
International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 129

Implementation of Secure Cross-site Communication on QIIIEP

Dilip Kumar Sharma

GLA University, Mathura, UP, India

todilipsharma@rediffmail.com

A. K. Sharma

YMCA University of Science and Technology, Faridabad, Haryana, India

ashokkale2@rediffmail.com

Abstract

In today’s scenario, web is expanding exponentially and internet is evolving towards presentation

to social connectivity. The web is in the phase of inter operative extensive data diffusion necessitating

proper information dissemination. The query intensive interface information extraction protocol

(QIIIEP) is proposed to fulfill this need. QIIIEP is the novel protocol proposed by the same author for

efficient retrieval of deep web information. Implementation of QIIIEP is based on cross-site

communication, which is a technique to provide communication between different sites by using various

client or server side methods. As the functioning of QIIIEP protocol is based on cross-site

communication, so purpose of this paper is to find out efficient, safe and secure mechanism for cross-site

communication for QIIIEP protocol. In this paper, the different aspects of technological implementations

of different available cross-site communication techniques with reference to QIIIEP protocol are

analyzed with their relative advantages, limitations and security concerns. The purpose of this analysis is

to find out the appropriate solution for query words extraction from web pages so that query words can

be efficiently stored on the QIIIEP server [1]. A simple and secure mechanism is proposed in which all

the confidential contents are enclosed in <secure> tag. This tag ensures encryption of contents at server

side and decryption at client site. It provides a simple and secure cross-site communication in thick

client environment for QIIIEP server with minimum security risk.

Keywords: Deep web, QIIIEP, XMLHttpRequest, JavaScript, AJAX, flXHR, XDomainRequest,

JSONRequest, Gear, XDM, iFrame, JSONP.

I INTRODUCTION

In recent times, the mashups concept has appeared as a core technology of the Web 2.0 and

social software movement. In the past few years, web mashups have become a popular technique

towards creating a new generation of customizable web applications. Mashups is the technique to create

web applications that are used to combine contents from multiple sources. Mashups strengthens the

creativity and functionality of web applications by adding some values as per the need of applications.

Mashups is implemented through the cross-site communication but the security in the browsers,

designed for the cross site communication is compromised against the functionality. Authors have

proposed a query intensive interface information extraction protocol (QIIIEP) for retrieval of deep web

information [1]. The proposed QIIIEP is designed for efficient deep web crawling without

overburdening the requesting server. World Wide Web is a very scary place. The most common problem

on World Wide Web is cross-site scripting. Cross-site scripting permits a user to fetch data from another

web site, which can result in a data breach. So a secure cross-site communication is very necessary for

any web application like QIIIEP.

 The main thrust area in this paper is to find out simple and effective secure cross-site

communication technique for QIIIEP server. All the techniques available for cross-site communication

are dependent on browser’s implementation, but none has established a common standard for it.

There are two main types of architectures for implementing cross site communication, namely,

server-side and client-side architectures. Server side mechanism illustrated by figure 2, which integrates

data from different sites by requesting contents from site at the server-side and sends the composed page

on request. For example, mapping API’s such as Google maps, Yahoo maps etc. are mainly based on

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 130

server-side integration [2]. In client-side architecture, as illustrated in figure 1, the browser works as the

medium for direct communication between the consumer and services such as Face book API. Client

side cross site communication technique is more useful when the web master of third party’s web site

does not want to modify server side script or the site is static in nature [3]. The objective of this paper is

to analyze the various mechanisms of cross-site communication mashups to find their advantages and

limitations with special reference to QIIIEP. On the basis of this analysis, two techniques are identified

which are suitable for client side environment on QIIIEP.

The remaining part of this paper is organized as follows: Related work is summarized in section

II with comparison of the client-side and server side mashups and different cross-site communication

techniques are analyzed and comparison of different techniques for cross-site communication is

presented with special reference to QIIIEP server. Based on the analysis and comparison in section II the

final proposed solution for cross-site communication for QIIIEP server is presented in section III.

Security concerns for cross-site communication are discussed in section IV and the results conducted on

the WAMP server equipped with php v. 5.2.6 and mysql v. 5.0.51b. with future directions are discussed

in section V. Finally a conclusion is given in section VI.

II RELATED WORK

Client-Side Mashups

The content or service addition takes place at the client in a client-side mashups. There must be a

client-based solution for handling data with respect to size and format that the other web site returns.

The client in this case is normally a web browser. The data and code contents from multiple content

providers inside the same page are merged and mixed in client side mashups as shown in figure 1. The

client side mashup is easy to implement and uses JavaScript library provided by originating site to

facilitate the use of its service. It can perform better because a service request and response go and back

directly from the browser to the mashup server. It can be implemented without any specific plug-in

support. It can reduce processing load on the server because a service request and response is not passed

through a server-side proxy. There is no need of modifying server side script. It will not dependent on

individual server failure. It allows the use of service specific load balancing techniques. Client side

mashups has no buffer to protect it from the problems associated with other sites. Browsers can only

send or receive one or two simultaneous XMLHttpRequests. The secure implementation is difficult due

to direct script execution on the client side [4] [5].

Figure 1 (Client-Side Mashups)

Server-Side Mashups

All the requests from the client go to the server in a server-side mashups. In server-side mashups,

server works as a proxy to make calls to the other website. So, the work of web application client is

transferred to the server as shown in figure 2. The server-side mashups have some advantages and

limitations. In the server side mashups, the small chunk of the data is send to the clients. It needs to

transform the data returned by a service into a different format. The proxy works as a buffer in a server-

side mashups to take care of problems associated with other sites. In server side, mash up server can

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 131

cache data returned by the service. It allows manipulation of the data returned by a service or combines

it with other contents before returning it to the client. Security requirements can be handled much more

easily from server to server using secure protocols. But pre extraction and the requirement of complete

trust on the mashup server by the client are some inherent limitations of server-side mashups. The

implicit implementation of the server side proxy is required. There is a delay in receiving response

because of two network hopes in communication [6] [7].

Figure 2 (Server-Side Mashups)

As stated the motive of this study to fetch query words from different sites and store it on the

QIIIEP server after processing. The server side solution requires modification in the server side script

that is a complex process so client side solutions are preferred. Various techniques for client side cross-

site communication are illustrated in next section with reference to QIIIEP server.

Various Existing Technologies for Cross-site Communication

As the main purpose this paper is find out efficient, safe and secure cross-site mechanism for QIIIEP

server so different existing technologies for cross-site communication is technically analyzed and

implemented to find out their relative strengths and limitations for cross-site communication with

reference to QIIIEP server.

Cross-document Messaging (XDM)
The integrity and confidentiality of communication of a mashups application with its peer’s

component needs to be trusted by a particular component. Removal of the need of this trust can be done

through the XDM. XDM is a powerful cross-site communication feature that makes a backend request to

a remote web service. This permits sites, hosting third-party iFrame-based components to

correspondence directly with the parent without unsafely deviating the policy of same site origin. XDM

applies for semi-trusted environments by permitting software developers to decide to receive the

message from the site and reject it if the contents are unsecure or anticipated. It provides simple

implementation for bi-directional cross-document communication. The advantages of XDM are that it

has high performance and reliability because developers have to concentrate on task rather than

technology. This technique also removes the need for embedding third-party script in the page, lessening

the chance of potential information disclosure vulnerabilities like the disclosure of any sensitive data [8]

[9].

Window.name Property
The window.name transport is a new technique for secure cross-site browser based data transfer

and can be utilized for creating secure mashups with un-trusted sources. Window.name works by

loading a cross-site HTML file in an iFrames. The windlow.name is set to the string content by the

HTML file that should be delivered to the requester. The window.name is retrieved as the response by

the requester. The requested environment is not accessible by requested response such as cookies,

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 132

JavaScript variables and document object model. It supports GET/POST request and error handling like

JSONP. The window.name property is secure to similar to other frame based secure transports like

subspace and fragment identifier messaging. It requires only one iFrames and one local file. It does not

require any plug-ins (like Flash) or alternate technologies (like Java). The only draw back is that iFrames

have some security issues because frames can change source location of other frames, but this is not a

much serious issue [10] [11].

IFrame
An inline frame [6] [12] [13] [14] places another HTML document in a frame inside a HTML

document. An inline frame work as “target" frame for the links defined in other elements. JavaScript in

iFrame is created with same site link as host can navigate parent interior document object model

structure and their properties. Conversely, the parent frame’s JavaScript also navigate iFrame’s elements

and can see all of its contents. When the source for iFrame is different site than the host of parent frame,

then host cannot see the iFrame's contents and the iFrame cannot see the host page's contents. Host can

change the source of iFrame but it will not get notified that content is loaded or not. The drawbacks of

this technique are that there is no acknowledgment if the iframe successfully receive the data or not and

there is no provision for identification that content has loaded completely, so it doesn't know when it's

safe to send the new request. The data packet carried by URL can be 40 k in Firefox and 4k in IE. The

data from any source can come as contents but this will creates security vulnerability. Global state

cannot be managed by iFrame because every time the page is reloaded, iFrame go through every state of

loading a page.

Flash Plug-in
The use of Flash plug-in can be highly simple technique to accomplish cross-site communication.

Cross-domain access is enabled by placing policy file “crossdomain.xml” on server [6] [13] [15] [16].

Security.loadPolicyFile (path) is utilized to load policies from non-root location. Communication

between .swf files with different sites is allowed due to security feature. The flXHR API can be used to

replace native XHR with powerful new features like cross-site communication using the features of

server policy authorization such as robust error callback handling, timeouts and easy

configuration/integration/adaptation. After putting flXHR in code, it replaces the usage of the native

XHR and there is no need to alter the existing code because it works with same functionality. This

makes it easy to adapt into all types of browsers and JS frameworks [17].

Document.domain Proxy
Domain name property is used to specify server address. It can be set to super-domain in all

common browsers. Two documents with same domain and transport protocol can access each other's

contents by altering document.domain property [10] [13] [18]. The document.domain proxy can work

fairly well in the case of cross-sub-domain intranet mashups. It depends on browser and browser settings

so it gets complicated when mashups integrates data from more than one provider. The drawback of this

technique is that application require full domain name for loading.

Microsoft Silverlight
 Microsoft Silverlight [19] framework is similar to Adobe Flash and used to integrate multimedia,

graphics, animations and interactivity into a web application. It can be integrated in browser by using

plug-in. It enables creation of sophisticated rich applications for web. The access is controlled by

“clientaccesspolicy.xml” or “crossdomain.xml’. Microsoft Silverlight implements security measures for

cross-site communication. It uses threads for making the request. It also support socket based enabled

cross-site communication.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 133

JSONP
JSONP [20][21] is abbreviation of “JSON with padding". It is a JSON extension, where a prefix

is used to specify an input argument of the call. It is now used by many web 2.0 applications such as

dojo toolkit applications, google toolkit applications and web services. Further extensions of this

protocol have been proposed by considering additional input arguments such as the case of JSONP

supported by S3DB web services. The server is expected to return JSON data but with a slight twist. It

has to prepend the callback function name, which is passed as part of the url. Script tags and calls are

used by JSONP that are opened to the world so JSONP is not suitable to handle sensitive data. Some

drawbacks are that script tags from remote sites allow the remote sites to inject any content into a

website. If the remote sites have vulnerabilities that allow java script injection, the original site can also

be affected. It is easy to implement but the SCRIPT tag request is only GET, which limits URL length.

There is No error handling capability like XHR and JS Response is executed directly, which can be

dangerous.

JSONRequest
JSONRequest. is a client side mechanism that will be implemented as a new browser service that

allows for two-way data exchange with any JSON data server. It provides complete security in data

exchange. Browser makers have to implement this mechanism into their products in order to enable the

next advance in web application development. Three methods i.e. post, get and cancel are provided by

JSONRequest which is a global JavaScript object. It can only send/receive JSON-encoded data.

Content-type in both directions can be either application or JSONRequest. The JSONRequest is secure

because it does not send any authentication information or cookies to third party. The JSON parser

provides a safe alternative to the eval() method, which can allow execution of arbitrary script functions

to execute [22].

Fragment Identifier
A fragment identifier [23] [24] is a short string which is appended to the URL and used to

identify a portion of HTML document. In the HTML applications,

http://www.qiiiep.org/serve.html#words refers to the element with the id attribute that has the value

words (i.e. id="words") in the document identified by the URI http://www.qiiiep.org/serve.html, which

is typically the location of the document. Fragment identifier provides a secondary resource within the

primary resource. The target iFrame polling or onload event handler can be used to detect changes in the

fragment. In Internet Explorer 8 a HTML 5 event “hashchanged” implemented to identify changes. The

deficiency of this technique is that the URL length limits the request/response length.

Google Gears
Gears is a plug-in that extends browser to create a richer platform for web applications. Gears

can be used on any sites. A number of web applications currently make use of Gears including two

Google products i.e. Google Docs and Google Reader. In addition to this, Gears are used by

rememberthemilk.com and zoho.com since its launching time. It uses workers which act as a thread for

information retrieval from a URL. Gears provide a secure way for communication between different

sites. The createWorkerFromUrl API can be used for that purpose [6] [25].

XDomainRequest (XDR)
XDR allows page to be connected anonymously with any server and exchange data by using

XdomainRequest object that requires an explicit acknowledgement for allowing cross-site calls from the

client script and the server. Cross-site requests require mutual approval between the web page and the

server. Page can communicate with other domain by initiating a cross-site request by creating an

XDomainRequest (XDR) object with the window object and opening a connection to a URL. When the

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 134

request is send, Internet Explorer 8 includes an XDomainRequest HTTP request header and in response

server sends XDomainRequestAllowed response header. The data strings are transmitted by the send

method for further processing after a connection is initiated [21] [26]. There is no need to merge

scripting from third parties and no need for frames and proxying. It also support relative path naming

and restricted access to HTTP and HTTPS destinations.

CSSHttpRequest
CSSHttpRequest is a mechanism that can be used to allow cross-site requests. It can be

implemented by using the CSSHttpRequest.get(url, callback) function. Data is sterilized into the

CSS@import rules which is appended after the URI that is encoded in 2KB chunks. The response is

decoded and returned to the callback function as a string [27]. This works well because CSSHttpRequest

does not obey the same-origin policy similar to JavaScript or JSONP. CSSHttpRequest is limited to

making GET requests only but in this, untrusted third-party JavaScript cannot be executed in the context

of the calling page like JSONP.

Mozilla Signed Scripts
The creation of signed scripts for Netscape and Mozilla browsers involves acquiring a digital

certification from www.thawte.com or www.verisign.com. The signing tool packages the scripts into a

.jar file and then this file is signed by the signing tool. The signature on the file guarantees that owner of

the certificate is the author of the file. Users trust script that is signed because, when the script does

something malicious, they can claim legally on the signing party. When a Netscape or Mozilla browser

encounters a signed script by a .jar file, it checks the signature and allows the scripts to execute in

extended privileged environment [28]. Signed scripts have a few main restrictions including limited

browser accessibility and security warning. The limitation of this technology is that only Firefox or

browser based on Mozilla framework can use it. But it can be act as alternative technique after detecting

of the browser of client.

WebSocket

HTML 5 WebSocket represents the next advancement in HTTP communications. The HTML 5

WebSocket specifications define a single-socket bi-directional communication channel for sending and

receiving information between the browser and server. Thus, it avoids the connection and portability

issues of other technique and provides a more efficient solution than Ajax polling. At present HTML 5

WebSockets is the leading means for facilitating full-duplex, real-time exchange of data on the Web.

Web Socket provides simple traverse from firewalls and routers and it is compatible with binary data. It

also allows duly approved cross-site data exchange with cookie-based authentication [29].

Comparison of Different Techniques for Cross-Site Communication

The Table 1 given below compares the different parameters for different technologies for cross-

site communications implemented on QIIIEP server. Fourteen technologies are compared against

different parameter such that cross-browser compatible, cross-site browser security enforcement, http

status codes i.e. error check, support of http get and post, compatibility in html version, plug-ins

requirement, cookies access and data origin identification.

Parameters

Techniques

Cross-

browser

compatible

Cross-site

browser

security

enforced

Capability

to receive

HTTP

status

codes.

(Error

check)

Support

for HTTP

GET and

POST

Compatibility

In HTML

Version

Plug -ins

Requirement

Cookies

Access

Capability

to identify

Data

origin

XDM [8,9] No Yes Yes Yes HTML 4 No No Yes

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 135

Window.name

property [10,11]

Yes No No Yes HTML 4 No Yes No

iFrame [6,12,13,14] Yes No No Yes HTML 4 No No No

Flash Plug-in [17] Yes Yes Yes Yes HTML 4 Yes Own

Cookies

Yes

Document.domain

proxy [10,13,18]

Yes No Yes Yes HTML 4 No Yes Yes

Microsoft

Silverlight [19]

Yes

Yes Yes Yes HTML 4 Yes Yes Yes

JSONP [20,21] Yes (Server

dependent)

No No No HTML 4 No No Yes

JSONRequest [22] No Yes Yes Yes HTML 4 No No Yes

Fragment

Identifier [23,24]

Yes No Yes Yes HTML 4 No No Yes

Google Gears

[6,25]

Yes No Yes Yes HTML 4 No Yes Yes

XDR [21,26] No
(i.e. 8,ff 3.5)

Yes Yes Yes HTML 4 No No Yes

CSSHttpRequest

[27]

Yes No No Get HTML 4 No No No

Mozila Signed

Scripts [28]

No Yes Yes Yes HTML 4 No Yes Yes

WebSocket [29] No Yes Yes Yes HTML 5 No Yes Yes

Table1: (Comparison of different available technologies for cross site communication)

After critical analysis of some of available techniques to implement client side cross-site

communication, it is concluded that there can be two techniques that are suitable for implementing

query word submission to QIIIEP server, that are iFrame and JSONP because the basic requirement

for QIIIEP query word posting is to send the content and not to receive the response unless QIIIEP

site certify it, so there is no risk of vulnerability.

III PROPOSED SOLUTION

The query intensive interface information extraction protocol (QIIIEP) is the novel protocol

proposed by the same author for efficient retrieval of deep web information. Implementation of

QIIIEP is based on cross-site communication, which is a technique to provide communication

between different sites by using various client or server side methods. One of the QIIIEP modules

for query word extraction which extract the query word at the time of form submission by user is

based on the proper implementation of cross site communication. This cross-site communication

must be client-side because server-side cross site communication requires the changes in server-

side code deployed on server. Auto query word extraction module will extract the query words

supplied by users of site so that QIIIEP [1] server can extends the query word list by exploiting

advantage of human curiosity of finding relevant information on that site. It is composed with two

sub modules, which are described below.

Script provider:

This module is used to generate script that is embedded in third parties web page where the

query interface exists. This script must be embedded at the time of form design or form id

generation from QIIIEP server. The input for that module is web page URL of specific form. This

module extract the information of form interface from web page and process the information of

elements and generate a JavaScript code, so that at the time of user submission, the supplied query

word can be received by QIIIEP server.

Query word extractor: The query word submitted on a form interface by user is forwarded to the

actual sever but a simultaneous event will send these query words to the QIIIEP server too. After

extraction and analysis, these are stored in to knowledge base by auto query word extractor module.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 136

The block diagram of auto query word extraction module is shown in figure 3. It uses cross-site

communication for extraction of query word from third parties web form interface.

Figure 3 (Auto query word extraction module)

Block wise working of auto query word extractor module is given below.

Query word fetcher: It works for retrieving word and string entered by user at the time of manual

form submission. When query words posted on originating server a simultaneous request also post

the query words to the QIIIEP server.

Query word analyzer: It analyzes the retrieved query word and stores them on QIIIEP knowledge

base. The analyzer adds form id, element id and other properties like time stamp, IP address, and

submitted URL.

As the solutions on server side result in considerable degradation of browsing experience as data

propagation consume extra time, whereas the client side solutions result in a security threat. So there is

need of an efficient client side solution that does not degrade the performance and must be secure

enough. The proposed system is designed in order to provide effective way to extract query word by

using dynamic script element in the web page. In proposed system, a JavaScript is loaded from QIIIEP

server by pointing to the URL of QIIIEP server. When the script is executed, it send back the query

words to the QIIIEP server because the same-origin policy doesn't prevent dynamic script insertions and

treats the scripts as if they were loaded from the site that provide the web page.

JSONP Based

The document object model (DOM) allows to dynamically creating almost any element that can

be on a page, so that it can be used to create a SCRIPT tag. After setting a source, the DOM browsers try

to load the script file from the source. At the time of call loadContent, the source javascript file is

specified as source and this file is used to transfer the query words to the QIIIEP Server. JSONP is an

efficient cross-site communication method that bypasses the same-origin policy boundaries. JSONP

gives the remote side arbitrary control over the page content. But the limitation of this solution is that

only get request can be used with JSONP. In the scenario of QIIIEP query word submission, all the

query words of form must be encoded in get request and posted through JSONP.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 137

iFrame based

In the second solution, forms can use the POST method and JS can submit forms. A form can be

dynamically generated with the action attribute set to any URL (including pages on other sites) and

encode all query parameters as hidden <input> fields. The frame size is so small that is not visible on

page and when user submits the form, a JavaScript function postdata() will automatically submit the

form to QIIIEP server. This approach will not get any response data from the frame, so it’s truly “fire

and forget”. The first part is the crossDomainPost() JS function. This is the function called from the

script to initiate a POST request. The function accepts two arguments:

 writer_url – the URL of the script that will generate the form (given below).

 parameters – query parameters for the POST request, formatted like this : {param1 : 'value1', param2 :

'value2', ...}

As a result, the final script will have three components. The first is a JavaScript function that creates the

iFrame. The second script will run inside the frame and generate and submit the form. The third

component is the php script that will save the key value on QIIIEP server.

The HTML script tag is the last frontier of unrestricted access for browser-based applications.

Depending on viewpoint, it either increases security risk, or a tool to make rich clients even richer. The

features of JSONP and iFrame implementation are used with script for making the query word posting to

QIIIEP server.

IV SECURITY MEASURES

Every day, hackers are trying to found out the new breakup mechanism. Due to increase in the

number of users, there is a requirement of proper security measures, so that any type of web content

uploaded by either user or administrator cannot create vulnerabilities in websites. Cross-site scripting

(XSS) is a kind of web security deficiency, generally found in web applications that enable malicious

attackers to insert client-side script into webpage viewed by other users. Attackers try to bypass access

controls such as the same origin policy can use an exploited cross-site scripting vulnerability. The

number of tags used for text formatting is very few in web applications. Therefore, simple tag filtering

mechanism for web applications to protect against attacks is not sufficient. XSS vulnerabilities arise due

to negligence of guidelines in web application developments. The amount of security breach depends

upon the structure of the site and single patches cannot fix the XSS vulnerabilities. In order to protect

legacy servers, some of the enforcement will have to implement. In fact, even the cross-site request use

client side request and processing. The client must looks for the header and data access and if it finds

something malicious, XDomainRequest denies the header web page to load. QIIIEP server is deployed

on premium hardware configuration and it uses SSL for secure transmission so it is authentic and there

is no chance of embedding any malicious script on any third party web page [6] [8] [30].

V RESULTS

The experiment has conducted on a machine having Intel Core 2 Duo T5870 @ 2.0 GHz with 1

GB of RAM. This machine was running with Windows 7 OS, Test are performed using WAMP server

equipped with php v. 5.2.6 and mysql v. 5.0.51b. All of the tests were performed on Firefox 3.5.4 with

JRE (SUN) 1.6 and Shockwave Flash 10. To minimize measurement errors, all tests were performed

multiple times. Both the technologies work fine with configuration in which two forms are used, first

form have three input elements i.e. PID, Price, and Weight while the second form have Name, Age and

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 138

Gender. When the form is submitted to originating server, a response is also forwarded to the QIIIEP

server for storing query words entered by user. These stored words are stored in table 2 and in table 3.

The Figure 4 shown below is generated with available 13 technologies to compare the difference

of request and response time. It is observed from figure 4 that the shortest time is taken by web socket

but the limitation of the web socket is that it can be implemented with latest technology such as google

chrome.

Figure 4 The graph between request and response time difference versus different cross-site communication technologies

Figure 5 The graph of bounce rate in a given time (20 hours) for iFrame technology

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 139

Figure 6 The graph of bounce rate in a given time (20 hours) for JSONP technology

Figure 5 and figure 6 shows the Bounce Rate of iFrame and JSONP respectively, monitored in

20 hours with simulated requests. Bounce rate depends upon particular hardware and software used on

the system even that it can conclude from figure 5 and figure 6 that the bounce rate of iFrame and

JSONP technology is satisfactory because most of the bounce rate of the both the technologies within

five hours of observation. By analyzing the two technologies i.e. iFrame and JSONP, It can be conclude

that both are suitable for cross-site communication on QIIIEP. Both of the solutions are satisfactory

because in proposed auto query word extraction module there is no need of explicit post request and

there is no chance of malicious code in reply because the QIIIEP server is authentic. After the simulation

on pre composed test queries on QIIIEP server, it is found that the results meet the particular

requirement of sending query word to QIIIEP server.

 The proposed solution provides recommendation to W3C for implementation of <secure> tag in

new HTML specification. The data enclosed in this tag will be transferred to the client in an encrypted

manner, so that without using SSL, a part of web page will be protected. The task of encryption is done

at the server and decryption will be done on the client side. It is accomplished by interchanging of public

and private key pairs. This technique eliminates the risk of data theft in channel as well as eliminates the

same origin policy. As discussed above, without same origin policy restriction, all of the techniques can

work for cross-site communication without any security risk. The given figure 7 demonstrates the

working of this concept.

Figure 7 Working model of communication between client and server using <secure> tag

Figure 8 shows source code of encrypted html page by secure tag.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 140

Figure 8 Source code of encrypted html page by secure tag

The other advantage of this technology is that no one can see the contents directly by visualizing

source of the page. In spite, this concept increases the complexity of browser as well as the web server

but it can be implemented as browser plug-in and server extension to utilize the model on the sites where

cross-site communication is required.

VI CONCLUSION

 Authors have proposed query intensive interface information extraction protocol for deep

web information retrieval. Cross-site communication is very necessary for any web application like

QIIIEP but the security is a very prime concern to avoid the data breach due to unsecured cross-site

communication. Authors have analyzed various existing well established cross-site communication

technologies for QIIIEP with special reference to security feature. After analyzing the client-side

solutions including JSONP, iFrames, usage of the browser window object, and Internet Explorer 8’s

XdomainRequest etc., it can be concluded that both JSONP and iFrames can be proved a very powerful

technique for cross site communication for QIIIEP. But the limitations of JSONP is that it does not have

an error handling capability for JSONP calls and it can only support get request and explicit cancel

without the possibility of restarting of the request. In iFrame, the error handling is quite complex as well

as the response is not traceable. Both of the solutions are satisfactory because for QIIIEP, there is no

need of explicit post request and there is no chance of malicious code in reply due to the authenticated

process in QIIIEP server. After the simulation on pre composed test queries on QIIIEP server, it is found

that the results meet the particular requirement of sending query word to QIIIEP server. As a future

directions, a recommendation to implement <secure> tag in HTML specification is advised to diminish

the same origin policy requirements, which make the cross-site communication more robust and

transparent because all of the information in secure tag can only be used for the same domain.

ACKNOWLEDGMENT

All the companies/products/services names are used for identification purposes and may be the

trademarks of their respective owners.

REFERENCES

[1] Dilip Kumar Sharma and A.K.Sharma, “Query Intensive Interface Information Extraction Protocol for Deep Web”, In

Proceedings of IEEE International Conference on Intelligent Agent & Multi-Agent Systems, PP. 1-5 ,2009. IEEE Explorer.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 2 No 1 (January 2011) ©IJoAT 141

[2] G. D. Lorenzo, H. Hacid ,and Hye-young Paik, “Data Integration in Mashups”, In SIGMOD Record, Vol. 38, No. 1,

PP. 59-66, 2009.

[3] U. Marjit and S. Jana, “Mashups: An Emerging Content Aggregation Web2.0 Paradigm”. In 7th International CALIBER-

2009, Pondicherry University, PP. 296-303. 2009.

[4] S. Kulkarni, , “Enterprise Mashup: A Closer Look at Mashup and its Enterprise Adoption”, In Indic Threads.com

Conference on Java Technology,Pune, India, 2007.

[5] S. B. Ort and B. Mark, ,(Ed), “Mashups Styles, Part 2: Client-Side Mashups” August, 2007, Retrieved from

http://java.sun.com/developer/technicalArticles/J2EE/mashup_2/ index.html.

[6] F. D. Keukelaere , S. Bhola , M. Steiner, S. Chari, and S. Yoshihama, “SMash: Secure Component Model for Cross-

Domain Mashups on Unmodified Browsers”. In WWW 2008, Beijing, China. ACM 978-1-60558-085-2/08/04.

[7] S. B. Ort and B. Mark,(Ed), “Mashup Styles, Part 1: Server-Side Mashups”, May ,2007, Retrieved from

http://java.sun.com/developer/technicalArticles/J2EE/mashup_1/index.html.

[8] N. Jovanovic , E. Kirda and C. Kruegel, “Preventing Cross Site Request Forgery Attacks”. In IEEE, 2006.

[9] HTML5CrossDocumentMessaging ,2010, Retrieved from

http://www.whatwg.org/specs/web-apps/current-work/multipage/comms.

[10] S. Crites, F. Hsu and H. Chen, “OMash: Enabling Secure Web Mashups via Object Abstractions”, In CCS’08,

Alexandria, Virginia, USA. @ 2008 ACM 978-1-59593-810-7/08/10.

[11] Window.nameTransport, 2010, Retrieved from www.sitepen.com/blog/2008/07/22/windowname-transport/.

[12] J. Burns, “Cross Site Reference Forgery: An Introduction to a Common Web Application Weakness. Information

Security Partners, LLC, 2005, http://www.isecpartners.com.

[13] C. Jackson and H. J.Wang, “Subspace: Secure Cross Domain Communication for Web Mashups”, In WWW 2007,

Banff, Alberta, Canada. ACM 9781595936547/07/0005.

[14] J. Howell, C. Jackson, H.J. Wang and X. Fan, “Mashup OS: Operating System Abstractions for Client Mashups”. In

Proceedings of the 11th USENIX workshop on Hot topics in operating systems, 2007.

[15] M. Albinola, L. Baresi, M. Carcano and S. Guinea, “Mashlight: A Lightweight Mashup Framework for Everyone”. In

WWW2009, Madrid, Spain.

[16] FlashPolicyFiles, 2010, Retrieved from www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html.

[17] Flxhr, 2010, Retrieved from http://flxhr.flensed.com.

[18] Document.domain, 2010, Retrieved from https://developer.mozilla.org/en/DOM/document.domain.

[19] MicrosoftSilverlightPolicyFiles, 2010, Retrieved from http://msdn.microsoft.com/en-us/library/cc197955(VS.95).aspx.

[20] Seda Ozses and Salih Ergül, “Cross-domain communications with JSONP, Part 1: Combine JSONP and jQuery to

quickly build powerful mashups”, 2009. Retrieved from http://www.ibm.com/developerworks/library/wa-aj-jsonp1/

[21] M. Akin, “Solving Cross-Domain Issues When Building Mashups”, In Ajax World, Six Conference and Expo, New

York ,2009.

[22] Crockford Douglas, JSONRequest, 2006. Retrieved from http://www.json.org/JSONRequest.html

[23] B. Adida , “FragToken: Secure Web Authentication using the Fragment Identifier”, Harvard 33 Oxford Street,

Cambridge, MA 02118, PP: 1-20, 2007.

[24] FragmentIdentifierMessaging ,2010,. Retrieved from http://softwareas.com/cross-domain-communication-with-iframes

[25] Google Gears, 2010, Retrieved from http://gears.google.com/.

[26] XDomainRequest Object, 2010, Retrieved from http://msdn.microsoft.com/en-us/library/cc288060(VS.85).aspx.

[27] CSSHttpRequest, 2010, Retrieved from http://ajaxian.com/archives/csshttprequest-cross-domain-ajax-using-css-for-

transport.

[28]MozillaSignedScripts, 2010, Retrieved from www.mozilla.org/projects/security/components/signed-scripts.htm

[29] Websockets, 2010, Retrieved from http://dev.w3.org/html5/websockets/.

[30] M. Tetsuya, S. Kazuhiro and K. Hirotsugu , “A System for Search, Access Restriction and Agents in the Clouds”. In

IEEE, 2009.

