
Research Article Open Access

Yang and Ngu, Int J Biomed Data Min 2016, 6:1
DOI: 10.4172/2090-4924.1000125

Volume 6 • Issue 1 • 1000125Int J Biomed Data Min, an open access journal
ISSN: 2090-4924

*Corresponding author: Tianyi Yang, Texas Center for Integrative Environmental
Medicine, Texas, USA, Tel: +1 512-245-2111; E-mail: cosmosischaos@gmail.com

Received December 21, 2016; Accepted February 04, 2017; Published February
11, 2017

Citation: Yang T, Ngu AHH (2017) Implementation of Decision Tree Using Hadoop
MapReduce. Int J Biomed Data Min 6: 125. doi: 10.4172/2090-4924.1000125

Copyright: © 2017 Yang T, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Implementation of Decision Tree Using Hadoop Map Reduce
Tianyi Yang1* and Anne Hee Hiong Ngu2

1Texas Center for Integrative Environmental Medicine, Texas, USA
2Department of Computer Science, Texas State University

Abstract
Hadoop is one of the most popular general-purpose computing platforms for the distributed processing of big

data. HDFS is an implementation of distributed file system by Hadoop to be able to store huge amount of data in a
reliable way and process it in an efficient manner at the same time. MapReduce is the main processing engine of
Hadoop. In this study, we have implemented HDFS and MapReduce for a well-known learning algorithm—decision
tree in a scalable fashion to large input problem size. Computational performance with node count and problem size
is evaluated.

Keywords: Computing; Processing; Data; Algorithm; Network

Introduction
MapReduce, as Hadoop project's principal processing engine,

provides a framework for scalable distributive computing [1,2]. The
MapReduce model is derived from the combinations of the map and
reduce concepts in functional programming. A strong characteristic of
this programming model is that it hides the complexity of dealing with
a cluster of distributive computing nodes. Hence, the developers only
need to focus on the implementation of map and reduce functions.

Decision tree is one of the most popular methods for classification
[3]. A classical decision tree is a directed tree comprised of a root node,
as well as decision nodes—all the other nodes each with exactly one
incoming edge.

The procedure of building a decision tree is as follows. Given a set of
training data, find the best splitting attribute from currently all available
ones by applying a measure function on all attributes. Once the splitting
attribute is determined, the instance is split into multiple partitions.
The multiplicity depends on the number of values or ranges of values
associated with the splitting attribute. Within each partition, if all
samples belong to a single class, the algorithm terminates. Otherwise,
the splitting process is recursively performed until each partition
belongs to a single class, or no attribute is left. Once a decision tree is
generated, classification rules are generated, which can be applied to
classify new instances with class labels to be determined.

C4.5 is a one of the standard algorithm for decision tree, which
uses information gain ratio as the splitting criterion. The algorithm is
illustrated in Figure 1.

In the algorithm above,

1
() (,) (,)

C

j
Entropy s p S j S j

=

= − ×∑
 is the ratio of instances in S which has the jth class label, and C

denotes the total number of classes.

,

()
(,) ()

s

S v
v

v vlaue T S

T
Info S T Entropy S

T∈

= − ∑

 is the information needed after splitting by attribute S, in which TS
is a subset of T induced by attributes S, and TS, v is a subset of TS of
value v for attribute S, and Values(TS) is the set of values for attribute S
for records in TS. Absolute value operator means cardinality of.

Figure 1: C4.5 algorithm.

Information gain is defined as:

(,) () (,)Gain S T Entropy S Info S T= − ,

International Journal of
Biomedical Data MiningInt

er
na

tio
na

l J
ou

rnal of Biomedical Data M
ining

ISSN: 2090-4924

Citation: Yang T, Ngu AHH (2017) Implementation of Decision Tree Using Hadoop MapReduce. Int J Biomed Data Min 6: 125. doi: 10.4172/2090-
4924.1000125

Page 2 of 4

Volume 6 • Issue 1 • 1000125Int J Biomed Data Min, an open access journal
ISSN: 2090-4924

which measures the information gain after splitting by attribute S.

Split information , ,

()
 (,) log

s

S v S v

v vlaue T S S

T T
split Info S T

T T∈

= − ×∑

Finally, the information gain ratio is:

(,) (,)
(,)

Gain S TGain Ratio S T
SplitInfo S T

=

which is the criterion to split the decision tree. The attribute which
gives the maximum GainRatio is selected as the splitting attribute.

Three requirements with decreasing priority have been enforced in
our implementation of decision tree using MapReduce and HDFS. 1)
Scalability to input data. This voids any assumption that the memory of
the master node can hold the data. Therefore, an iteration of launching
of MapReduce jobs is required. 2) Minimize the use of mapper/reducer
unless necessary. We have found that each launching of MapReudce
job takes tens of seconds before it starts executing mapper method. So
if the runtime of the section of the program outside MapReduce is less
than this launching time, it is not worth implementing an additional
set of Mapper and Reducer for any part in corresponding section.
3) Minimize HDFS file I/O in case computation can fulfil the same
purpose. Local computation is much faster than typical hard drive I/O,
and even faster than network storage I/O which is limited by network
data transmission speed. So based on these three requirements, one set
of mapper and reducer functions are implemented to read data from
the source file and generate the tuple (attribute id, attribute value, class
label, count).

Numerical Experiments and Results
The goal of this study is to evaluate the performance of Hadoop

implementation of decision tree. In particular, the compute time vs. the
count of processors that perform the mapper/reducer function, and the
compute time vs. input data size are examined.

The infrastructure used in this study is AWS (Amazon Web
Service), in which three specific services are utilized, i.e. 1) S3, i.e.
Simple Storage Service, to which the compiled .jar file and input files are
transferred from local computer. S3 further sends the above files to the
virtual cluster that will be allocated by EC2; 2) EC2, i.e. Elastic Compute
Cloud, which creates a virtual cluster to users’ need; and 3) EMR, i.e.
Elastic MapReduce, which runs MapReduce jobs in the virtual cluster.

To simulate typical working environment in which Hadoop’s
MapReduce projects are running, our rules for the specification of the
virtual cluster are as follows: 1) One compute (performing mapper
and reducer functions) processor per node. The philosophy behind
this is the employment of homogeneous hardware layout for scaling
behavior study. Recently, multi-processor compute nodes and multi-
core processors have become main stream. However, data transfer in
a single node is much faster than the cross node communication. To
make a fair comparison for the scaling behavior of runtime vs. compute
processors count, single compute core node is chosen; 2) Each chosen
processor has the same medium computing power; 3) The network
transfer capability among nodes is chosen to be medium. Requirements
2 and 3 are needed to mimic a typical Hadoop running environment.
Based on the above rules, AWS m1.medium architecture is selected
for both master node and core node. The master node assigns Hadoop
tasks to core nodes and monitors their status, but does not participate
in processing the Hadoop tasks. The core nodes run Hadoop tasks and
store data in the HDFS system. In our experiment, the count of master

node processor is always 1. And the count of core processors varies
from 1 to 8. The Hadoop distribution version is Amazon 2.4.0. All the
default configuration for this version of Hadoop setup is adopted, e.g. 3
copies of HDFS file duplication and 64 MB block size.

Table-1 shows the experimental results, in which, “ML” denotes
million-lines and “MB” means megabytes. The 6-digit numbers show
run time in unit millisecond. The run time is counted from the launching
of main function to the completion of decision tree generation.

Figure 2 shows the runtime vs. number of processors. Figure 3 shows
the speedup vs. number of processors. Speedup is defined as the serial
runtime, i.e. runtime for number of processors equal to 1, divided by
parallel runtime for corresponding number of processors. For relatively
small problem sizes, i.e. 1 million lines and 2 million lines input data,
Hadoop distributed computing does not improve performance at all.
On the contrary, it hurts the performance. For 4 million lines input,
the speedup goes up from 1 processor to 2 processors, continued
with ignorable increase from 2 processors to 4, and then goes down
from 4 to 8. The 8 million lines’ curve shows consistent speed up from
1 to 8 processors, although the increase rate slows down from 4 to 8
processors. This behavior can be explained using Amdahl’s law [4].

As is shown in Figure 4, in ideal situation (green curve), which
can never be achieved in reality, speedup is linear to the number of
processors. And in the idealist case, the slope for speedup vs. # of
processors is 1. Amdahl’s law states that for a parallel program, if the
ratio of parallelizable section occupies a fraction f of total run time, the
speedup is upper bounded by:

1
1 f−
The proof is as follows: T(n) = Ts (n) + Tp (n)

In which T is runtime, n refers to the processor count, and subscript
“S” or “P” denotes serial or parallel runtime, respectively. The special
case where n=1 and

Tp(1) = f (1)

Serial code runtime has no difference in serial or parallel execution,
i.e.,

Ts(n) = Ts (1) = (1- f) T (1)

Apply the ideal case to

we have
(1) (1)() pT fTTp n
n n

≥ =

 Substitute the expressions of Ts (n) and Tp (n) related to

T (1)

We have

() (1) (1) (1)fT n f T T
n

≥ − +

Finally

(1) 1()
() 1 /

TS n
T n f f n

= ≤
− +

So when # of processors n approaches infinity, S(n) increases and
asymptotically approaches 1

1 f−
 t

Citation: Yang T, Ngu AHH (2017) Implementation of Decision Tree Using Hadoop MapReduce. Int J Biomed Data Min 6: 125. doi: 10.4172/2090-
4924.1000125

Page 3 of 4

Volume 6 • Issue 1 • 1000125Int J Biomed Data Min, an open access journal
ISSN: 2090-4924

Figure 3: Speedup vs. processor count.

Figure 5: Runtime vs. input size.

Figure 4: Amdal's law illustration.

Figure 2: Runtime vs. processor count.

This is basically what the horizontal dashed curve shows in Figure
5. There exist multiple issues that can decrease the speedup for large
number of processors. For example, f may not be a constant but
decreases due to increased communications, imbalanced work load,
limited bus speed, limited memory access rate, etc. In addition, the
turning point (as shown in red curve) is not a constant. It typically
moves to the right when the problem size goes up. This indicates that
the smaller the input size, the earlier the saturated or even deteriorated
speedup. This explains why our curves in Figure 3 with input size 1 and
2 million lines goes down earlier (from # of processors 1) than input
size 4 million lines (from # of processors 4), and the latter turns earlier
than input size 8 million which has not shown the peak for 8 processors,
but already shows decreased slope. In our case, the main causes that
make small inputs’ speedup decrease and the largest input have very
small speedup (no greater than 1.3) are probably due to the followings:
1) The overhead of launching MapReduce jobs. As is observed from the
Hadoop’s output, it takes tens of seconds each time a MapReduce job
is launched before it starts executing the mapper function; and 2) The
communication overhead. All nodes work simultaneously on the data
to perform mapper and reducer functions. Due to the storage nature of
HDFS, input data needs to be transferred among data nodes through
Ethernet; 3) Writing reducer output. After performing the reduction, it
takes time to write 3 copies of output to HDFS.

If the number of processes is increased and the speedup increases
linearly, under the constraint that problem size remains the same, the
problem is called strongly scalable. Very few parallel problems fall into
this category. On the other hand, if speedup increases linearly with
the increase of the problem size, the problem is called weakly scalable.
Apparently, our results show weak scalability.

Figure 5 shows runtime vs. input size for different # of processors.
With our choice of hardware layout, # of processors to perform mapper
and reducer functions is the same as # of data nodes. The default block
size for HDFS is 64MB. In addition, each block has 3 duplications in
total. Therefore, it is normal that for processor count of 1 and 2, the
runtime keeps increasing, since each data node contains full copy of all

of processors → 1 2 4 8
Input size (ML/MB) ↓

1/25.4 518662 517247 555759 596748
2/50.9 532093 535297 538179 590010
4/101.9 601687 559425 556816 608845
8/203.8 736162 656622 600464 567313

Table 1: Computing times for different file sizes and numbers of processors.

Citation: Yang T, Ngu AHH (2017) Implementation of Decision Tree Using Hadoop MapReduce. Int J Biomed Data Min 6: 125. doi: 10.4172/2090-
4924.1000125

Page 4 of 4

Volume 6 • Issue 1 • 1000125Int J Biomed Data Min, an open access journal
ISSN: 2090-4924

data. However, with processor count of 3 and 4, for small data size, only
part of the nodes have data. This means data needs to be transferred
across network. For example, for input size of 1 million lines, only 1
block and 3 duplications exist. If # of nodes is 8, 3 nodes need to transfer
data to the rest of the 5 nodes. While for data size of 8 million lines, i.e.
203.8 MB, 4 data blocks exist, and up to 12 nodes can have at least 1
block if distributed evenly. This indicates that 8 data nodes can all have
1 block of data, which makes data transfer across network unnecessary.
So, this is the reason for a relative big speedup from 4 ML to 8 ML in
the purple curve.

Conclusions and Future Work
Can we conclude that a decision tree algorithm benefits from the

Map Reduce implementation from our experimental study? Probably
we cannot. The major reasons are discussed in the following paragraphs.

Decision tree is an irregular program, which means the performance
is dependent on multiple input factors. For example, a) the number of
attributes. We have studied the input size’s impact. However, size is only
one of the controlling factors. Even if the lines of input are the same,
each line can contain different number of attributes, which can give
rise to different complexity in the generation of the decision tree; b)
the number of class labels; c) the number of values for each attribute.
A decision tree of averaged attribute value of 100 has a different
complexity when compared with one of averaged attribute value of 2;
d) the input size, which we have examined; e) the input content, which
means the combination of attribute’ values and class labels. Even if
factors listed in a) through d) are identical, the different combination
can lead to different tree complexity. In our study, in order to make
a fair comparison, all the factors are kept identical on purpose except
the input file size, which means the complexity of the constructed
decision tree is all the same and only the variation of input size causes
the difference of runtime in MapReduce program section.

In addition, we can state that the runtime difference in comparison
is caused by MapReduce. The state of the program before each execution
of Mapper is the same. The output of the Reducer differs in the values
of the last column in the same iteration, which are proportional to file
size. The complexity of computation performed on the output of the
Reducer in the same iteration is identical. Hence, the runtime counted
reflects only the difference in MapReduce execution.

There are other factors that can impact the results. For example, the
selection of hardware layout can affect the performance. The shared-
memory system of 8 processors on a single node is expected to perform
better than 8 single-core nodes. Because the former uses all local data,
while the latter involves network data transfer in general. On the other
hand, Hadoop settings, e.g. data block size and duplication count, can
also impact the performance.

In ideal situation, is it possible to achieve linear speedup in our
implementation of decision tree? We can try to make the following
efforts. First, we need to require the numbers of attributes and label
count, the number of each attribute’s values bounded. This indicates
that the total number of unique instances is finite. Also, overheads

like invocation of MapReduce jobs and hardware bottlenecks are
also bounded. Second, network data transfer speed is sufficiently
fast. “Sufficiently” here means in line with hard drive data transfer
speed, for both downstream/read and upstream/write. This indicates
all network data transfer works at the corresponding local hard drive
speed. Therefore, there exists no additional network communication
latency due to imbalanced work load. Third, the number of instances in
the input file approaches infinity. This indicates that parallel execution
fraction can approach 100%. However, for any finite problem size, linear
speedup or quasi-linear speedup can continue to a certain number of
node count. The reason is that MapReduce jobs are only a portion of
the entire program. Even if the mapper and the reducer functions are
perfectly parallelized, the rest of the system is still a serial program. The
Amdahl’s law tells us that speedup is upper-bounded by 1/(1-f), where
f is the parallelizable fraction of the program. Even if 95% of a program
can be perfectly parallelized, the speedup cannot surpass 20.

In conclusion, we have implemented a decision tree algorithm
using Hadoop MapReduce computing engine and HDFS file system.
We have observed that invocation of a MapReduce job can take
substantiate amount of time. For our selection of hardware setup and
input data, larger input data size shows some performance gain with
increased number of processors/nodes. Our decision tree algorithm
demonstrates weak scalability behavior. However, it is hard to draw
a general conclusion on whether decision tree will benefit from
MapReduce implementation due to the irregularity nature of decision
tree problem.

Future study can focus on evaluating performance of more
diversified inputs, e.g. different numbers of attributes, class labels,
different number of attributes’ values, and randomized instances,
and generating performance statistical distributions for interested
parameters. In addition, study of different hardware layout, e.g. multi-
processor nodes, multi-core processors in shared memory system,
systems including both shared memory and distributed memory
layouts, may be of interest. Further, impact of change of default
Hadoop settings, e.g. block size and duplication number in HDFS can
be modified. Finally, effect of adding an additional mapper/reducer to
compute gain ratio can be evaluated.

Acknowledgement

This work was performed while Tianyi Yang was a student at Texas State
University

References

1. Dean J, Ghemawat S (2004) MapReduce: Simplified data processing on
large clusters. Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation, San Francisco, CA. pp: 137-149.

2. Shoberg J (2006) Building search applications with Lucene and Nutch (1st
edn). Apress. p. 350.

3. Rokach L, Maimon O (2014) Data mining with decision trees: Theory and
applications (2nd edn). World Scientific Publishing Company.

4. Amdahl, Gene M (1967) Validity of the Single processor approach to
achieving large-scale computing capabilities. AFIPS Conference Proceedings
30: 483-485.

https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.pdf
http://www.worldscientific.com/worldscibooks/10.1142/6604
http://www.worldscientific.com/worldscibooks/10.1142/6604
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560

	Title
	Corresponding Author
	Abstract
	Keywords
	Introduction
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

