
extensively exploited so far. However, several genes common to both 
Parkinson’s and Cancer carry an abnormal methylation pattern in the 
latter, indicating a possible shared similarity in the former [21,22]. 
In another study, SIR2 (a NAD dependent HDAC) mediated rescue 
of dopaminergic neurons by inhibiting aggregation of α-synuclein 
suggested a plausible mechanism of disease progression and regulators 
to influence the same. Modified DNA methylation profiles in Parkinson’s 
patients has also been experimentally confirmed in the brain and blood 
samples, CpG-2 sites at the promoter of SNCA gene in peripheral 
blood leukocytes, intron 1 of the SNCA gene in post-mortem samples 
and HEK293 cell lines (Figure 2). Specifically, hypomethylation 
of promoters of Tumor Necrosis Factor α (TNFα- required for 
mediating neuroinflammation in SNpc cells) and Cytochrome P45 2E1 
(CYP2E1) in clinical cases of Parkinson’s has been reported (Figure 2). 
Furthermore, it has been observed that the promotion of neurotoxicity 
in drosophila and cell culture models of Parkinson’s is associated with 
α-synuclein induced inhibition of histone acetylation. Interestingly, 
this effect could be reversed by administration of HDAC inhibitors 
which implies a role of histone post-translational modifications in the 
disease pathology. For example SIRT1 inhibitors are upregulated in 
most patients suffering from Parkinson’s and thus SIRT1 is potent in 
reducing α-synuclein aggregates by upregulating molecular chaperons 
like HSP70 and co-factors of molecular chaperons like HSF-1 (Heat 
shock factor-1). Correlation of histone modifications with Parkinson’s 
can also be noticed from the fact that a reduction in p300 levels as well 
as its corresponding HDAC activity is brought about by α-synuclein 
in α-synuclein transgenic mice (Figure 2). In addition, micro RNAs 
(miRNAs) have also been correlated with the onset and progression of 
Parkinson’s disease. miRNAs are ~19-25 bp long non-coding RNAs that 
inhibit translation of target mRNAs by binding to their 3’ untranslated 
regions (UTRs) and thereby suppressing protein synthesis. MiRNA-
133b, which is involved in the terminal differentiation and activity of 
dopaminergic neurons, was observed to be diminished in the midbrains 

of the Parkinson’s patients. Expression of α-synuclein is also regulated 
by miRNA-7 and miRNA-153 (Figure 2). Disease-causing aggregation 
of α-synuclein also involves increase in the levels of hsa-miRNA-21, hsa-
miRNA-224 and hsa-miRNA-373, leading to dysregulation of helper 
proteins like Heat Shock Cognate Protein 70 (hsp70) and Lysosomal-
Associated Membrane Protein 2A (LAMP2A), that otherwise assist 
α-synuclein for proper folding, packing and trafficking (Figure 2). 
Various other miRNAs, for example miR-124, miR-205, miR-433 and 
miR-494, have been associated with predisposition towards Parkinson’s.

Huntington’s disease

Also known as Huntington’s chorea (most common polyglutamine 
disorder), this autosomal dominant disorder affects 5-10 cases per 
100,000 people worldwide [22]. The prevalence of this disease shows 
a tenfold variation across various geographic regions of the world 
[23]. Generally, this disease initiates in the middle years ranging 
from 35-45 years although juvenile cases [24] of the same have been 
reported (Figure 1). The earliest symptoms include restlessness, lack of 
coordination as well as saccadic eye movements. These are succeeded 
by characteristic random, jerky and uncontrollable movements called 
Chorea comprising a hallmark of Huntington’s Disorder. However, the 
progression of the disease often leads to a state of complete dysfunction 
with difficulties in chewing, swallowing, speaking and abnormal 
writhing movements [25] along with worsening of cognitive abilities 
and development of neuro-psychiatric disorders (Figure 1) [26]. 
Genetically, Huntington’s Disorder results from an aberrant expansion 
of a trinucleotide repeat (CAG repeats) within the Huntingtin gene 
(HTT). Glutamine (Q) encoded from this CAG repeat is expressed 
in the HTT protein as a Poly-Q stretch near its N-terminal. Usually, 
healthy individuals bear <36 CAG repeats in their HTT gene resulting 
in normal HTT functioning in vesicle trafficking and endocytosis. 
However due to mutation, individuals with more than 36 repeats express 
a mutant HTT (mHTT) protein. These misfolded and aberrant mHTT 
protein is unable to accomplish its synaptic and pro-survival functions. 
A distinctive trait of the disease involve cleavage and aggregation 
formation of Misfolded mHTT within the cell nucleus, cytoplasm and 
neurites [25,27]. With a very high penetrance of the disease, i.e. 50% 
of the offspring with one of the parents afflicted with Huntingtin’s and 
75%-100% of the offspring with both parents afflicted bear the risk 
of developing the disease. Further it also depends upon whether the 
parents bear single or double expanded copies of mHTT gene.

Epigenetics and Huntington’s disease

Likewise, a growing body of evidence proposes epigenetic 
mechanisms to be of prime importance in the huntington’s disease. 
DNA methylation is believed to be the key factor responsible for 
reduced expression of the gene ADORA2A, encoding Adenosine 
A (2A) receptor protein, via enhanced methylation (5 mC) at its 5’ 
UTR (Figure 2). Thus, ADOR2A protein is being considered as a 
potential therapeutic target in huntington’s disorder. Nuclear fractions 
of motor cortex exhibited lower levels of 7-methylguanosine (7 
mG) in comparison to cytoplasmic ones, in such patients. Further, 
the activity of the histone acetyltransferase; CREB Binding Protein 
(CBP- also acts as transcriptional co-activator to RNA-pol II) is 
inhibited by mutant HTT protein (Figure 2). The resultant histone 
hypoacetylation and hypermethylation leads to dysregulated neuronal 
transcription in Huntington’s disease. Also inactive CBP results in 
augmented levels of histone methyltransferase SETDB1/ESET leading 
to enhanced H3K9 hypermethylation and concomitant formation of 
heterochromatic foci in neuronal nuclei of these patients (Figure 2). 
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These events of heterochromatinisation causes synaptic dysregulation 
due to transcriptional disruption of CHRM1 (muscarinic acetylcholine 
receptor 1) protein (Figure 2). Lastly, some preliminary investigations 
of histone ubiquitination and histone phosphorylation point towards 
their possible involvement in the huntington’s pathogenesis (Figure 
2). Apart from post-translational modification of histones, several 
histone deacetylases (HDAC family of proteins) can play a vital role in 
huntington’s disease. A significant HDAC among other is Sirutinin-1 
(SIRT-1) confers protein from toxicity of HTT protein by restoring 
the expression of c-AMP regulated phosphoprotein, dopamine, brain 
derived neurotrophic factor (BDNF is usually declined in huntington’s 
cases).

Amyotrophic lateral sclerosis

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig 
’s disease, has a much rarer occurrence in comparison to other 
neurodegenerative disorders. This disease prevails variably at different 
geographic locations and about 4 out of every 100,000 people suffer 
from ALS wherein men are 1.5 times more likely to develop it than 
women (Figure 1). This disease usually initiates by late 40s while peak 
form is exhibited in patients in their 60s-70s and declines post 80s. 
Although this disease is associated with old and middle aged people, 
less than 5% cases have been reported in patients below the age of 
25 years. Interestingly majority of ALS cases follow a non-mendelian 
inheritance (sporadic ALS) with only 5-10% of ALS cases exhibiting 
a mendelian pattern of inheritance (familial ALS) (Figure 1). Such a 
motor neuron disease occurs with progressive degeneration of both 
the upper and lower motor neurons. Especially in the limb-onset ALS 
atrophy of the muscles or muscle weakness forms the early symptoms. 
With disease progression, complications in walking, speech and 
swallowing are encountered by the affected patients of the limb/bulbar-
onset ALS (Figure 1). This disease can be fatal when the prolonged 
disease results in wasting of respiratory and motor neurons [28,29]. 
The loss of cognitive abilities and eye movements are generally spared 
until the last stages of ALS29. Majority of the cases are autosomal 
recessive although dominant inheritance have been associated with 
chromosome 9q34 (senataxin, ALS4) [30]. The recessive form of 
ALS have been mapped to chromosomal loci 2q33 (alsin, ALS2), and 
15q12-21 [31,32]. Even though the present studies have remained 
inconclusive upon the complex molecular pathology causing ALS, 
aberrations in several genes have indeed been implicated. The presence 
of toxic, autosomal dominant gain of function (GOF) mutations in 
the SOD1 (Cu-Zn Superoxide dismutase) gene have demonstrated a 
clear correlation with the presence of ALS (familial or sporadic) [33]. 
Mutations in SOD1 results in increased generation of the free radicals 
causing injury to the cell and cell-death [34]. Also several mutations 
are known to form intracellular aggregates of misfolded SOD1 peptides 
[35] leading to interruption of neuronal transport via axons and in 
other cellular processes [35-37]. Other genes considered as causal risk 
factors for familial ALS include Angiogenin (ANG) [38], Alsin (ALS2) 
[39], Senataxin (ALS4) [40], Vesicle Associated Membrane Protein 
(VAPB/ALS8) [41] and Dynactin (DCTN1) (Figure 1) [42]. Apart from 
these, recent studies have demonstrated mutations in Tar DNA-Binding 
Protein TDP-43 (TARDBP), APOE, VEGF (Vascular epidermal growth 
factor) and EAAT2 (Excitatory amino-acid transporter 2) gene in 
case of both familial and sporadic ALS [43] results in increased 
susceptibility to ALS (Figure 2) [44-46]. As evident, both genetic and 
epigenetic cues interfere in normal cellular processes and pathways 
leading to a manifestation of complex neurodegenerative diseases with 
onset, development and evolution. Nevertheless, this complexity does 
not limit itself here. It is further enhanced by the interplay and crosstalk 

interactions among genetic and environmental factors giving rise to the 
diseased state [47-50].

Epigenetics and ALS disease

ALS presents a challenging scenario for exploration of the 
underlying epigenetic pathogenesis of the disease owing to its rare 
nature as well as incomplete understanding of the causal genetic 
factors. However, the small number of studies has indeed served as a 
guide to search for the epigenetic link to ALS [51-54]. Experimental 
investigations based upon human and mice models of ALS have brought 
forth the anomalous expression pattern of a number of DNA methyl 
transferases like DNMT1 and DNMT3a along with resultant aberrant 
methylation of cytosines (Figure 2). Mice undergoing motor neuron 
degeneration bear increased amounts of DNMT3a in the synaptic 
junctions. In addition, accumulation of 5 mC along with DNMT1 and 
3a is often seen in apoptotic motor neurons (Figure 2) [55,56]. Further, 
RG108 and Procainamide induced inhibition of DNMTs protect the 
motor neurons from excessive DNA methylation (Figure 2). Further 
genes with modified global DNA methylation and hydroxymethylation 
levels have been identified in the post-mortem spinal cord samples 
from both, early and late onset ALS patients. Apart from these possible 
connections of the ALS with epigenetic modulators like HATs, HDAC 
and miRNAs have been explored and discussed in detailed elsewhere 
(Figure 2) [57-62]. As discussed in case of other neurodegenerative 
diseases, ALS has also witnessed a significant role of sirutinin genes. 
SIRT-1 and SIRT-2 are known to target SOD-1 aggregates in mouse 
model of ALS and have a highly tissue specific expression patterns, 
suggesting these molecules as therapeutic targets for ALS.

Based upon the above it can be very well established that the 
neuronal and synaptic loss occurring with neurodegeneration can be 
successfully treated by designing and developing an effective strategy 
of epigenetic therapeutics, that aim to target the histone modifications 
and DNA methylation patterns in the affected individuals [63-75].

Epigenetic Therapeutics of Neurodegenerative Disor-
ders

The dynamic epigenetic variations in the genome of the neurons 
are at least in part, if not completely, responsible for the onset, 
development and progression of the neurodegeneration and related 
diseases. Hence, any molecules targeting this epigenomic dynamics, 
presents a novel as well as promising approach for the preventive and 
therapeutic purposes of the degenerative neuronal disorders. With 
hallmark presence of extracellular senile plaques and intracellular 
accumulations of neurofibrillary tangles in the neurons, Alzheimer’s 
accounts for most number of cases of dementia and disabilities in the 
elderly. The genetic components responsible for their development 
have already been discussed above. Clinical studies aimed at treatment 
of Alzheimer’s have affirmed a possible approach wherein in vitro or 
dietary administration of the components required for production of 
SAM like folate, homocysteine and B - group vitamins can be utilized 
to restore methylation levels of PSEN1, protract brain atrophy and 
minimize oxidative stress (Figure 3) [76-94]. In addition, several 
HDAC inhibitors have been developed for the therapeutic strategies 
targeted for Alzheimer’s. These include sodium butyrate, trichostatin-A, 
vorinostat, entinostat, valproic acid, HDAC1i, HDAC3i and sirtuin 
HDACi etc (Figure 3). Alzheimer’s transgenic mice administered 
with sodium butyrate for 4 weeks showed alleviation of Tau protein 
aggregation. Furthermore, a 10 days’ treatment with etinostat and 2 
weeks’ treatment with others like valproate, trichostatin-A etc. resulted 
in reduced senile plaque formation and restoration of memory deficits 
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in mice, respectively [95,96-103]. Similarly, Parkinson’s disease, typified 
by bradykinesia and postural instability, pathologically displays loss of 
dopaminergic neurons and intracytoplasmic inclusions of α-synuclein 
protein called Lewy Bodies in surviving neurons (Figure 1). Subsequent 
neuronal toxicity due to α-synuclein is mediated by its binding to 
histone H3 with concomitant histone acetylation inhibition. However, 
this toxicity can be salvaged by administration of vorinostat or sodium 
butyrate, and, sirtuin 2 101 in various models of Parkinson’s (Figure 
3). In addition, sodium butyrate (Figure 3), in drosophila model, was 
shown to improve locomotive impairment while in rats it rescued from 
cognitive insufficiencies and thwarted oxidative stress by upregulating 
Dj-1(Protein deglycase). While the therapeutic exploitation of majority 
of the epigenetic modulators in treating Huntington’s disease and ALS is 
presently under experimental investigations, some have been reported 
to furnish beneficiary effects. In mouse and drosophila models, 
progressive neuronal degeneration has been found to be remedied 
by HDAC inhibitor treatment. Survival of animals models of ALS is 
bolstered by supplementations of sodium phenylbutyrate, valproate 
combined with lithium and trichostatin-A. Besides, escalated histone 
acetylation, reduced degeneration of neurons and delay in disease onset 
are impediments in developing better epigenetic therapeutics [104-
109].

Conclusion
In conclusion, the partial success of the epigenetic modulators as 

therapeutic mediators of neurodegenerative disorders prerequisites 
additional experimental investigations and clinical trials. Possibility 
of unforeseen side-effects remains a cause of concern because of the 
simultaneous targeting of multiple factors and pathways. Furthermore, 
the impending studies would also require taking into cognizance 
the metabolic and anatomic differences amongst animal and human 
models. The mode of drug administration with dose timings and 
regimen would also be needed to keep in view. Most intriguingly it 
needs to be considered that the probability that certain drugs do not 

function satisfactorily needs to be taken into account. Lastly, several 
dietary supplements such as folate, vitamin-B, flavonoids involved in 
modulation of epigenome could also be evaluated for their preventive 
potential in the case of neurodegenerative diseases. Therefore, our 
present known how of genetics and epigenetics of neurodegenerative 
disorders present us with a complex landscape of intricate crosstalk. 
Given the dynamics and ease of influencing the expression of genes 
without interfering with the sequence, has led to the development 
and appreciation of “epigenome as an effective therapeutic target for 
neurodegenerative diseases”.
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