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Background
Nowadays, cancer research is making use of new high throughput 

technologies, like mass spectrometry in the field of clinical proteomics. 
Mass spectrometry signals show the proteomic profiles of the 
individuals under study at a given time. These profiles correspond 
to the recording of a large number of proteins, much larger than the 
number of individuals. Thus, this leads to the generation of high-
dimensional datasets with a huge amount of biological input. Working 
with high-dimensional datasets has created a number of challenges 
for statistical methods. In particular, it raises two main statistical 
questions: the identification of candidate markers and their validation 
in further studies.

A classical clinical study starts with an a-priori hypothesis made 
by the clinician about the potential prognostic or diagnostic effect of 
one particular clinical factor. Usually, only one or very few variables 
are tested in a single study. Statistical models aim to validate (or not) 
this hypothesis by estimating the strength of the association between 
this variable and the clinical outcome of interest, and by testing its 
significance. In contrast, there is no a-priori hypothesis in “omic” 
studies, where a huge number of variables are tested simultaneously. 
Thus, a two-step strategy is needed for these studies.

The first step corresponds to identification studies designed to 
select a list of candidate biomarkers tested among a high number 
of biological parameters; this is conducted by analyzing a sample of 
the population under study. This identification step can in turn be 
broken down into two sub-steps: estimation and selection. In fact, the 

selection of relevant markers relies on the estimation of the strength 
of association between each biological input and the clinical outcome 
of interest. Only values with a significantly high enough strength of 
association are selected.

These studies lead to the acquisition of large number of variables. 
These variables are potential biomarkers and may be of several types. In 
the context of clinical proteomics, data generated by mass spectrometers 
correspond to the proteomic profile of each of the individuals under 
study at a given time. These profiles correspond to the recording of 
the intensities of a high number of proteins expressed by the genome 
of the individuals. Besides proteomics datasets, other “omics” datasets 
representing other biological levels are also concerned by this huge 
quantity of variables. Genomics aims at learning about genes through 
the study of SNPs for example (Single Nucleotide Polymorphism, i.e. 
DNA sequence variation), while transcriptomics aims at learning the 
expression and regulation of genes through the study of RNA. All these 
studies are characterized by the same huge amount of variables. Given 
the cost or the difficulty to get biological samples, this large number 
of variables often go with relatively low number of observations. By 
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chance alone, many potential markers may be found significantly 
associated with the outcome, even though most of them may not 
actually be linked to diagnosis or prognosis. The question of multiple 
testing was hot debated through the definition of the False Discovery 
Rate (FDR), for example, that is, the expected proportion of false 
positives among the genes declared as significant [1]. When looking 
for differential genes, Pawitan et al. [2] showed that the FDR is mostly 
influenced by the proportion of truly differentially expressed genes, 
and by the sample size. Some additional works showed how the type 
I error rate was related to the power in high-dimensional setting [3,4], 
the increase in the power being at the cost of the FDR. Some authors 
illustrated the issues related to the selection process in the “omic” 
field. For example, Michiels et al. [5] showed through the well-known 
dataset from Van’t Veer et al. [6], that the list of selected candidates was 
highly unstable and depended on the composition of the identification 
set. Later, Ein-Dor et al. [7] proposed a tool to evaluate the selection 
process and showed that thousands of samples are needed to ensure a 
robust signature.

The second step corresponds to validation studies designed to 
confirm the previously selected candidate(s) as biomarker(s). This 
step can also be broken down into two sub-steps: re-estimation and 
confirmation. These studies aim to re-estimate on independent datasets 
the strength of association of the previously selected candidates, and 
thus confirm (or invalidate) the relevance of candidates as markers. 
Relevant markers may have optimal predictive quality. Some authors 
illustrated the divergence between the strength of association estimated 
in identification studies and that estimated in validation studies. In 
particular, Michiels et al. [5] showed on several well-known datasets 
how an inadequate validation led to the publication of overoptimistic 
results compared with those from their own analyses. Later, Truntzer 
et al. [8] showed how high-dimensional data analysis was subject to 
greater optimism-that is to say an over-estimation of the strength of 
association- compared with analysis of classical clinical variables.

Some solutions were proposed to correct the optimism bias linked 
to the selection process. Using resampling methods [9,10] or penalized 
regression [11-13] are such examples. The objective of this paper, 
however, is not to propose new solutions, but rather to explain how it 
works. Indeed, to our knowledge, the questions of identification and 
validation have been highlighted, but neither the mechanisms, nor 
the ways in which these two steps are strongly associated have been 
thoroughly explained. In this work, we propose to explain the link 
between estimation and selection. To understand the process involved, 
we will analyse how candidate markers are selected in identification 
studies and how their estimated strength of association may be 
reduced-and thus not confirmed-when re-estimated in validation 
studies. In other words, to better understand how selection leads 
to optimism, we propose to show how the estimation bias that may 
occur in the identification steps leads to selection of inappropriate 
candidate markers. For recall, regression toward the mean refers to the 
phenomenon that a variable that is extreme on its first measurement will 
tend to be closer to the mean of the distribution on a later measurement 
[14,15]. In fact, let consider a given variable. Its measurement varies 
around its mean following a given distribution. When sampling a 
first measurement from this distribution, there is a low probability 
of observing it extreme. So, if a first measurement is extreme, there is 
high probability that the second one spontaneously regress towards the 
mean value [16].

Methods
Simulation of the datasets

Comprehension of the mechanisms involved in the identification 
and validation steps was achieved through simulations of survival 
“omic” datasets. Indeed, simulations have main advantage of offering 
a situation in which the truth is known and can even be controlled. 
The same processes as those encountered in real-life clinical studies can 
also be reproduced with the advantage that all the parameters can be 
controlled.

The same simulation process as described in a previous paper by the 
same authors was used [8]. Here is a brief description of this process. 
A classical way to link variables to censored survival data is to use the 
Cox proportional hazards model. Let us de ne X an (n, p) matrix of p 
variables for n individuals. For each of the n individuals, the follow-up 
times were noted t1,…., tn as were the event-indicators δ1,….,δn with 
δi=1 if the event occurred and δi=0 if it did not occur. At time t, the Cox 
proportional model is given by

'
0( ) ( )exp( )λ λ β=t X t X                        (1)

Where λ0(t) is a baseline hazard function, β={β1,…,βn} is the vector 
of parameters and X1,….,Xp are the vectors of length n describing each 
of the p variables for the n patients.

We simulated a virtual population of size n in which each 
individual is described by p “omic” variables -with n<<p- and survival 
information. Normal distributions N(0,1) were assumed for the “omic” 
variables. A Weibull distribution with shape parameter 5 and scale 
parameter 2 was used for the baseline function. For censoring times, a 
uniform U(0,8) was used, leading to about 40% censoring. Only p1 of 
the p variables were considered as related to survival; the remaining p0 
were under the null hypothesis H0 of no association with survival. p1 
coefficients of the Cox model were thus set at 0.2, βj, j=1,….,p1, and the 
remaining p0 were set at 0, βj, j=p1+1,….,p. Note that p=p1+p0. This is 
represented by the left panel labeled “truth” in Figure 1.

For a fixed set of parameters p and p1, 200 identification sets of 
n patients were simulated according to the above design. For each of 
these identification sets, 50 corresponding validation sets were drawn 
up following the same design. This overall process was performed by 
considering n in {100,200,400,1000}. In this study we chose p=1000 and 
p1=20.

For each simulated identification set, univariate Cox regression 
models were used to estimate the strength of the association of each 
variable through survival model parameters. Based on these estimations, 
the R most contributive variables were selected in a univariate way.

Selecting variables in the multiple hypothesis setting results in 
considering the problem of testing simultaneously p null hypotheses, 
leading to different situations, described in Table 1 [17]. Among the p 
corresponding variables, p1 are under the H1 hypothesis ( j

iH ; j=1,…., 
p1), while p0 are under the H0 hypothesis ( 0

jH ; j=p1+1,….,p0+p1). The 
test leads to the rejection of R hypothesis.

Among the R rejected hypotheses, V are under the null hypothesis 
(False Positives or FP), whereas S are actually under the alternative 
hypothesis (True Positives or TP). In the same way, among the (p-R) 
variables, T were wrongly not selected. The Type I error concept had to 
be newly defined to take into account the huge number of hypotheses 
tested. The basic idea is to adjust p-values of usual test statistics in order 
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to control the global error rate. For this purpose, the control of the 
False Discovery Rate, that is the expected proportion of Type I errors 
among the rejected hypotheses ( )=FDR E V R , is commonly used [1]. 
In general, one would like to minimize the number V of false positives, 
or Type I errors and the number T of false negatives, or Type II errors, 
thus maximizing the power, defined as 1( )E S p .

Note that the identity of the R variables depends on the identification 
set. Indeed, the same set of variables is not systematically selected from 
one dataset to the other.

•	 In	this	work	we	were	interested	in	the	estimation	of	the	strength	
of association for the R variables, which was estimated through 
univariate Cox survival models. Once the R variables had 
been selected on one identification set, the Cox coefficients of 
these R variables were then re-estimated on the corresponding 
validation sets. Estimations for the V and the S variables were 
stored separately. Note that there was no new variable selection 
on the validation sets. In parallel, Cox coefficients for the p0 
and p1 variables were estimated on each identification set. The 
whole process was performed for each of the 200 identification 
sets, and is illustrated in Figure 1. To sum up, we considered 
the distributions of the Cox coefficients estimated for:The p, 
p0 and p1 variables over the 200 identification sets. The sets of 
p, p0 and p1 variables are respectively denoted Ωp, Ωp0 and Ωp1, 
hereafter. 

•	 The	 V,	 S	 and	 R	 variables	 over	 the	 200	 identification	 sets.	
These sets of variables are respectively denoted ΩV,ΩS and 
ΩR, hereafter. The ΩV, ΩS and ΩR sets were defined separately 
on each identification set. Keep in mind that the variables 
constituting these sets of variables are not the same, depending 
on the identification dataset. While R depends on the datasets 
when the FDR control is applied, it is fixed otherwise. The 
distributions of the estimates for these sets of variables will 
make it possible to understand what happens in identification 
studies where p “omic” variables are tested, without a-priori 
hypotheses about their relationship with survival. 

•	 The	V,	S	and	R	variables	over	50	validation	sets	for	each	of	the	
200 identification sets. We insist on the fact that ΩV,ΩS and 
ΩR were not newly defined on the validation sets. At this step, 
the selection process is over, and the corresponding validation 
studies are conducted. We also remind the reader that the 
identification and the validation sets are the same size. 

Results and Discussion
Results

The comparison of the above described densities were used to 
illustrate how the selection mechanism involved in identification 
studies influences regression to the mean, and how it leads to over-
estimation of the strength of association and thus to optimism.

Results are shown through histograms that display the density of 
each of the distributions of interest. Each of the following figures is 
related to one particular set of variables (Figure 1) from the last, but 
one column of Table 1. Whatever the figure, each of the four panels 
was obtained with a specific sample size, with n={100; 200; 400; 1000}. 
The vertical line with abscissa 0.2 corresponds to the simulated strength 
of association; in other words, it corresponds to the mean distribution 
of the Ωp1 estimates. Note that the number of estimates contributing 

to the distributions density is not the same for the identification and 
validation sets. In the following, results concern the “top-20” approach.

Figure 2 concerns distributions of the strength of association 
estimated over 200 identification sets for the Ωp1 (grey histograms) 
and ΩS (horizontal hatching) sets of variables. Let us restate that ΩS 
corresponds to TP. So, ΩS is a subset of Ωp1, selected because of the high 
strength of association estimated for the corresponding variables. First, 
one observes that the more patients included in the study, the narrower 
the distributions. This is a well-known statement according to which 
variance decreases with sample size. Second, the first panel shows that 
with n=100 patients, variables from the ΩS set are selected in the right 
extreme of the distribution of the Ωp1 estimates. As a consequence, 
the mean distribution of the ΩS estimates is far away from the mean 
distribution of the Ωp1 estimates (vertical line). When n increases, 
S variables are still selected in the right extreme of the Ωp1 estimates 
distribution, but as the distribution for Ωp1 narrows around its mean, 
estimates are less extreme. As a consequence, the distribution mean of 
ΩS estimates decreases and tends toward the distribution mean of Ωp1 
estimates. With n=1000, distributions for the estimates of Ωp1 and ΩS 
variables are almost superimposed.

Figure 3 concerns distributions of the strength of association 
estimated over 200 identification sets for the Ωp0 (grey histograms) 
and ΩV (horizontal hatching) sets of variables. Let us restate that ΩV 
variables correspond to FP, and are also a subset of Ωp0. The distribution 
of the estimates for the Ωp0 variables is around 0 (its true mean) and gets 
narrower with increasing sample sizes. The distribution of the estimates 
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Figure 1: Flowchart of the whole process conducted in this study. Represen-
tation of the whole process involved in the discovery of new biomarkers as 
simulated in this study. The “truth” left part of the figure corresponds to the 
simulation settings representing the global population. A total of p=1000 vari-
ables were under study, among whom p0 were under the null hypothesis H0 of 
no association with survival, and p1=20 under the alternative hypothesis. The 
right part of the figure corresponds to the identification and validation steps oc-
curring in “omic” studies. R variables are selected on the identification set, and 
then validated in 50 distinct validation sets.

#Not rejected #Rejected #Total

# True hypothesis U V p0

#Not true hypothesis T S P1

# Total p-R R p
U: True negatives; T: False negatives; V: False positives; S: True positives.

Table 1: Multiple testing setting.
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for the ΩV variables is bimodal. Variables from the ΩV set were selected 
in both extremes of the Ωp0 estimates distribution. With n=100 or 200, 
the estimates of the variables selected in the right extreme are even 
higher than the true strength of association simulated for variables 
related to survival (vertical line). In parallel, one observes that each 
mode of the distribution of the estimates for ΩV is far away from the 
mean distribution of Ωp0 estimates. When increasing the sample size, 
the distribution of Ωp0 estimates gets narrower and thus the extreme 
of the distribution moves away from the vertical line. In parallel, each 
mode of the distribution of the estimates for ΩV approaches zero.

To go further, Figure 4 illustrates the mechanism encountered 
when considering the estimates of all selected variables constituting ΩR. 
This figure concerns both identification and validation steps. For this 
purpose, each panel shows the distribution of the estimated strength 
of association for ΩR computed over 200 identification sets parameters 
(horizontal hatching) and over 200*50 validation datasets (diagonal 
hatching). The vertical dotted line corresponds to the mean distribution 
of ΩR estimates computed on the validation sets. For the identification 
datasets (horizontal hatching), the distribution started from bimodal 
with n=100 to unimodal with n=1000 individuals. With small sample 
sizes, the modes of the distribution are far from 0.2. With n=1000, the 

left mode vanishes and the mean distribution of the estimates for ΩR 
tends toward the mean distribution of the estimates for Ωp1, that is 0.2. 
For the validation sets, the distribution is first unimodal (n=100), and 
tends toward 0, indicating that the majority of the ΩR variables are in 
reality false positives. With n=200, a shoulder appears on the left of 
the distribution, and the shoulder moves from the left to the right. In 
parallel, the mean distribution of the strength of association estimated 
for ΩR tends towards 0.2 and matches this value with n=1000. Another 
noticeable observation is that estimates of R from the identification 
and the validation sets come closer with increasing sample sizes. With 
n=1000, the estimations obtained on identification and validation sets 
join.

Discussion

With too few individuals under study, estimates for Ωp1 (Figure 2) 
and Ωp0 (Figure 3) are highly fluctuating, which is indicated by the wide 
distributions. Variables are selected because of their high estimates, 
which lie in the extreme of the distributions of the estimates for the 
Ωp0 or Ωp1 variables. As a consequence, the mean estimates obtained 
for selected variables were far from their true means: the means for 
ΩV and ΩS were higher than the means for Ωp0 and Ωp1, respectively. 
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Figure 2: Parameter estimates with varying n for variables under the H1 
hypothesis. This figure only concerns estimates for identification sets. Each 
of the four panels was obtained with a specific sample size with n={100; 200; 
400; 1000}. Whatever the panel, the following distributions were plotted: 1-dis-
tribution of the estimates for the Ωp1 variables computed over 200 identification 
sets (grey histogram). 2-distribution of the estimates for the ΩS set of variables 
computed over 200 identification sets (histogram with horizontal hatching). The 
vertical continuous line indicates 0.2.
With n=100, estimates for Ωp1 are highly fluctuating, as shown by the wide 
distribution. Variables are selected in the extreme of the distributions of the 
estimates for Ωp1, and these mean estimates are thus far from their true means. 
When increasing the sample sizes, the mean distribution of ΩS estimates 
tends toward the mean distribution of Ωp1 estimates. This is an illustration of 
the regression to the mean phenomenon that leads to over-estimation of the 
strength of association for true positives.
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Figure 3: Parameter estimates with varying n for variables under the H0 
hypothesis. This figure only concerns estimates for identification sets. Each of 
the four panels was obtained with a specific sample size with n={100; 200; 400; 
1000}. Whatever the panel, the following distributions were plotted: 1-distribu-
tion of the estimates for the Ωp0 variables obtained over 200 identification sets 
(grey histogram). 2-distribution of the estimates for the ΩV sets obtained over 
200 identification sets parameters (histogram with horizontal hatching). The 
vertical continuous line indicates 0.2.
With n=100, estimates for Ωp0 are highly fluctuating, as shown by the wide 
distribution. Variables are selected in the extreme of the distributions of Ωp0 
estimates and the mean estimates of ΩV variables are thus far from their true 
means. When increasing the sample sizes, the distribution of the estimates for 
the Ωp0 variables gets narrower and the mean distribution of the ΩV variables 
estimates decreases. This illustrates the regression to the mean phenomenon 
that leads to the inappropriate selection of some FP variables that have in fact 
no effect on survival.
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This demonstrates a selection bias. When increasing the sample sizes, 
the mean distribution of the estimates for ΩS tends toward the mean 
distribution of the estimates for Ωp1 due to a decrease in the selection 
bias. This is due to the regression to the mean phenomenon, which is 
influenced by the selection process. This phenomenon affects both Ωp0 
and Ωp1 estimates with different consequences. As for Ωp1, regression 
to the mean leads to over-estimation of the strength of association for 
true positives. As for Ωp0, the poor distribution of its estimates leads to 
the inappropriate selection of some FP variables that have in fact no 
effect on survival.

In the light of these comments, Figure 4 shows how the above 
cited mechanisms affect the selection of candidate biomarkers, and the 
further consequences in terms of their confirmation. Because of the 
regression to the mean phenomenon described above, R is a mixture of 
S and V. Whatever the dataset (identification or validation), the right 
mode mostly consists of the estimates of true positives (ΩS), whereas the 
left mode mostly consists of estimates of false positives (ΩV). Increasing 
the sample size results in an increase in S at the cost of a decrease of V. 
Modification of this mixture explains the modification of the shape of 
the distribution of the distribution for the ΩR estimates.

In real life studies, variables are selected according to the strength 
of association estimated during the identification step. The strength of 
association has then to be re-estimated during the validation step, in 
order to confirm the effect on survival of the corresponding candidate 
biomarkers. It appears that the distance between the estimates on the 
identification and the validation datasets is high with n=100 individuals: 
when re-estimating the strength of association of ΩR on independent 
datasets, it falls and tends toward 0. This divergence between the first 
estimation and the re-estimation is an illustration of optimism. Thus, 
it shows how regression to the mean leads to optimism. By quantifying 
this divergence, it is possible to quantify optimism. With n=1000, 
distributions of the estimates for Ωp0 and Ωp1 variables fluctuated to a 
lesser degree. Thus, selection bias and regression to the mean decreases; 
ΩR is almost completely composed of ΩS and the two distributions 
superimpose: there are fewer FP and the estimates for TP are no longer 
over-estimated.

These results demonstrate how a biased estimation of the 
parameters on the identification sets influences the selection of TP and 
FP, and illustrates how power increases and optimism decreases with 
increasing sample size.

These comments demonstrate why large sample sizes in high-
dimensional studies are important. Indeed, the estimation of the 
strength of association from the identification step is critical, because 
it influences regression to the mean through the selection of variables, 
and therefore, their validation on new independent datasets. This is 
important to keep in mind when calibrating new “omic” studies. At 
present, many current studies are designed to identify new markers on 
small sample sizes; this choice is justified by claiming that the candidate 
biomarkers will be validated on larger sample sizes. In complement to 
Figure 4, Figure 5 shows that this reasoning is incorrect (same legend as 
for Figure 4), and prevents the identification of relevant markers. The 
above panel of Figure 5 shows the results obtained with identification 
and validation datasets of respectively 100 and 1000 individuals. Because 
of the poor estimates obtained with n=100, many variables are wrongly 
selected, and have far lower estimates on validation datasets, due to 
regression to the mean. As demonstrated through the above results, 
the identification step can only be improved by generating non-biased 
estimates of the strength of association for Ωp; this is made possible by 
using larger sample sizes in the identification step. Increasing the size 
of validation sets cannot improve the first estimation obtained during 
the identification step. This is confirmed on the bottom panel of Figure 
5, where estimation and selection were conducted on identification sets 
of 1000 patients and validated on 100 patients. This time, the strength 
of association is correctly estimated on the identification sets, and thus, 
confirmed on the validation sets, even though they are of smaller size.

All results discussed above were obtained when the 20 most 
relevant variables were selected using the log-rank statistics. Similar 
results were obtained with control of the FDR (results not shown). In 
fact, controlling the proportion of FP does not correct the estimation 
and selection bias, thus also leading to regression to the mean and 
optimism. The main difference lies in the way variables are selected. 
When n is small, the estimation bias is high, therefore, many FP would 
be selected; thus type I correction leads to small R. When n increases, 
both R and S increase so that the proportion of FP stays constant. Thus, 
variables with lower strength of association than the simulated ones 
have to be selected to satisfy this constraint. For this, the minimum 
value of selected variables is moved to the left when n increases (results 
not shown), leading to a decrease of the selection bias.
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-1.0                                       -0.5                                      0.0                                       0.5                                       1.0

-1.0                                       -0.5                                      0.0                                       0.5                                       1.0

Figure 4: Parameter estimates with varying n for all selected variables. 
Each of the four panels was obtained with a specific sample size with n={100; 
200; 400; 1000}. Whatever the panel, the following distributions were plotted: 
1-distribution of the estimates for the ΩR sets over 200 identification sets pa-
rameters (histogram with horizontal hatching). 2-distribution of the estimates 
of the ΩR sets over 200*50 validation datasets (histogram with diagonal hatch-
ing). The vertical dotted line indicates the mean of the latter distribution. The 
vertical continuous line indicates 0.2.
The R selected variables are a mixture of False Positives (V) and True 
Positives (S) that respectively corresponds to the left and the right mode of the 
distributions of ΩR estimates. When increasing the sample size, S increases 
at the cost of a decrease of V, thus modifying the shape of the distribution of 
the estimates for the ΩR variables. When n=1000, there are fewer FP and the 
estimates for TP are no longer over-estimated. This shows the consequence 
of the regression to the mean phenomenon in terms of confirmation of the 
selected candidate biomarkers.
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Nevertheless, these results were observed when using a high value of 
FDR (FDR=0:2). This high value was chosen to mimic the exploration 
situation. It would be interesting to evaluate the influence of the choice 
of the FDR value on these results.

In this paper, we chose to focus on the regression to the mean 
phenomenon, to explain and illustrate through a simulation process 
how it takes a major place in the mechanisms of identification and 
validation of candidate biomarkers. However, it is useful to keep in 
mind that this is not the only issue that may affect the relevance of 
“omics” studies.

In particular, we chose not to consider in the simulation process, 
the role of the variables database defining the set wherein candidate 
markers will be searched for and selected. In fact, the selected candidates 
are highly dependent on the choice of the initial set of variables. In the 
case of genomics or transcriptomics, for example, this will influence 
the choice of the array. This choice is oriented by the clinical question 
underlying the study. In the case of clinical proteomics in discovery 
stage, the initial database reference is partially defined by the type of 
biological material used as sample (blood, tissue, biopsy, etc...), and 
by the retained purification method. Selected candidate biomarkers 
highly depend on these choices, as the reference database will highly 

-1.0                           -0.5                            0.0                            0.5                            1.0

nident =100, nvalid  =1000

nident =1000, nvalid  =100

-1.0                           -0.5                            0.0                            0.5                            1.0

Figure 5: Parameter estimates for all selected variables with n={100; 1000} 
and n={1000; 100}, respectively, for identification and validation sets. At the 
top n={100; 1000}; at the bottom n={1000; 100}, respectively, for identification 
and validation sets. The following distributions were plotted: 1-distribution of 
the estimates for the ΩR sets over 200 identification sets parameters (histogram 
with horizontal hatching). 2-distribution of the estimates for the ΩR sets over 
200*50 validation datasets (histogram with diagonal hatching). The vertical 
dotted line indicates the mean of the latter distribution. The vertical continuous 
line indicates 0.2.
With n=100, estimates of the strength of association are poor and have far 
lower estimates on validation datasets, even large ones like with n=1000. With 
n=1000 in the identification datasets, however, the strength of association is 
correctly estimated; as a consequence, it is confirmed on the validation sets, 
whatever their size.

vary depending on the type of purification, and/or biological material. 
It is to note that for clinical proteomics in discovery stage; by contrast 
with genomics or transcriptomics, the choice is only partial because 
the exact content of proteins or peptides under study is not known a 
priori. Moreover, only proteins already identified in known data banks 
will be used. These choices may then be analyzed in complementary 
ways to take benefit from the distinct information coming from each 
of them. In the case of proteomics dataset, another issue may occur. 
In fact, the reference database may not exactly reflect the content of 
the processed sample due to technical artifacts like limit of detection, 
and/or resolution of the measure instrument, statistical preprocessing, 
and so on. This leads to “technical” missing values that are then missed 
from the statistical study and this without any biological basis.

To sum up, the database reference is a finite ensemble, and is chosen 
with an a priori knowledge, and this a priori may lead the investigator 
to miss some interesting candidate biomarkers.

Conclusions
The objective of this work was to demonstrate how the discovery of 

important variables directly follows from the estimation of effect sizes, 
and how it is also influenced by the selection to the mean phenomenon. 
In fact, the two questions cannot be separated, as this of the statistical 
power. When searching for new markers, the true strength of association 
is not known. Sampling of the population concerned is used to obtain 
an unbiased estimation of it, and thus, to select relevant markers among 
a large number of “omic” variables. This exploratory stage involves two 
must-have steps: an identification step and a validation step. During 
the identification step, potential markers are selected on the basis of 
their estimated strength of association. In this work, we showed how 
the selection process influences regression to the mean. Understanding 
the phenomenon is a first step to overcoming the problems caused by 
regression to the mean. Only variables with extreme estimated strength 
of association are selected. This leads to a selection bias that is all the 
more strong that sample sizes are low. This favors regression to the 
mean and optimism, the impact of which is then highlighted through 
validation studies, with bad consequences. In fact, it will finally lead to 
the selection of variables wrongly considered as candidate biomarkers.

Pertinent “omic” clinical studies are only possible if the strength of 
association is estimated in a non-biased way in the identification step. 
Consistent sample sizes will have two effects: 1-improvement in the 
accuracy of estimates due to regression to the mean. 2-gain in power. 
Only then will it be possible to identify relevant markers whose effects 
will be confirmed on independent datasets, and thus be used in the 
clinical practice.
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