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Isothermal Titration Calorimetry (ITC) is a commonly used 
technique to determine the stoichiometry, affinity, and enthalpy of 
binding reactions in solution [1,2]. In many cases, conclusions are 
made on the basis of titrations performed in one buffer system. In 
this article, we will demonstrate a potential problem that may lead to 
incorrect conclusions about the energetics of a given reaction based 
on data acquired using a single buffer system, which originates from 
changes in pKas of titratable groups upon complex formation.

In a binding reaction, pKas of titratable group on the protein and 
the ligand may shift upon formation of the complex. As a result, protons 
are either released or taken up by these groups and the buffer responds 
to such changes either by releasing or taking up protons to maintain 
pH. Therefore, the observed enthalpy (∆Hobs), includes contributions 
from the intrinsic enthalpy of binding (∆Hint) and the heat of ionization 
of the buffer (∆Hion). ∆Hintcan be determined based on the following 
equation and using different buffers with different ∆Hion. While the 
y-intercept yields ∆Hint, the slope of the line yields the net protonation, 
∆n. ∆Hobs=∆Hint+∆n (∆Hion)

It is important to note, that the ∆Hint, determined in this manner, 
will still include contributions from the heat of ionization of the 
titratable groups in the protein–ligand complex. Furthermore, it is also 
a common practice to include a certain level of salt (50-200 mM) to 
eliminate the heat of nonspecific binding of the buffer to the protein. 
The importance of determining the intrinsic enthalpy of a reaction 
can be seen in the experimental data shown in Figure 1. Titration 
of the aminoglycoside phosphotransferase(3′)-IIIa (APH) with the 
aminoglycoside antibiotic netilmicin yielded an endothermic reaction 
when the titration was performed in Tris-HCl pH 7.4 (Figure 1, right 

panel), while the same titration in PIPES buffer at the same pH yielded 
an exothermic reaction (Figure 1, left panel). Tris-HCl, ACES, and 
PIPES buffers have ∆Hion of 11.7, 7.5, and 2.7 kcal/mol respectively [3]. 
Analysis of these data (Table 1) as described above clearly shows that 
this is an exothermic reaction with the ∆Hint=-7.7 ± 0.8 kcal/mol. 

The ∆Hint for this binding event is representative of a reaction with a 
favorable enthalpy, similar to the previously determined thermodynamic 
data for the binding of aminoglycosides to several enzymes that modify 
these antibiotics [4-10]. Data acquired in tris buffer alone would cause 
a misinterpretation of the binding of netilmicin to APH as an entropy-
driven complex formation and exception to observations with other 
aminoglycosides, which is obviously incorrect. Although binding 
of all aminoglycosides to aminoglycoside-modifying enzymes are 
accompanied by protonation/deprotonation of titratable groups (i.e., 
∆n ≠ 0), large negative enthalpy of binding was almost always larger 
than the positive contribution of the heat of buffer ionization and 
therefore all thermograms showed exothermic signal. However, when 
the binding enthalpy is small, as it was with netilmicin, the importance 
of the contribution of buffer becomes much more significant and may 
even lead to potential misinterpretations as demonstrated here. 

As a final note, we should also mention that the value of ∆n 
itself can also be misleading as it includes both the protonation and 
deprotonation of several functional groups and represents only the net 
protonation. In other words, conditions where ∆n ≈ 0 do not guarantee 
the lack of protonation/deprotonation as shown earlier [11]. 
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Figure 1: Titration of APH with netilmicin in PIPES (left), ACES (middle), and 
Tris-HCl (right) buffers. Y-axes are shown to scale for titrations in PIPES and 
ACES. 

All experiments were performed at 25°C. aGiven errors were calculated by fits to 
SEDPHAT [4]. bErrors for ∆Hint and ∆n are derived from the linear regression line 
of ∆Hobsvs.∆Hionplot

Table 1: Titration of APH with netilmicin in different buffers.

Buffer ∆Hion (kcal/mol) ∆Hobs (kcal/mol) a ∆Hint (kcal/mol) ∆n
PIPES 2.7 -5.1 ± 0.04 -7.7 ± 0.8 0.82 ± 0.1
HEPES 5.0 -4.45 ± 0.05
ACES 7.4 -1.3 ± 0.08
Tris-HCl 11.7  1.6 ± 0.04
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