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Abstract
Hadoop is one of the most popular general-purpose computing platforms for the distributed processing of big 

data. HDFS is an implementation of distributed file system by Hadoop to be able to store huge amount of data in a 
reliable way and process it in an efficient manner at the same time. MapReduce is the main processing engine of 
Hadoop. In this study, we have implemented HDFS and MapReduce for a well-known learning algorithm—decision 
tree in a scalable fashion to large input problem size. Computational performance with node count and problem size 
is evaluated.
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Introduction
MapReduce, as Hadoop project's principal processing engine, 

provides a framework for scalable distributive computing [1,2]. The 
MapReduce model is derived from the combinations of the map and 
reduce concepts in functional programming. A strong characteristic of 
this programming model is that it hides the complexity of dealing with 
a cluster of distributive computing nodes. Hence, the developers only 
need to focus on the implementation of map and reduce functions.

Decision tree is one of the most popular methods for classification 
[3]. A classical decision tree is a directed tree comprised of a root node, 
as well as decision nodes—all the other nodes each with exactly one 
incoming edge.

The procedure of building a decision tree is as follows. Given a set of 
training data, find the best splitting attribute from currently all available 
ones by applying a measure function on all attributes. Once the splitting 
attribute is determined, the instance is split into multiple partitions. 
The multiplicity depends on the number of values or ranges of values 
associated with the splitting attribute. Within each partition, if all 
samples belong to a single class, the algorithm terminates. Otherwise, 
the splitting process is recursively performed until each partition 
belongs to a single class, or no attribute is left. Once a decision tree is 
generated, classification rules are generated, which can be applied to 
classify new instances with class labels to be determined.

C4.5 is a one of the standard algorithm for decision tree, which 
uses information gain ratio as the splitting criterion. The algorithm is 
illustrated in Figure 1.

In the algorithm above,
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 is the information needed after splitting by attribute S, in which TS 
is a subset of T induced by attributes S, and TS, v is a subset of TS of 
value v for attribute S, and Values(TS) is the set of values for attribute S 
for records in TS. Absolute value operator means cardinality of.

Figure 1: C4.5 algorithm.

Information gain is defined as:
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which measures the information gain after splitting by attribute S.
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Finally, the information gain ratio is:
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which is the criterion to split the decision tree. The attribute which 
gives the maximum GainRatio is selected as the splitting attribute.

Three requirements with decreasing priority have been enforced in 
our implementation of decision tree using MapReduce and HDFS. 1) 
Scalability to input data. This voids any assumption that the memory of 
the master node can hold the data. Therefore, an iteration of launching 
of MapReduce jobs is required. 2) Minimize the use of mapper/reducer 
unless necessary. We have found that each launching of MapReudce 
job takes tens of seconds before it starts executing mapper method. So 
if the runtime of the section of the program outside MapReduce is less 
than this launching time, it is not worth implementing an additional 
set of Mapper and Reducer for any part in corresponding section. 
3) Minimize HDFS file I/O in case computation can fulfil the same
purpose. Local computation is much faster than typical hard drive I/O,
and even faster than network storage I/O which is limited by network
data transmission speed. So based on these three requirements, one set
of mapper and reducer functions are implemented to read data from
the source file and generate the tuple (attribute id, attribute value, class
label, count).

Numerical Experiments and Results
The goal of this study is to evaluate the performance of Hadoop 

implementation of decision tree. In particular, the compute time vs. the 
count of processors that perform the mapper/reducer function, and the 
compute time vs. input data size are examined.

The infrastructure used in this study is AWS (Amazon Web 
Service), in which three specific services are utilized, i.e. 1) S3, i.e. 
Simple Storage Service, to which the compiled .jar file and input files are 
transferred from local computer. S3 further sends the above files to the 
virtual cluster that will be allocated by EC2; 2) EC2, i.e. Elastic Compute 
Cloud, which creates a virtual cluster to users’ need; and 3) EMR, i.e. 
Elastic MapReduce, which runs MapReduce jobs in the virtual cluster.

To simulate typical working environment in which Hadoop’s 
MapReduce projects are running, our rules for the specification of the 
virtual cluster are as follows: 1) One compute (performing mapper 
and reducer functions) processor per node. The philosophy behind 
this is the employment of homogeneous hardware layout for scaling 
behavior study. Recently, multi-processor compute nodes and multi-
core processors have become main stream. However, data transfer in 
a single node is much faster than the cross node communication. To 
make a fair comparison for the scaling behavior of runtime vs. compute 
processors count, single compute core node is chosen; 2) Each chosen 
processor has the same medium computing power; 3) The network 
transfer capability among nodes is chosen to be medium. Requirements 
2 and 3 are needed to mimic a typical Hadoop running environment. 
Based on the above rules, AWS m1.medium architecture is selected 
for both master node and core node. The master node assigns Hadoop 
tasks to core nodes and monitors their status, but does not participate 
in processing the Hadoop tasks. The core nodes run Hadoop tasks and 
store data in the HDFS system. In our experiment, the count of master 

node processor is always 1. And the count of core processors varies 
from 1 to 8. The Hadoop distribution version is Amazon 2.4.0. All the 
default configuration for this version of Hadoop setup is adopted, e.g. 3 
copies of HDFS file duplication and 64 MB block size.

Table-1 shows the experimental results, in which, “ML” denotes 
million-lines and “MB” means megabytes. The 6-digit numbers show 
run time in unit millisecond. The run time is counted from the launching 
of main function to the completion of decision tree generation.

Figure 2 shows the runtime vs. number of processors. Figure 3 shows 
the speedup vs. number of processors. Speedup is defined as the serial 
runtime, i.e. runtime for number of processors equal to 1, divided by 
parallel runtime for corresponding number of processors. For relatively 
small problem sizes, i.e. 1 million lines and 2 million lines input data, 
Hadoop distributed computing does not improve performance at all. 
On the contrary, it hurts the performance. For 4 million lines input, 
the speedup goes up from 1 processor to 2 processors, continued 
with ignorable increase from 2 processors to 4, and then goes down 
from 4 to 8. The 8 million lines’ curve shows consistent speed up from 
1 to 8 processors, although the increase rate slows down from 4 to 8 
processors. This behavior can be explained using Amdahl’s law [4].

As is shown in Figure 4, in ideal situation (green curve), which 
can never be achieved in reality, speedup is linear to the number of 
processors. And in the idealist case, the slope for speedup vs. # of 
processors is 1. Amdahl’s law states that for a parallel program, if the 
ratio of parallelizable section occupies a fraction f of total run time, the 
speedup is upper bounded by:

1
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In which T is runtime, n refers to the processor count, and subscript 
“S” or “P” denotes serial or parallel runtime, respectively. The special 
case where n=1 and

Tp(1) = f (1)
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Figure 3: Speedup vs. processor count.

Figure 5: Runtime vs. input size.

Figure 4: Amdal's law illustration.

Figure 2: Runtime vs. processor count.

This is basically what the horizontal dashed curve shows in Figure 
5. There exist multiple issues that can decrease the speedup for large 
number of processors. For example, f may not be a constant but 
decreases due to increased communications, imbalanced work load, 
limited bus speed, limited memory access rate, etc. In addition, the 
turning point (as shown in red curve) is not a constant. It typically 
moves to the right when the problem size goes up. This indicates that 
the smaller the input size, the earlier the saturated or even deteriorated 
speedup. This explains why our curves in Figure 3 with input size 1 and 
2 million lines goes down earlier (from # of processors 1) than input 
size 4 million lines (from # of processors 4), and the latter turns earlier 
than input size 8 million which has not shown the peak for 8 processors, 
but already shows decreased slope. In our case, the main causes that 
make small inputs’ speedup decrease and the largest input have very 
small speedup (no greater than 1.3) are probably due to the followings: 
1) The overhead of launching MapReduce jobs. As is observed from the 
Hadoop’s output, it takes tens of seconds each time a MapReduce job 
is launched before it starts executing the mapper function; and 2) The 
communication overhead. All nodes work simultaneously on the data 
to perform mapper and reducer functions. Due to the storage nature of 
HDFS, input data needs to be transferred among data nodes through 
Ethernet; 3) Writing reducer output. After performing the reduction, it 
takes time to write 3 copies of output to HDFS.

If the number of processes is increased and the speedup increases 
linearly, under the constraint that problem size remains the same, the 
problem is called strongly scalable. Very few parallel problems fall into 
this category. On the other hand, if speedup increases linearly with 
the increase of the problem size, the problem is called weakly scalable. 
Apparently, our results show weak scalability.

Figure 5 shows runtime vs. input size for different # of processors. 
With our choice of hardware layout, # of processors to perform mapper 
and reducer functions is the same as # of data nodes. The default block 
size for HDFS is 64MB. In addition, each block has 3 duplications in 
total. Therefore, it is normal that for processor count of 1 and 2, the 
runtime keeps increasing, since each data node contains full copy of all 

# of processors → 1 2 4 8
Input size (ML/MB) ↓

1/25.4 518662 517247 555759 596748
2/50.9 532093 535297 538179 590010
4/101.9 601687 559425 556816 608845
8/203.8 736162 656622 600464 567313

Table 1: Computing times for different file sizes and numbers of processors.
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data. However, with processor count of 3 and 4, for small data size, only 
part of the nodes have data. This means data needs to be transferred 
across network. For example, for input size of 1 million lines, only 1 
block and 3 duplications exist. If # of nodes is 8, 3 nodes need to transfer 
data to the rest of the 5 nodes. While for data size of 8 million lines, i.e. 
203.8 MB, 4 data blocks exist, and up to 12 nodes can have at least 1 
block if distributed evenly. This indicates that 8 data nodes can all have 
1 block of data, which makes data transfer across network unnecessary. 
So, this is the reason for a relative big speedup from 4 ML to 8 ML in 
the purple curve.

Conclusions and Future Work
Can we conclude that a decision tree algorithm benefits from the 

Map Reduce implementation from our experimental study? Probably 
we cannot. The major reasons are discussed in the following paragraphs.

Decision tree is an irregular program, which means the performance 
is dependent on multiple input factors. For example, a) the number of 
attributes. We have studied the input size’s impact. However, size is only 
one of the controlling factors. Even if the lines of input are the same, 
each line can contain different number of attributes, which can give 
rise to different complexity in the generation of the decision tree; b) 
the number of class labels; c) the number of values for each attribute. 
A decision tree of averaged attribute value of 100 has a different 
complexity when compared with one of averaged attribute value of 2; 
d) the input size, which we have examined; e) the input content, which
means the combination of attribute’ values and class labels. Even if
factors listed in a) through d) are identical, the different combination
can lead to different tree complexity. In our study, in order to make
a fair comparison, all the factors are kept identical on purpose except
the input file size, which means the complexity of the constructed
decision tree is all the same and only the variation of input size causes
the difference of runtime in MapReduce program section.

In addition, we can state that the runtime difference in comparison 
is caused by MapReduce. The state of the program before each execution 
of Mapper is the same. The output of the Reducer differs in the values 
of the last column in the same iteration, which are proportional to file 
size. The complexity of computation performed on the output of the 
Reducer in the same iteration is identical. Hence, the runtime counted 
reflects only the difference in MapReduce execution.

There are other factors that can impact the results. For example, the 
selection of hardware layout can affect the performance. The shared-
memory system of 8 processors on a single node is expected to perform 
better than 8 single-core nodes. Because the former uses all local data, 
while the latter involves network data transfer in general. On the other 
hand, Hadoop settings, e.g. data block size and duplication count, can 
also impact the performance.

In ideal situation, is it possible to achieve linear speedup in our 
implementation of decision tree? We can try to make the following 
efforts. First, we need to require the numbers of attributes and label 
count, the number of each attribute’s values bounded. This indicates 
that the total number of unique instances is finite. Also, overheads 

like invocation of MapReduce jobs and hardware bottlenecks are 
also bounded. Second, network data transfer speed is sufficiently 
fast. “Sufficiently” here means in line with hard drive data transfer 
speed, for both downstream/read and upstream/write. This indicates 
all network data transfer works at the corresponding local hard drive 
speed. Therefore, there exists no additional network communication 
latency due to imbalanced work load. Third, the number of instances in 
the input file approaches infinity. This indicates that parallel execution 
fraction can approach 100%. However, for any finite problem size, linear 
speedup or quasi-linear speedup can continue to a certain number of 
node count. The reason is that MapReduce jobs are only a portion of 
the entire program. Even if the mapper and the reducer functions are 
perfectly parallelized, the rest of the system is still a serial program. The 
Amdahl’s law tells us that speedup is upper-bounded by 1/(1-f), where 
f is the parallelizable fraction of the program. Even if 95% of a program 
can be perfectly parallelized, the speedup cannot surpass 20.

In conclusion, we have implemented a decision tree algorithm 
using Hadoop MapReduce computing engine and HDFS file system. 
We have observed that invocation of a MapReduce job can take 
substantiate amount of time. For our selection of hardware setup and 
input data, larger input data size shows some performance gain with 
increased number of processors/nodes. Our decision tree algorithm 
demonstrates weak scalability behavior. However, it is hard to draw 
a general conclusion on whether decision tree will benefit from 
MapReduce implementation due to the irregularity nature of decision 
tree problem.

Future study can focus on evaluating performance of more 
diversified inputs, e.g. different numbers of attributes, class labels, 
different number of attributes’ values, and randomized instances, 
and generating performance statistical distributions for interested 
parameters. In addition, study of different hardware layout, e.g. multi-
processor nodes, multi-core processors in shared memory system, 
systems including both shared memory and distributed memory 
layouts, may be of interest. Further, impact of change of default 
Hadoop settings, e.g. block size and duplication number in HDFS can 
be modified. Finally, effect of adding an additional mapper/reducer to 
compute gain ratio can be evaluated.
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