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Abstract

Several epidemiological studies provide evidence that type 2 diabetes mellitus increases the risk of developing
Alzheimer’s disease significantly. Both disorders share certain abnormal biological mechanisms such as impaired
glucose metabolism, insulin resistance, increased β-amyloid formation, oxidative stress, and the presence of
advanced glycation end products. This review focuses on glucose metabolism impairment as a common clinical and
biochemical feature shared by Alzheimer’s disease and type 2 diabetes. With better knowledge of the common
molecular and cellular pathways involved in the progression of these two disorders, researchers may have the
opportunity to design effective therapeutic interventions to treat or control type 2 diabetes mellitus and,
consequently, delay the onset or progression of Alzheimer’s disease.
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Introduction
Alzheimer’s disease (AD) is a disorder that mainly takes its toll on

the elderly population of the world with its global prevalence close to
50% among 85 years and older people. On the other hand, the
population of the world suffering from type 2 diabetes mellitus
(T2DM) currently is 150 million based on a report by CDC and this
number will climb to 300 million by the year 2025 [1]. The Rotterdam
study in the year 1999 [2] and several epidemiology studies since then
have reported that T2DM significantly increases the risk for
developing memory and cognitive impairment, dementia and AD
[3,4]. Some studies have concluded that there is a 65% increased risk
for developing AD in diabetic patients compared to non-diabetes,
healthy individuals while other studies have demonstrated that the risk
of developing AD is doubled in diabetic patients [5,6]. Likewise, a
recent community cohort study from Cache County found AD
patients more vulnerable to developing T2DM than non-AD
individuals, hence establishing a close association between AD and
T2DM [7]. Recently, there have been some clinical trials of anti-
diabetic drugs going on in AD patients [8].

Impaired Glucose Metabolism in T2DM and AD
Numerous in vitro and in vivo animal and human clinical studies

have provided evidence that T2DM is a major risk factor in the
pathology of AD. Hence, abnormal glucose metabolism is not limited
to diabetes, but it is also a pathophysiological phenomenon observed
in AD [9]. Studies have shown that insulin levels of AD patients
change substantially after they drink sugared sodas, hence classifying
those individuals as insulin resistant [10]. Significant decline in
cerebral glucose utilization is seen in dementias of AD type. It has
been suggested that the irregularities in oxidative and energy
metabolism in AD type dementias are caused as a result of metabolic

disturbances in glycolytic glucose breakdown and pyruvate oxidation
[11]. In an attempt to probe into the areas of decreased glucose
metabolism in cerebral regions in AD patients, Fukuyama et al.
conducted PET studies on AD patients as well as healthy controls.
They found that oxygen consumption, glucose utilization and regional
blood flow were significantly lower in the frontal, parietal and
temporal regions of AD sufferers. It was suggested that abnormal
glucose metabolism in the parietotemporal region in AD could be the
main contributor towards the synoptic dysfunction which afflicts the
brains of AD patients [12].

When regional cerebral metabolic rate of glucose (rCMRGI) was
studied in patients with presenile dementia of AD type (DAT) and the
ones with senile DAT in comparison to normal subjects, it was
observed that glucose metabolism impairment was concentrated in the
frontal and temporo-parietal cortex in presenile DAT while it was
more global in the case of senile DAT. This implies that late-onset AD
is characterized by impaired glucose metabolism spread all over the
cortical areas, in addition to more localized areas of the brain [13,14].
It has been proposed that the glial cells detect reduced glucose
availability when there is decreased glucose utilization in brain in the
early stages of AD. This results in higher ketone body production and
triggering of the NFκB pathway. Hence, central insulin deficit and
hyperleptinemia aid in the inflammatory process via the inhibition of
AMP-activated protein kinase. As a result of energy deficit and
inflammation, the resulting neuronal cell damage may be contributing
to neurodegeneration in AD [15].

Damaged neurons, neurofibrillary tangles and extremely insoluble
Aβ peptide deposits in the brain are the hallmarks of AD. Aβ peptide
plays a pivotal pathological role in AD [16]. Postmortem analysis of
the brains of AD patients reveals plaques containing excess amounts of
Aβ peptide. It is interesting to note that both Aβ peptide and insulin
are substrates for the same insulin degrading enzyme (IDE), an
enzyme belonging to zinc-metalloprotease class. Hence, IDE degrades
insulin as well as Aβ peptide. Hyperinsulinemia is characterized by
higher than normal levels of insulin in the body. This happens due to
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abnormal insulin metabolism as seen in T2DM. Hyperinsulinemia
diminishes the ability of IDE to degrade Aβ, which eventually causes
deposition of amyloid plaque in the brain [17]. It has been suggested
that elevations in Aβ levels in older subjects caused by peripheral
hyperinsulinemia, may in turn be contributing to age-dependent
memory dysfunction and the subsequent development of AD [18].

Furthermore, clinical studies have also demonstrated that those
human subjects, who developed acute hyperinsulinemia after receiving
insulin infusion, also showed elevated levels of insulin and Aβ in the
cerebrospinal fluid. This effect was more pronounced in the older
subjects. These effects were not observed in the control group which
was administered saline via infusion. Furthermore, elevated levels of
Aβ in response to hyperinsulinemia were accompanied by a decrease
in insulin’s ability to facilitate declarative memory [19]. Hence, the
decline in memory functions is associated with the buildup of Aβ
peptide in the brain. In vivo animal studies conducted on Tg2576
(transgenic) mice by Kohjima et al. further support this contention.
Among the transgenic mouse models used to study Alzheimer’s
disease, Tg2576 mice are the most common. Around the age of 6
months or more, Tg2576 mice begin to display increasing
degeneration in their memory functions because this is about the time
when Aβ peptide levels begin to rise in their brains [20]. Recent
experimental evidence suggests that Aβ peptide competes with insulin
for binding to insulin receptors, hence causing inhibition of insulin
receptor autophosphorylation. Thus, Aβ interferes with insulin
receptor function in the neurons and halts the rapid activation of
certain kinases essential for long term potentiation [21,22]. This
suggests that Aβ acts as a competitive inhibitor of insulin binding and
action in the brain and elevated levels of Aβ in AD may be linked to
insulin resistance in the brain.

Therapeutic Strategies Targeting Both T2DM and AD
In light of several human and experimental animal model studies as

well as in vitro studies, it appears that T2DM may be the strongest risk
factor other than old age that contributes to the pathogenesis or
progression of AD [23,24]. Impaired glucose metabolism is one of the
most important pathological mechanisms underlying both AD and
T2DM. Therefore, one approach to control T2DM and delay the
progression of AD at the same time is by effectively controlling the
glucose levels [25,26]. Thus, ant-diabetic drugs that increase cerebral
energy metabolism and, thus improve insulin sensitivity may be
beneficial in the treatment of AD.

Intranasal insulin restores brain insulin levels in AD patients due to
its ability to have direct access to the brain without having an effect on
peripheral insulin levels. Clinical data on intranasal insulin- treated
AD patients provides evidence for improved cognition, memory
enhancement and stabilization of cognitive impairment [27,28].
Facilitation of memory has also been observed in animal studies when
insulin is administered via direct intracerebroventricular route [29,30].
Another promising treatment in this regards is intravenous
administration of insulin to AD patients. Insulin delivered via
intravenous route has the ability to reach the central nervous system
by crossing the blood-brain barrier (BBB) [31,32].

Glucagon-like peptide-1 (GLP-1) analogs are novel drugs used in
the treatment of T2DM mainly due to their anti-inflammatory action
and ability to facilitate insulin signaling by stimulating insulin release
while it also inhibiting glucagon secretion. Presently, exendin-4 and
liraglutide are among the two GLP-1 receptor agonists approved for
T2DM treatment [33]. Besides their role in the treatment of T2DM, in

vitro studies have provided evidence that GLP-1 analogs also carry the
potential to treat or delay the early onset of AD [34]. GLP-1 plays a
pivotal role in inducing neurite growth in the brain, protects against
oxidative injury in cultured neuronal cells and lowers the endogenous
levels of Aβ in the brain [35,36]. The effect of GLP-1 and certain
GLP-1 analogs on the brain is facilitated by their ability to cross the
BBB as demonstrated by permeability studies across the BBB [37,38].
In fact, when liraglutide was peripherally injected in an Alzheimer’s
mouse model (APP/PS1) for 8 weeks, memory impairment and
deterioration of synaptic plasticity in the hippocampus were
prevented. In addition, liraglutide dosing resulted in significant
reduction of the amount of overall β-amyloid plaque in the cortex of
liraglutide-treated APP/PS1 mice [39].

Angiotensin converting enzyme (ACE) inhibitors have also been
shown to delay the onset of T2DM owing to their ability to reduce
certain markers of inflammation [40,41]. Likewise, ACE inhibitors
have been shown reported to delay AD progression perhaps due to
their ability to penetrate the brain and reduce inflammation [42]. In
the Ginkgo Evaluation of Memory Study, reduced risk of AD dementia
was reported for individuals with normal cognitive abilities [43]. In
another 4-year cohort study from 16 different hospitals in France,
older adults with AD receiving ACE inhibitors experienced slower
cognitive decline [44].

Drugs from the peroxisome proliferator-activated receptors
(PPARs) class also possess the ability to prevent and/or delay the
progression of both T2DM and AD at the same time. Among the
PPAR drugs, the most important ones are the compounds of the sub-
class PPAR-gamma (PPAR-γ), used as a treatment for T2DM for more
than a decade. PPAR-γ is expressed not only in the pancreatic beta
cells but also in the adipocytes, where it regulates adipogenesis and
increases the uptake of fatty acids into adipocytes [45,46]. In the brain,
PPAR-γ is involved in the regulation of cell survival and inflammatory
responses and it is to be found most notably in the neurons and
astrocytes [47]. Thiazolidinediones (TZDs) are a class of drugs that
work by activating PPAR-γ. TZD drugs have been shown to reduce the
risk of developing T2DM [48]. Troglitazone, a TZD-derivative, is a
PPAR-γ agonist used in the treatment of T2DM. Clinical studies have
demonstrated that T2DM patients receiving troglitazone treatment
had lowered fasting plasma glucose and HbA1c levels [49].
Troglitazone has also been reported to delay the onset of T2DM in
high-risk subjects in a double-blind study [50]. Rosiglitazone, another
PPAR-γ agonist and a member of TZD class has been shown to lower
glucose and lipid levels in T2DM patients [51]. Furthermore, clinical
evidence suggests that both pioglitazone and rosiglitazone increase
peripheral insulin sensitivity and lower concentrations of insulin [52].

On the other hand, PPAR-γ agonists possess therapeutic potential
for the treatment of AD. In vivo studies have demonstrated the ability
of PPAR-γ agonists to inhibit β-amyloid-stimulated expression of IL-6
and TNFα [53]. For instance, glimepiride, a TZD-derivative, is an oral
anti-diabetic drug with PPAR-γ-stimulating activity. It has been
reported that glimepiride has been shown to attenuate Aβ production
in primary cortical neurons by suppression of BACE1 activity, hence
making it a promising drug for the treatment of AD associated with
T2DM [54]. Likewise, a small clinical study of 30 patients with mild
AD or mild cognitive impairment found that patients treated with
rosiglitazone for 6 months demonstrated memory enhancement and
enhanced attention [55]. In a larger study of more than 500 patients
with mild to moderate AD, 6 months of treatment with rosiglitazone
resulted in statistically significant cognitive improvement in patients
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that did not possess an Apo-epsilon-4 allele [56]. In an animal study, it
has been shown that 9-14% of rosiglitazone crosses the BBB after oral
treatment [57]. Pioglitazone is another TZD-derivative with PPARγ-
receptor agonist properties. Continuing use of pioglitazone in the
mouse model of AD has been reported to improve visuo-spatial and
long term memory [58]. In a recent randomized, open-controlled trial
of T2DM patients with mild AD, pioglitazone-dosed patients exhibited
cognitive and functional improvements compared to the controlled,
no-treatment group. Pioglitazone caused reduction in their fasting
plasma insulin levels lowered and those patients experienced
improvement in their cognition and regional cerebral blood flow in
the parietal lobe [59]. Since both T2DM and AD share common
molecular mechanisms such as impaired glucose metabolism, PPAR-
γ-receptor agonists such as TZD-derivatives may prove beneficial for
the treatment or management of both of the disorders [60].

Conclusion
In conclusion, biological mechanisms common to both AD and

T2DM may provide us a clue to the development and progression of
AD. Currently, various therapeutic agents have already been clinically
shown to prevent or delay the onset of T2DM and AD and this clinical
evidence in itself confirms the association of T2DM and AD. However,
there is still a need to further study the inter-connected cellular and
molecular mechanisms between T2DM and AD. Better understanding
of the impairment of glucose metabolism as a pathophysiological link
between AD and T2DM is crucial because this knowledge will guide
the researchers in designing future therapeutic strategies targeting
both of the pathologies at the molecular level.
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