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Abstract

Background: Immune abnormalities are occasioned during HIV infection consequently predisposing
opportunistic infections. In part, these derangements result from impaired expression of a number of
immunologically important cytokines. However, exact mechanisms behind HIV infectivity on immune system
maturation and cytokine production is not well elucidated, more specifically during treatment with HAART. As such,
this review compiles data from various studies with the aim of understanding alterations in cytokine network during
the course of HIV infection, while assessing the impact of antiretroviral treatment towards cytokine expression.

Methods: Studies describing cytokine profiles among HIV infected cohorts with or without opportunistic infections
(from January, 1990-March, 2016) were carefully inspected from various databases including; PubMed, Hinary,
Medline search, Cochrane, and Google scholar for material bearing potential relevance pertaining to our review.

Results: Based on our search strategy a total of 849 research articles were initially identified. However, upon
further scrutinisation 830 were excluded since they failed to fulfill all rations for inclusion after reviewing. Overall 19
studies were selected for final review which satisfied our criteria of inclusion.

Discussion: Highly active antiretroviral therapy promotes immune integrity by normalizing progenitor cell function
and enhancing CD4+ and CD8+ T cell proliferation and activity. These actions co-operatively prolong survival and
quality of life among HIV infected persons while keeping opportunistic infections at bay. Cytokine secretion is vital for
T-cell function especially towards control of viral infections as they mediate effector roles as well as support immune
system expansion. Elevated cytokine levels during the course of HIV infection can have positive or negative effect
on viral load control or CD4+ T cell lymphocyte homeostasis. For instance, TNF-α and IL-4 aid viral replication while
IFN-γ is implicated in control viral replication.

Conclusion: Both HIV infection and antiretroviral treatment influence levels of circulating inflammatory cytokines.
However, further investigations are warranted to define exact mechanisms of HIV disease progression coupled with
cytokine expression for improving therapeutic options for HIV infected patients.
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antiretroviral therapy; Opportunistic infections
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HAART: Highly Active Antiretroviral Therapy; HIV: Human

Immunodeficiency Virus; IL-2: Interleukin 2; IFN-γ: Interferon-
gamma; TNF-α: Tumor Necrosis Factor Alpha; IL-4: Interleukin-4;
HTLs: Type 1 Helper T-Lymphocytes; MIP-1β: Macrophage
Inflammatory Protein-1beta; GM-CSF: Granulocyte Monocyte Colony
Stimulating Factor; NK cells: Natural Killer Cells; PBMCs: Peripheral
Blood Mononuclear Cells; IP-10: Interferon-gamma-inducible Protein
10; DHEA; Dehyroepiandrosterone; NF-κB: Nuclear Factor-Kappa
Beta; OPC: Oropharyngeal Candidiasis; AZT: Zidovudine; IRD:
Immune Restoration Disease.

Background
Infection with HIV results in acquired immunodeficiency syndrome

which progressively depletes CD4+ T lymphocytes consequently
impairing host immune functions [1]. Contrastingly, unlike the CD4+

cell moiety that gradually declines over time, the CD8+ cytotoxic T
lymphocyte (CTLs) expansions persist until far advanced stages of
HIV disease, when all T-cell numbers tend to fall [2,3]. Highly active
antiretroviral therapy (HAART) is primarily used in controlling HIV
replication with successful intervention being measured by an increase
in baseline CD4+ T cell counts, reduction of CD8+ T cell numbers and
significant decline in HIV viral load [4,5]. HIV viral load remains the
preferred clinical parameter to monitor individuals on ART [6,7],
arguably because it accurately detects virological failure prior to the
manifestation of either immunological or clinical deterioration.
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T lymphocytes play a significant role in controlling numerous viral
infections [8]. The lymphocyte subset known as Th-1 (T helper 1) is
responsible for directing a cytotoxic CD8+ T-lymphocyte response,
while the Th-2 (T helper 2) subset diminishes cytotoxic responses
while mounting antibody production [9]. A variety of T cell factors are
important in enhancing their functional roles. These factors include
secretion of cytokines that mediate T cell effector functions as well as
supporting the expansion of the immune system [10,11], CD40
expression that provide co-stimulatory signals to both responding B
cells and CD8+ T cells [12-14], and capability for proliferation when
stimulated by an antigen [15].

Immunologically, infection by HIV results in chronic immune
activation subsequently leading towards a dysregulated production of
multiple chemokines and cytokines [16], most of which have been
used as hallmarks of disease progression as well as in assessment of
patient’s response to antiretroviral treatment [17]. These cytokines are
classified into pro- and anti-inflammatory mediators, with interplay of
signals between them conferring either protection from or predicting
clinical outcome in both viral and mycobacterial infections [18,19]. For
instance, plasma levels of Th-1 associated cytokine profile including;
interferon-γ (IFN-γ), interleukin (IL)-2 and interleukin (IL)-12 are
highly elevated during acute HIV-1 infection, and gradually decline as
disease progresses [20]. On the other hand, Th-2 expressed anti-
inflammatory cytokines including interleukin (IL)-4 and interleukin
(IL)-10 become significantly elevated during HIV disease advancement
[9,21]. In most infections, Th-1 immunity is protective while type 2
responses assist with down-regulation of Th-1 associated inflammatory
profiles [22,23], thereby regulating immune balance.

With the growing understanding of their roles during infections and
disease progression, cytokines including IFN-γ, IL-10 and tumor
necrosis factor alpha (TNF-α) have been assayed in plasma to assess
the efficacy of antiretroviral therapy during HIV infection [24,25]. For
example, HAART markedly increases plasma IFN-γ levels [26,27], and
considerably lowers IL-10 systemic levels during HIV infection [25].
Hence, these actions co-operatively show that antiretroviral treatment
markedly influences systemic cytokine levels.

On the whole, concurrent HIV, opportunistic pathogens and
antiretroviral treatment subject HIV patients to marked
immunological, biochemical and metabolic derangements [28-30],
however, assessment of cytokine profiles and clinical biomarkers
including CD4+ and CD8+ T cells as immunological correlates of
disease progression and therapeutic outcomes among HIV infected
cohorts exposed to antiretroviral therapy or naive for treatment
remains less defined. As such this review has gathered information
from various studies with the goal of describing derangement in
cytokine profiles during ongoing HIV infection while evaluating the
influence of antiretroviral treatment towards cytokine expression.

Methods
Relevant sources comprising of Medline, PubMed, Hinary,

Cochrane, Embase, DynaMed Plus, CINAHL database and Google
scholarly articles were systematically searched for crucial articles and
reports on cytokine profiles among ART-experienced HIV infected
subjects bearing opportunistic infections or not. Additionally,
conference abstracts were also inspected for potential material before
being included for review. The inclusion criteria was confined to
English only articles lying within January 1990 to March 2016, with
major emphasis being focused on research papers describing cytokine

expression particularly in relation to HAART. Reference lists of
potential studies that met our search criteria were also thoroughly
inspected. Studies that characterized patients as having HIV co-
morbidities including Tuberculosis (TB), hepatitis B and C were
excluded. Similarly, those articles primarily dealing with ART-naive
subjects were also not considered for review. Terms employed in the
study search included; “cytokine expression in HIV”, “ART and
cytokine interactions”, “opportunistic infections and HIV”, “HAART
and opportunistic infections”, “impact of HAART on cytokine
profiles”.

Results
Based on our general research criteria, the initial search identified

849 potential articles. However, final articles selected after assessing the
eligibility of the full-text (if available) and whether relevant to the
review objectives comprised 19 articles. Final articles selected for
review had a total of 5927 participants and were conducted in various
countries comprising; Japan, Iran, Brazil, Norway, Italy, London,
China, Rwanda, California, New Orleans, Texas and South Africa. Age
groups (years) identified varied but majority of studies reported
participants lying between ages 18-60 years.

Among the research articles that satisfied the criteria for inclusion, 4
were cross-sectional based in nature [5,21,31,32], 8 were longitudinal
studies [27,33-39], 5 were prospective cohort studies [40-44] whereas 2
studies involved use of both cross-sectional and longitudinal study
designs [26,45]. Table 1 presents the types of studies, population
among other variables included in our review.

Discussion
Based on previous research it is apparent that various plasma

cytokines are expressed within the body during HIV disease
progression [27,46]. Similarly, antiretroviral treatment has been shown
to cause a dysregulation in cytokine expression profiles [26,31].
However, this has not been fully interrogated, more specifically the
contribution of each specific antiretroviral agent towards circulating
plasma cytokine levels. To add further, the presence of opportunistic
infections including oropharyngeal candidiasis (OPC) stemming from
HIV associated immunosuppression have been shown to contribute
towards cytokine derangement [32,40]. Based upon these critical
observations, the current review summarizes data from multiple
studies with the objective of understanding alterations in immune
activation profiles during underlying HIV disease, while evaluating the
role of antiretroviral treatment towards cytokine expression.
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Figure 1: Search strategy and results.

Author/year Title Year of Study Study country Age group
studied (Yrs) Sample Size Study type

Reuben et al. [27]
Magnitude of IFN-γ production in
HIV-1-infected children is associated
with virus suppression.

2002 Houston, Texas, USA) Children 21 Longitudinal

Klein et al. [21]

Demonstration of the Th1 to Th2
cytokine shift during the course of
HIV-1 infection using cytoplasmic
cytokine detection on single cell
level by flow cytometry.

1997 Frankfurt, Germany. Adults 48 Cross-sectional based

Malherbe et al. [31]

Circulating biomarkers of immune
activation distinguish viral
suppression from nonsuppression in
HAART-treated patients with
advanced HIV-1 subtype C infection

2014 Pretoria, South Africa. Adults (≥ 18 yrs) 58 Cross-sectional based

Watanabe et al. [26]

Sustained high levels of serum
interferon-γ during HIV-1 infection: a
specific trend different from other
cytokines.

2010 Japan Adults

35 Cross-sectional based

18 Longitudinal study

Lilly et al. [40]
Tissue-associated cytokine
expression in HIV positive persons
with oropharyngeal candidiasis

2004 Louisiana, New
Orleans Adults 67 Prospective cohort

Imami et al. [33]

Assessment of type 1 and type 2
cytokines in HIV type 1-infected
individuals: impact of highly active
antiretroviral therapy.

1999 London, United
Kingdom Adults 9 Longitudinal study

Stylianou et al. [45]

IL10 in HIV infection: increasing
serum IL10 levels with disease
progression-downregulatory effect of
potent antiretroviral therapy.

1999 Oslo, Norway Adults

74 Cross-sectional based

32 Longitudinal study

Jones et al. [39]

Cytokine profiles in human
immunodeficiency virus-infected
children treated with highly active
antiretroviral therapy.

2005 Hong Kong, China Children 12 Longitudinal
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Mousavi et al. [32]
Plasma Levels of IFN-γ, IL-4, IL-6
and IL-17 in HIV-Positive Patients
With Oral Candidiasis.

2016 Kerman, Iran 18-50 98 Cross-sectional based

Kranzer et al. [5]

Community viral load and CD4 count
distribution among people living with
HIV in a South African township:
implications for treatment as
prevention.

2013 Cape Town, South
Africa Adults 1300 Cross-Sectional

Survey

Keating et al. [41]

The effect of HIV infection and
HAART on inflammatory biomarkers
in a population-based cohort of US
women.

2011 Interagency HIV study
(USA) Adults 3766 Prospective cohort

Meira et al. [44]

Correlation between cytokine serum
levels, number of CD4+ T cells/mm³
and viral load in HIV-1 infected
individuals with or without
antiretroviral therapy.

2004 Sao Paulo, Brazil 18-63 99 Prospective cohort

Graziosi et al. [43]

Kinetics of cytokine expression
during primary human
immunodeficiency virus type 1
infection

1996
Birmingham,
Bethesda &
Baltomore, USA

Adults 9 Prospective cohort

Norris et al. [34]
Elevations in IL-10, TNF-α, and IFN-
γ from the earliest point of HIV type
1 infection.

2006 San Francisco,
California Adults 40 Longitudinal study

Aukrust et al. [42]

Tumor Necrosis Factor (TNF)
System Levels in Human
Immunodeficiency Virus—Infected
Patients during Highly Active
Antiretroviral Therapy: Persistent
TNF Activation Is Associated with
Virologic and Immunologic
Treatment Failure.

1999 Olso, Norway 16-60 60 Prospective cohort

Twizerimana et al.
[38]

Immunological profiles in HIV
positive patients following Haart
initiation in Kigali, Rwanda.

2014 Kigali, Rwanda Adults 33 Longitudinal study

Stylianou et al. [35]

Interferons and interferon
(IFN)inducible protein 10 during
highly active antiretroviral therapy
(HAART)-possible
immunosuppressive role of IFNα in
HIV infection.

2000 Oslo, Norway 15-64 yrs 60 Longitudinal study

Vecchiet et al. [36]

Interleukin-4 and interferon-gamma
production during HIV-1 infection
and changes induced by
antiretroviral therapy.

2003 Chieti, Italy Adults 52 Longitudinal study

Hardy et al., [37]

Reconstitution of CD4+ T cell
responses in HIV1 infected
individuals initiating highly active
antiretroviral therapy (HAART) is
associated with renewed interleukin2
production and responsiveness.

2003 London, United
Kingdom Adults 36 Longitudinal

Note: IFN-γ: Interferon-gamma; TNF-α: Tumor Necrosis Factor alpha; IL-2: Interleukin-2; HIV: Human Immunodeficiency Virus; HAART: Highly Active Antiretroviral
Therapy; IL-10: Interleukin-10; IP-10: Interferon Inducible Protein-10; IL-17: Interleukin-17; IL-4: Interleukin-4; IFN-α: Interferon Alpha; IL-6: Interleukin-6; Th 2: T-helper
2 cells.

Table 1: Studies/articles included in the review.

Cytokines in HIV
A repertoire of cytokines is produced by CD4+ and CD8+ T cells

during HIV infection [16]. Observed changes in these cytokine levels
during the course of HIV have the potential to either enhance or

suppress viral replication [20]. Among these key cytokines includes;
IFN-γ which has been identified to induce cellular antiviral proteins as
well as activate macrophages [47]. Tumor necrosis factor alpha has
been shown to inhibit viral gene replication and expression [48]. On
the other hand, macrophage inflammatory protein (MIP)-1beta (β) is a
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chemokine known to suppress HIV infection by competing for the
HIV co-receptor chemokine receptor 5 (CXCR-5) [49]. Lastly, perforin
forms pores through cell membranes resulting in cell death [50]. The
soluble factors above are produced when there is contact between a
viral specific antigen and the CD8+ T cells.

Decline in CD4+ T cell counts during HIV infection is associated
with the loss of T cell mediated responses, which has direct correlation
with elevated HIV viral load [5,51]. T cell functional defects are seen
during the early phase of infection, which is accompanied by the
production of type 1 cytokines including; IFN-γ and IL-2 and
thereafter persistence of type 2 cytokines mainly IL-4 and IL-10
[21,22]. Enhanced expression of type 2 cytokines is associated with
HIV disease progression [33]. Additionally, types 1 helper T-
lymphocytes (HTLs) synthesizes IL-2 and IFN-γ that are essential in
enabling effector virus-specific CD8+ cytotoxic T lymphocyte
responses [52]. These effector cells suppress HIV-1 by direct target cell
lysis or by the secretion of soluble mediators such as a CD8+-antiviral
factor (CAF) and C-C chemokines, which contribute toward CD4
(HTLs) resistance to HIV-1 infection [53,54].

During viral infection, virus-specific CD4+ and CD8+ T cells have
been observed to secrete a repertoire of cytokines including; IFN-γ,
IL-2, TNF-α, GM-CSF, RANTES, and MIP-1β [55]. However, the
distribution of cytokine secreting subsets is dissimilar as cytokine
secreting CD8+ T lymphocytes dominate during advanced infection
[56]. In the course of HIV progression, mononuclear cells lose the
capacity to secrete pro-inflammatory IL-2, IL-12, and IFN-γ while
producing increased levels of anti-inflammatory mediators IL-4 and
IL-10 [57]. The loss of IL-2 secretion leads to the loss of the ability of T
lymphocytes to proliferate when stimulated by common antigens
during HIV infection [57].

Among the many cytokines, IL-12 is one of the most critical since it
enhances natural killer (NK) and Th-1 functions while also inducing
production of other cytokines, particularly IFN-γ and IL-2 besides
generation of cytotoxic lymphocytes [58,59]. It has been reported that
IL-12 production is suppressed in HIV-1 infected patients [41]. This
down-regulation of IL-12 responses is one mechanism used by HIV to
counter type 1 associated immunity.

On the other hand, loss of testosterone derivatives in serum has
been reported among HIV subjects and leads to lean-muscle-mass
wasting [60,61]. Reduced expression of dehyroepiandrosterone
(DHEA) during AIDS progression has been linearly correlated to
losses in CD4+ T cells leading to faster progression to AIDS [62]. This
advancement of disease with the loss of CD4+ T lymphocytes are
inversely correlated with the serum cortisol levels [60,62]. As such,
HIV/AIDS leads to low DHEA and high glucocorticoid levels that in
turn cause suppression of IL-2, IFN- γ, and IL-12 production while
stimulating the production of IL-4 and IL-10 [63]. The above factors
result in the suppression of type 1 immune responses while stimulating
type 2 responses in addition to killing CD4+ T lymphocytes [57].
Overall, this range of activities proves not effective in clearing a broad
range of pathogens [57].

The inflammatory mediator IL-7 has a role in different stages of T
cell development from precursors at bone marrow level to mature T
cells in the peripheral blood stream [64]. However, its role in HIV-1
disease progression has yet to be understood. In vitro studies show that
IL-7 induces HIV replication and raises the virus DNA levels in
infected CD8+ peripheral blood mononuclear cell (PBMC) cultures
[64,65]. Additionally, studies reveal IL-7 to be effective in enhancing

HIV-1 proviral reactivation when compared to IL-2 alone or in
combination with phytohaemagglutinin (PHA) in CD8+ depleted
peripheral blood mononuclear cells (PBMCs) [65]. Among HIV
subjects on ART, stromal IL-7 levels decline with an increase in CD4+

levels.

Like other soluble markers of immune activation, IL-15 a novel
cytokine with IL-2 like activity is described to be involved in
development and activation of naive and memory effector T cells
[23,66]. This cytokine plays a role in the survival and expansion of
naive as well as memory CD8+ T cells [67]. Additionally, IL-15
increases effector function, proliferation and survival of NK cells
[68,69], which are imperative in the control of HIV replication. Among
ART naive patients, IL-15 production is decreased while in individuals
with a good response to HAART, the levels of IL-15 are comparable to
those of healthy subjects [70].

The secretory cytokine IL-2 that is produced by activated T cells
exerts an array of immunological roles including T cell proliferation,
differentiation and survival [71]. Among HIV infected individuals
cytokine trial interventions have shown that introduction of exogenous
recombinant IL-2 restores the ability of the immune system to induce
T cell expansions especially the CD4+ moiety [72]. As such, the degree
of HIV-associated immune activation that is mirrored by T-cell
turnover is reduced among recombinant IL-2 recipients [73]. These
events show that IL-2 functions to control deleterious immune effects
of HIV.

Normally, TNF-α, a potent cell signaling protein is identified for its
crucial role in immunoregulation [74]. During HIV disease the
cytokine is able to induce viral expression in severely infected cells
[75]. Various studies document an initial burst of TNF-α levels during
primary HIV infection [34], although much higher frequency and
concentration is observed during progressive disease [42,76], that may
be linked to continuous TNF-α activation. Therefore, in as much as
HIV causes marked dysregulation of TNF-α production, the cytokine
also contributes towards pathogenesis of HIV.

Heightened levels of immune activation resulting from HIV
pathogenesis accelerates cytokine shift towards Th-2 responses. Based
upon this, IL-10 a Th-2 expressed cytokine is significantly elevated
during chronic HIV disease, which is correlated with HIV viral load
[45]. Interleukin-10 extends HIV pathogenesis by crippling effector T
cell responses [77,78]. However, in as much as the cytokine has been
implicated in poor disease outcomes, it also partly confers immune
protection. For instance, IL-10 suppresses replication of HIV within
macrophages [79], which reduces risk of TB development among HIV
infected persons. Interestingly, IL-10 may also inhibit expression of
Th-1 associated cytokines including IFN-γ for immune regulation
purposes [80].

Interferon-gamma being among the critical Th-1 cytokines and
secreted predominantly by CD4+, CD8+ (CTLs) and NK cells exerts
both antiviral and immuno-stimulatory functions [81]. As such, the
inflammatory mediator is highly expressed during acute phase of HIV
and confers protection until advanced stages of disease where Th-2
responses override [45,82,83]. This elevation in systemic levels of the
cytokine during acute disease stage has been linked with peak HIV
viraemia [84] that is partly responsible for excessive immune activation
experienced in HIV. It is also key to note that deficiencies in NK cell
responses among HIV patients independent of CD4+ T cell depletion
directs IFN-γ secretion [85], hence signifying the role of IFN-γ as a
primary cytokine against HIV disease.
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The chemokine marker IFN-γ-inducible protein 10 (IP-10) of the
innate immune system mediates a number of immunological functions
[86]. For instance, elevated levels of this chemokine have been reported
in different viral infections such as severe influenza infection [2,87],
West Nile virus infection [88], acute and chronic Hepatitis C [89],
showcasing its involvement in immune responses during viral
infections. However, during HIV mono-infection, levels of IP-10 are
upregulated compared to healthy individuals [35,90,91]. More
importantly, the raised IP-10 levels during HIV are inversely correlated
with CD4+ T cell counts and directly with viral load thus promoting
HIV replication [41,92]. These findings clearly highlight the role of
IP-10 in HIV pathogenesis and disease progression.

Finally, exosomes from HIV infected cells are capable of stimulating
the secretion of pro-inflammatory cytokines via trans-activation
response (TAR) ribonucleic acid (RNA). Incubation of macrophages
with exosomes retrieved from HIV-1 infected cells has been shown to
result in dramatic elevations of pro-inflammatory cytokines tumor
necrosis factor-beta (TNF-β) and Interleukin (IL)-6 hence indicating
that exosomes with TAR RNA can play a role in controlling cytokine
gene expression [93]. Toll like receptor binding via TAR RNA or TAR
microRNA has the potential to activate nuclear factor-kappa beta (NF-
κB) pathway thereby regulating cytokine expression. This explains a
possible inflammation mechanism that is normally observed in
patients infected with HIV who are under combination ART [93].

HIV-1 Controllers but not non-controllers maintain CD4+ T
cells co-expressing various cytokines

In a study to evaluate the cytokine co-expression profiles of HIV-1
specific CD4+ T lymphocytes expressing; IFN-γ, IL-2 and TNF-α, it
was found that CD4+ T cells secreting two to three cytokines had over
50% response while in non-controllers over 75% of the cells were single
producers (secreted one cytokine) of mainly IFN-γ [49]. Functional
superiority belonged to those cells producing more than two cytokines
[49]. The HIV-1 controllers were defined as ART naive individuals
with plasma viremia of 1000 HIV RNA copies per ml after one year of
medical follow up while non-controllers were ART naive subjects with
plasma viremia of 7000 HIV 7000 HIV RNA copies per ml. The double
and triple cytokine producers secreted higher levels of cytokines per
cell than single producers while triple producers expressed more
superior cytokine levels per cell compared to IL-2 and IFN-γ double
producers. These observed differences were not much pronounced in
cells producing single cytokines [49].

Effect of HIV on expression of cytokines in tissues of patients
with oropharyngeal candidiasis

Oropharyngeal candidiasis (OPC), caused primarily by Candida
albicans, remains the most common fungal lesion among HIV positive
individuals despite the invention of HAART [94,95]. A study by Lilly et
al. [40] evaluated the effects of HIV on tissue cytokine and chemokine
expression among infected subjects with and without OPC. Changes
were documented in chemokines and cytokines of both the Th-1 and
Th-2 arms of the immune system. There was notable rise in
chemokines (MCP-1, RANTES, IP-10) and cytokine levels of (IFN-γ,
IL-12, IL-2 IL-15, IL-6) and significant reduction in TNF-α levels
compared to controls [40]. This observed trend generally indicates an
enhanced pro-inflammatory type host immune responsiveness towards
HIV in the presence of OPC.

In yet another study by Mousavi et al. [32] on immunological
interaction between OPC and HIV, there were marked differences in
expression of cytokines assessed. Individuals co-infected with HIV and
OPC exhibited significantly higher IFN-γ and IL-17 production
compared to HIV/OPC mono-infected and uninfected control
population. The increase in IFN-γ levels is suggestive of improved type
1 immunological outcomes. Similarly, elevation in IL-17 levels is
directed towards fungal pathogens. Previous studies reveal that
deficiency in IL-17 cytokine levels highly predisposes disseminated
candidiasis [96,97].

Similarly, in addition to IL-17, expression of IL-22 and TNF-α also
confers immune integrity against C. albicans [98,99]. The two
cytokines are reported to synergistically trigger an innate immune
response involving release of various immune-modulatory molecules
including chemokines CXCL-9/-10/-11; antimicrobial peptides human
β defensin 2 (HBD-2) and S100 proteins; and initial complement
factors C1r and C1s which all confer protection in human primary
keratinocytes [99-101], that maintains C. albicans infections at bay.

With the onset of HAART, incidences of OPC in HIV co-infected
subjected have steadily declined [102]. This activity is hypothesized to
result from immune reconstitution and CD4+ T cell recovery
associated with various antiretroviral agents [103,104], and/or
unusually as a result of immunologic hyper-activation against
underlying fungal challenge [105,106].

Altogether, infection with HIV highly interferes with oral mucosal
immune cell populations that are critical in host defence against C.
albicans [107]. The cytokine expression profiles observed during HIV
and OPC reflect upon changes in CD4+ and CD8 CTLs as they are the
chief producers of these inflammatory mediators [108]. For instance,
IL-2, TNF-α and IL-15 are CD8 cell associated cytokines [109],
whereas IFN-γ a key Th-1 expressed cytokine is produced by both
CD4+ and CD8+ subsets of the immune system [81]. There only
difference is identified by the relative systemic distribution at specific
time-points. The interplay of signals and kinetics of production
between these immune regulators confers resistance or increases
susceptibility towards diseases including OPC and HIV.

Cytokine profiles in HIV patients on HAART
Derangements in cytokine production during both acute and

chronic stages of HIV have initially been addressed [43,110]. Similarly,
the contribution of antiretroviral treatment towards expression of
multiple plasma cytokines during HIV has previously been described,
though not well elucidated [35]. Standard antiretroviral treatment for
management of HIV comprises of at least three antiretroviral drugs
that suppress HIV replication. Selection of these therapeutic agents is
performed from among Nucleoside Reverse Transcriptase Inhibitors
(NRTIs), Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)
and Protease Inhibitors (PIs) [111].

Studies have documented the effects of HAART in HIV patients
immune reconstitution and subsequent viral suppression [33]. IFN-γ
earlier shown to be crucial in regulating HIV replication [45], yields
discordant results during antiretroviral treatment. Various studies
describe a steady raise in IFN-γ levels during acute HIV-1 infection,
which markedly increases during HAART [26,27]. This may be related
to immune restoration following viral suppression. Contrastingly, more
recent studies document significant decline of plasma IFN-γ levels
with HAART administration among previously untreated HIV-1
infected subjects [31] that may be related to down-regulation of

Citation: Wambani JR, Kiboi NG, Makori WM, Ogola PE, Rachuonyo HO (2016) Immunological Profiles in HIV Positive Patients with or without
Opportunistic Infections and the Influence of Highly Active Antiretroviral Therapy: A Systematic Review and Update. J Clin Cell Immunol
7: 429. doi:10.4172/2155-9899.1000429

Page 6 of 11

J Clin Cell Immunol
ISSN:2155-9899 JCCI, an open access journal

Volume 7 • Issue 3 • 1000429



inflammation and immune activation by antiretroviral drug
intervention. Collectively, these reported contradictory findings may
be attributed to distinct mechanisms of immune activation that are
differentially affected by antiretroviral therapy.

Successful antiretroviral therapy has previously been reported to
lower plasma IL-10 levels [25], which is paralleled by a reduction in
viral load among HIV-1 infected individuals [33]. This indicates that
high HIV viral load may be the main driver of high plasma IL-10
levels, which significantly reduce upon effective treatment with
antiretroviral therapy. Furthermore a lack of decline in plasma IL-10
levels following HAART administration has been associated with
virological treatment failure [45], which further reinforces the above
argument.

The chemokine IP-10 and cytokine IFN-α have previously been
shown to have a pathogenic role in HIV by enhancing viral replication
[92], that complicates antiretroviral treatment outcomes. A study by
Stylianou et al. [35] involving HIV positive cohorts, revealed elevated
IP-10 and IFN-α levels in HIV subjects relative to healthy controls
prior to HAART initiation. Upon therapeutic intervention, levels of
both cytokines significantly declined although not to normal
concentrations [35]. This observation may be an indication of host
immune recovery that regulates inflammatory episodes associated with
these cytokines.

The pro-inflammatory mediator TNF-α has initially been implicated
in HIV pathogenesis by inducing virus transcription-activating factors
[112]. Previous studies conducted by Meira et al. [44] documented
lower TNF-α, IL-4 and IL-10 serum level among HIV-1 mono-infected
ART-experienced compared to their ART-naive counterparts.
Similarly, elevated levels of TNF-α have been reported in mononuclear
phagocytes during HIV, and which significantly decline during
HAART [42]. A heightened level of the three cytokines hastens HIV
replication and has been associated with poor HIV outcomes
[113,114]. Thus the observed findings above delineate HAART to
induce immunological recuperation while down-regulating cytokine
associated inflammation and immune activation.

Interleukin-4 a definer of Th-2 subset exerting dominant
antiproliferative effects is identified among the critical cytokines
promoting HIV immunopathology [115]. However, with HAART
commencement, expressed levels of this cytokine gradually decline to
those comparable with healthy controls [36]. This may be linked to
marked reduction in HIV viral load with subsequent suppression of
inflammatory episodes resulting from combined antiretroviral therapy.

In contrast to IL-4 cytokine expression profile, IL-2 a potent pro-
inflammatory mediator bears immune protective effects including
infection with HIV [37]. The absolute values of IL-2 increase
substantially in HAART patients [38,44], with the lowest values
recorded in non-treated patients [33]. This observation may be due to
immune recovery with subsequent proliferation of naive CD4+ and
CD8+ T cells [116,117] that enhances expression of this inflammatory
marker. Interestingly, it has been shown that IL-2 secretion is
transiently enhanced during zidovudine (AZT) monotherapy [118].
This may be an indication that various ART regimen enhance more
responses of specific immune effector cells, however, additional studies
are warranted to reinforce this assumption.

The primary role of the regulatory cytokine IL-12 in antiviral cell-
mediated immunity has extensively been investigated [119]. Previous
studies show that untreated HIV-1 infected subjects with progressive
disease have suppressed serum IL-12 levels compared to HIV

uninfected controls [41]. Similarly, studies on HIV infected children
enrolled on HAART demonstrated up-regulation in IL-12 production
following treatment with antiretroviral agents, which was positively
correlated with CD4+ T cell counts [39]. These findings reveal that
HAART not only restores immune integrity but also induces a
significant CD4 cell rescue and IL-12 proliferation that are required for
proper immune effector functions.

IL-6 a B-cell stimulatory cytokine is involved in IgH class switching
and possesses anti-apoptotic properties on B cells which heighten
development of various tumors [120]. Elevated IL-6 levels that remain
persistently high have the ability to cause B-cell hyper-activation that
promotes development of lymphoma [120]. Similar pattern of IL-6
mediated immune deterioration is experienced during HIV. Studies
document elevated systemic IL-6 levels that is directly associated with
residual levels of HIV viraemia [121], which indicates that IL-6 may
contribute towards advancement of disease. Apparently, during
HAART the circulating levels of this cytokine are reported to remain
unchanged [122]. The paradoxical finding may be attributable to
transmitted drug resistance prior to HAART initiation. Levels of this
cytokine have also been described to remain steadily high in patients
who develop immune restoration disease (IRD) despite being on ART,
which may be owed to persistent immune activation associated with
asymptomatic opportunistic infections [123].

Conclusions and Future Perspectives
Based on review from multiple studies, it is clear that HIV induces a

cascade of host inflammatory cytokine responses at magnitudes greater
than those observed with most other infectious agents. Additionally, an
observed alteration in cytokine profiles has been shown to be
associated with adverse clinical events and disease advancement.
Similarly, notable changes in systemic cytokine levels observed during
HAART initiation are suggestive of declining immune activation and
chronic inflammation subsequent to CD4+ T cell recovery and HIV
viral load reduction. Interestingly, though, cytokine profiles have been
documented to variate among individual HIV patients, which may be
attributed to distinct mechanisms of immune activation that are
differentially affected by antiretroviral treatment. On the whole, more
investigations on inflammatory and regulatory profiles are warranted
in order to potentiate their utility as predictors of HIV disease
progression and response to treatment among HIV infected cohorts.
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