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Introduction
Polyglutamine or poly(Q) diseases represent a group of fatal human

disorders which exhibit some common neurodegenerative symptoms
and share somewhat similar mechanism of pathogenesis. Some of the
common clinical symptoms of poly(Q) diseases include progressive
loss of body coordination, memory, difficulty in speech and intellectual
disabilities [1]. Most forms of the poly(Q) disorders are dominantly
inherited, exhibit age dependent phenotypic manifestations,
progressive in nature and result in degeneration of specific group of
neurons in the brain as per the characteristics of each disease type
[2,3]. Some of the commonly known poly(Q) disorders include Spinal
and Bulbar Muscular Atrophy (SBMA), Huntington’s Disease (HD), six
of the Spinocerebellar ataxias (SCA1, 2, 3, 6, 7 and 17) and Dentato
Rubral Pallidoluysian Atrophy (DRPLA) [2,4].

Poly(Q) mediated impairment of transcriptional machinery
Pathogenesis of most of the poly(Q) diseases are initiated by the

expansion of CAG nucleotide repeat within the coding sequence of
target gene. Expansion of CAG repeat produces extended tract of
glutamine and alters the intrinsic conformation of target protein. The
abnormally folded protein interacts with other proteins having
inherent CAG repeats and interrupts the molecular function of
associated proteins [5]. Such protein aggregates are known as Inclusion
Bodies (IB) which grow in size with age and translocate into the
nucleus. Nuclear transportation of inclusion bodies result in
sequestration of many more of glutamine rich transcription factors
such as cAMP response element binding protein (CBP), TBP (TATA
binding protein), TAFII130 and Specificity protein 1(sp1) [6-9].
Sequestration of above noted transcription factors impair the rate of
cellular transcription. Poly(Q) mediated impairment of transcription
machinery has been proposed to be a major cause of cellular toxicity
and neurodegeneration.
One of the factors which have caught foremost attention in
contemporary poly(Q) research is CBP [6,8]. CBP (CREB binding
protein) is a vital transcription factors which interacts with numerous
other factors to regulate the rate of transcription of several crucial
genes [10,11]. CBP harbours inherent property of Histone
acetyltransferase (HAT) activity which facilitates acetylation of core
histones and subsequent opening of chromatin DNA to make them
readily accessible for RNA polymerase and other transcription factors
[12,13]. Occurrence of 18 glutamine repeats at the C-terminal of CBP
facilitate its interaction with expanded poly(Q) repeats of the mutant
proteins [6,8]. In Huntington’s disease, mutant Htt protein interacts
with CBP and sequesters them into the inclusion bodies [6-8].
Consequently, age dependent progressive reduction in the cellular level

of CBP could be seen in affected tissues. Interestingly, CBP proteins
have been demonstrated to localise in the inclusion bodies of poly(Q)
affected post-mortem tissues, cell cultures and disease models [6-9,13].
Sequestration of CBP in inclusion bodies leads to hypoacetylation of
core histones and undermines the transcription activities.
Subsequently, impaired transcription leads to deprivation of cellular
survival factors and ultimately, affected cells are marked for apoptosis.
Sequestration of CBP into poly(Q) aggregate intensify the
degeneration rate of selective neurons as CBP is a cofactor of cAMP
response element binding protein and sequestration of CBP results in
repression of cAMP response element genes. Moreover, CREB
dependent transcription protects the neuronal cells during stress
condition by promoting expression of survival factor such as Brain
Derived Neurotrophic Factor (BDNF) [14]. Interestingly, level of
BDNF is also regulated by Htt protein, and therefore, extended length
of poly(Q) tract in Htt protein results in a lower level of BDNF in HD
[14]. In addition, lower level of CBP in HD mice compromises the long
term potentiation of hippocampal region [15,16]. Subsequently, age
dependent progressive deterioration of synaptic plasticity in CA1 cells
of brain hippocampus result into loss of cognition as manifested in
most of poly(Q) disorders [16].

Sequestration of CBP in inclusion bodies also compromises the
function of CBP dependent additional transcription factors. On the
other hand, sequestration of transcriptional coactivators of CBP such
as TAFII130 also confines the functional diversity of CBP. TAFII130 is
a coactivator of CBP which sequesters itself in inclusion bodies by
interacting with expanded poly(Q) stretches during disease
pathogenesis [17]. Interestingly, enhanced expression of TAFII130 has
been demonstrated to rescue the functional status of CBP in poly(Q)
disease condition [17]. In addition to the above noted transcription
factors, transcriptional efficiency of several other neuronal genes which
are involved in signal transduction and calcium homeostasis have also
been reported to be impaired in poly(Q) disease models [18]. Down
regulation of these neuronal genes are evident in Purkinje cells much
before the manifestation of detectable phenotype of SCA1 [18].
Intriguingly, in case of SCA3, several inflammatory response genes
exhibit up-regulation whereas expressions of some cell-surface
receptor genes are repressed [19].

Concluding Remarks
As discussed earlier, it is increasingly clear now that poly(Q)

mediated sequestration of essential transcription factors and
subsequent impairment of cellular transcription machinery is one of
the major aspects of cellular toxicity and neurodegeneration. In this
context it is important to note that tissue specific up-regulation of
several transcription factors and co-factors have been demonstrated to
alleviate poly(Q) induced neurotoxicity in disease models [20,21].
Therefore, enriching the global cellular transcriptional efficiency could
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supress the toxic effects of inclusion bodies and poly(Q) mediated
neurodegeneration.
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