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ABSTRACT

Clostridium perfringens is a member of the gastrointestinal tract (GIT) microbial community for both diseased and 
healthy humans and animals. Also, this bacterium is responsible for around 5%–15% of all circumstances of 
antibiotic-associated diarrhea, which develops in 5%–40% of all patients receiving antibiotic therapy. In addition, it 
causes enteritis necroticans; an often-fatal human disease. C. perfringens is clear and defined the underlying factors 
responsible for specific aspects of pathology remains uncertain. This study predicts an effective epitope-based vaccine 
against fructose 1,6-biphosphate aldolase (FBA) enzyme of Clostridium perfringens using immunoinformatics tools. 
The sequences were retrieved from NCBI and several prediction tests were conducted to analyze possible epitopes 
for B-cell, T-cell MHC class I and II. Tertiary structure of the most promising epitopes was obtained. 48 epitopes 
showed high binding affinity for B-cells, while five epitopes showed high binding affinity for MHC I and MHC II. 
The results were promising to formulate a vaccine with more than 98% population coverage. We hope that these 
promising epitopes serves as a preventive measure for the disease in the future and recommend in vivo and in vitro 
studies.
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INTRODUCTION

Clostridium perfringens is a gram positive, rod-shaped, spore-
forming, anaerobic bacterium [1-6] associated with miscellaneous 
environments including: soils, food, sewage, and is regarded as a 
member of the gastrointestinal tract (GIT) microbial community 
of both diseased and healthy humans and animals [1,3,4,6] with 
various significant systemic and enteric diseases, in both humans 
and animals [1,3-8]. C. perfringens is the principal cause of traumatic 
gas gangrene. It is also considered as a major cause of food-borne 
illness, classified as the second most common bacterial cause of 
food poisoning in the USA. Also, this bacterium is responsible 
for around 5–15% of all circumstances of antibiotic-associated 
diarrhea, which develops in 5%–40% of all patients receiving 
antibiotic therapy. In addition, it causes enteritis necroticans; an 
often-fatal human disease. As an animal pathogen, C. perfringens is 
responsible for several serious diseases, including necrotic enteritis 
(NE). Furthermore, widespread vaccination is practiced to protect 
livestock from C. perfringens-induced enteritis and enterotoxaemia, 
the latter characterized by intestinally produced toxins that are 
absorbed into the circulation and then affect other organs such 

as the brain [4]. Despite that, C. perfringens is clear and defined 
the underlying factors responsible for specific aspects of pathology 
remains uncertain. Decoding the genes that are involved in the 
virulence factors could lead to more targeted clinical preventions 
in C. perfringens-associated intestinal diseases, whether it is 
humans or animals [1,5]. Significantly, C. perfringens strains are 
known to secrete more than twenty identified toxins or enzymes 
that could possibly be the principal virulence factors involved in 
the pathophysiology [1]. Fructose-1,6-bisphosphate aldolase may 
function as an adhesion enzyme that may serve an important step 
in C. perfringens pathogenesis [9].

Fructose-1,6-bisphosphate aldolase (FBA) catalyzes the cleavage of 
fructose 1,6-bisphosphate (FBP) into glyceraldehyde 3-phosphate 
and dihydroxyacetone phosphate (DHAP) or the reverse aldol 
condensation reaction. This is an essential enzyme for glycolysis, 
gluconeogenesis and the Calvin cycle. FBAs can be divided into 
two groups with different catalytic mechanisms, named Class-I and 
Class-II respectively; Class-I FBAs utilize an active site lysine residue 
to stabilize a reaction intermediate via Schiff-base formation, and 
mainly found in animals, plants and green algae and occasionally in 
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bacteria. Class-II FBAs have an absolute requirement for a divalent 
ion, usually zinc and mainly found in bacteria. Most organisms 
contain only one class of FBAs, although a small number possess 
enzymes of both classes [10,11]. In recent studies, FBA not only 
contributed to energy production in the glycolytic pathway but also 
had non-glycolytic functions. It is exciting that glycolytic enzymes 
can be located at the surface of bacteria, where these enzymes can 
exert functions associated with virulence. Due to their functions 
in virulence, glycolytic enzymes may be used as vaccine candidates. 
An advantage of the glycolytic enzymes as vaccines is that they are 
highly conserved among different pathogens, which is a premise 
for broad-spectrum vaccine development. The fact that the FBA 
Class-II of prokaryotes has little homology with the FBA Class-I 
of eukaryotes provided an advantage for a possible therapeutic or 
vaccine target [10-12].

FBA was firstly identified as one of six proteins that could be used in 
immunization of some animal against necrotic enteritis and tested 
to be found significantly protect against it [13-15]. In Mahmood 
study, they found that the antigenic proteins (including FBA) and 
alpha-toxin conferred significant protection to broiler chicks against 
mild and severe infections with virulent C. perfringens. Besides 
alpha-toxin immunization which imparted the highest protection 
to severely challenged birds, certain proteins secreted can play a 
role in immunizing broiler chickens against necrotic enteritis [16]. 
On other hand, Wilde study mentioned that there is currently no 
necrotic enteritis vaccine commercially available for use in broiler 
birds, the most important target population. Salmonella-vectored 
vaccines represent a convenient and effective option for controlling 
this disease [9]. They used a single attenuated Salmonella vaccine 
strain, to deliver up to three C.perfringens antigens; two of the 
antigens were toxoids and the third was FBA. Oral immunization 
with a single Salmonella vaccine strain producing one of the three 
antigens or all of them was immunogenic, generating humoral, 
cellular and mucosal responses against these antigens. The 
strains delivering FBA only or all three antigens provided the best 
protection. They also demonstrated that both toxins and FBA are 
present on the C. perfringens cell surface. In several organisms, FBA 
is recognized as a “moonlighting protein”, one that can perform 
two or more autonomous functions. However, it may seem to be a 
usual choice for inclusion in a vaccine.

The aim of this study is to predict an effective epitope-based 
vaccine against fructose 1,6-biphosphate aldolase (FBA) enzyme 
of Clostridium perfringens using immunoinformatics tools. 
Immunoinformatics may be placed at the junction point between 
experimental and computational approaches. It can be described 
as a branch of bioinformatics concerned with in silico analysis 
and modeling of immunological data. More advanced analyses of 
the immune system using computational models typically involve 
conversion of an immunological question to a computational 
problem, followed by solving of the computational problem and 
translation of these results into biologically meaningful answers. 
Immunoinformatics research stresses mostly on the design and 
study of algorithms for mapping potential B- and T-cell epitopes, 
which speeds up the time and lowers the cost needed for 
laboratory analysis of pathogen gene products. Using such tools 
and information, the sequence areas with potential binding sites 
could be analyzed, which in turn leads to the development of new 
vaccines [17-19]. This study is regarded as the first study using 

MATERIALS AND METHODS

Protein sequence retrieval

A total of 94 Clostridium perfringes FBA strains were retrieved 
from National Center for Biotechnology Information (NCBI) 
database on July 2019 in FASTA format. These strains were 
gathered from different parts of the world for immunoinformatics 
analysis. The retrieved protein strains had length of 288 that hold 
the name fructose-1,6-bisphosphate aldolase.

Determination of conserved regions

The retrieved sequences of Clostridium perfringes FBA were 
subjected to multiple sequence alignment (MSA) by blasting them 
against reference sequence (WP_ 124041924.1) using ClustalW 
tool of BioEdit Sequence Alignment Editor Software version 7.2.5 
to determine the conserved regions. Molecular weight and amino 
acid composition of the protein were also obtained [20].

Sequenced-based method

The reference sequence of Clostridium perfringes FBA was 
submitted to different prediction tools at the Immune Epitope 
Database (IEDB) analysis resource to predict various B and T cell 
epitopes. Conserved epitopes would be considered as candidate 
epitopes for B and T cells [21].

B cell epitope prediction

B cell epitopes is the part of the vaccine that interacts with 
B-lymphocytes. Candidate epitopes were analysed using several 
B cell prediction methods from IEDB, to identify the surface 
accessibility, antigenicity and hydrophilicity with the aid of 
computerized algorithm. The Bepipred Linear Epitope Prediction 
2 was used to predict linear B cell epitope with default threshold 
value 0.533. The EMINI Surface Accessibility Prediction tool was 
used to detect the surface accessibility with default threshold value 
1.000. The Kolaskar and Tongaonkar antigenicity method was used 
to identify the antigenicity sites of candidate epitope with default 
threshold value 1.032. Parker Hydrophilicity Prediction tool was 
used to identify the hydrophilic, accessible, or mobile regions with 
default threshold value 1.695 [22-25].

AllerTOP 2

This method is used for allergenicity predictions; it is based on auto 
cross covariance (ACC) transformation of protein sequences into 
uniform equal-length vectors. The reference protein sequence was 
inserted in the appropriate site in the software page. The principal 
Characteristics of the amino acids were represented by five E 
descriptors, which indicate amino acid hydrophobicity, molecular 
size, helix-forming propensity, relative abundance of amino acids, 
and β-strand forming propensity [26].

T cell epitope prediction MHC class I binding 

T cell epitopes is the part of the vaccine that interacts with T 
lymphocytes. Analysis of peptide binding to the MHC (Major 
Histocompatibility complex) class I molecule was assessed by the 
IEDB MHC I prediction tool. Artificial Neural Network (ANN) 
4.0 prediction method was used to predict the binding affinity. 
Before the prediction, all human allele lengths were selected and 
set to9 amino acids. The half-maximal inhibitory concentration 
(IC50) value required for all conserved epitopes to bind at score computational approach to design an epitope-based vaccine. 
less than 100 were selected [27-29].
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T cell epitope prediction MHC class II binding

Prediction of T cell epitopes interacting with MHC class II 
was assessed by the IEDB MHC II prediction tool for helper T 
cells. There are six tools for prediction: SMM_align, NN-align, 
Compinatorial Libraries, Sturniolo's method, Net MHC II pan 
and consensus method. Human allele references set were used to 
determine the interaction potentials of T cell epitopes and MHC 
Class II allele (HLA DR, DP and DQ). NN-align method was used 
to predict the binding affinity. IC50 values at score less than 500 
were selected [30,31].

Population Coverage

In IEDB, the population coverage link was selected to analyse the 
epitopes. This tool calculates the fraction of individuals predicted 
to respond to a given set of epitopes with known MHC restrictions. 
The appropriate checkbox for calculation was checked based on 
MHC I, MHC II separately and combination of both which is set 
against the whole world population [32].

Homology Modelling

The 3D structure was obtained using raptorX which is a protein 
structure prediction server developed by Xu group, excelling at 
predicting secondary and tertiary structure for protein sequences 
without close homologs in the Protein Data Bank (PDB). Obtained 
3D protein structure was visualized by USCF chimera (version 1.8) 
which was also used for visualization and analysis of molecular 
structure of the promising epitopes [33-35].

Molecular docking analysis

In silico molecular docking was performed to explore the 
binding affinity between the promising peptides and the target 
HLA-A02:01. The latter has been selected due to its involvement 
in many immunological and pathological diseases. AutoDock Vina 
was used to perform the docking analysis and the binding energies 
were calculated and ranked [36-38]. The model with the least 

RESULTS

Multiple sequence alignment

The amino acid composition for the reference sequence of class II 
fructose-1,6-bisphosphate aldolase Clostridium perfringens and their 
conserved regions are represented in Figures 1 and 2 individually. 
Alanine and Glycine were the most frequent amino acids (Table 1).
Table 1: Molecular weight and amino acid frequency distribution of the 
protein.

Amino Acid Number   Mol%
Ala 37 12.85
Cys 3 1.04
Asp 10 3.47
Glu 26 9.03
Phe 9 3.13
Gly 32 11.11
His 5 1.74
Ile 22 7.64
Lys 21 7.29
Leu 23 7.99
Met 11 3.82
Asn 19 6.6
Pro 8 2.78
Gln 5 1.74
Arg 4 1.39
Ser 14 4.86
Thr 10 3.47
Val 21 7.29
Trp 2 0.69
Tyr 6 2.08

B-cell epitope prediction

Class II fructose-1, 6-bisphosphate aldolase Clostridium perfringens 
reference sequence was subjected to Bepipred linear epitope 2, 
Kolaskar and Tongaonkar antigenicity, EMINI surface accessibility, 
and Parker hydrophilicity prediction methods to test for different 
immunogenicity parameters. Epitopes successfully passed the three 
tests were subjected to AllerTOP 2.0 server to test their allergenicity 
(Table 2 and Figures 3-7). The four tests of 48 epitopes have been 
successfully passed. 3D tertiary structure of the proposed B cell 

RMSD value denotes a high binding affinity.

epitopes is shown (Figure 7).

Peptide Start End Length

Kolaskar and 
Tongaonkar 

antigenicity score 
(TH: 1.018)

EMINI surface 
accessibility score 

(TH: 1)

Parker 
Hydrophilicity 

prediction score 
(TH:  1.447)

Allertop

TAQENNSPVILGVSE 37 51 15 1.025 1.011 2.607 non-allergen

HLDHGSYQ 83 90 8 1.048 1.972 2.662 non-allergen

LDHGSYQG 84 91 8 1.02 1.434 3.113 non-allergen

DPAECKQI 155 162 8 1.044 1.263 3.387 non-allergen

HLDHGSYQG 83 91 9 1.029 1.637 3 non-allergen

LDHGSYQGA 84 92 9 1.025 1.215 3 non-allergen

YSIEENIVK 110 118 9 1.03 1.331 1.467 non-allergen

PAECKQIAE 156 164 9 1.045 1.11 3 non-allergen

VSKINVNTE 226 234 9 1.019 1.206 2.644 non-allergen

HLDHGSYQGA 83 92 10 1.033 1.399 2.91 non-allergen

SHYSIEENIV 108 117 10 1.045 1.027 1.61 non-allergen

HYSIEENIVK 109 118 10 1.037 1.533 1.53 non-allergen

Table 2: List of conserved peptides (Epitopes) with their antigenicity, EMINI surface accessibility, Parker, Hydrophilicity scores and their allergencity that 
successfully passed the four tests.
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YSIEENIVKT 110 119 10 1.018 1.626 1.84 non-allergen

SHYSIEENIVK 108 118 11 1.035 1.697 1.982 non-allergen

HYSIEENIVKT 109 119 11 1.026 1.828 1.864 non-allergen

DPAECKQIAEL 155 165 11 1.047 1.069 2.527 non-allergen

HLDHGSYQGAID 83 94 12 1.029 1.102 2.592 non-allergen

GSHYSIEENIVK 107 118 12 1.022 1.367 2.292 non-allergen

SHYSIEENIVKT 108 119 12 1.024 1.994 2.25 non-allergen

HYSIEENIVKTK 109 120 12 1.018 2.976 2.183 non-allergen

CQLSFAEATRKY 235 246 12 1.053 1.427 1.725 non-allergen

EIADPAECKQIAE 152 164 13 1.026 1.07 2.992 non-allergen

CQLSFAEATRKYIE 235 248 14 1.045 1.191 1.464 non-allergen

VNTECQLSFAEATRK 231 245 15 1.026 1.562 2.593 non-allergen

CQLSFAEATRKYIEA 235 249 15 1.047 1.006 1.507 non-allergen

SHYSIEENIVKTKEII 108 123 16 1.024 1.621 1.531 non-allergen

VNTECQLSFAEATRKY 231 246 16 1.034 2.034 2.313 non-allergen

NTECQLSFAEATRKYI 232 247 16 1.02 1.921 2.044 non-allergen

VNTECQLSFAEATRKYI 231 247 17 1.041 1.179 1.706 non-allergen

ECQLSFAEATRKYIEAG 234 250 17 1.025 1.185 2.124 non-allergen

CQLSFAEATRKYIEAGK 235 251 17 1.03 1.369 2 non-allergen

VNTECQLSFAEATRKYIE 231 248 18 1.031 1.684 2.044 non-allergen

TECQLSFAEATRKYIEAG 233 250 18 1.018 1.41 2.294 non-allergen

ECQLSFAEATRKYIEAGK 234 251 18 1.02 1.955 2.322 non-allergen

CQLSFAEATRKYIEAGKD 235 252 18 1.02 1.885 2.444 non-allergen

VNTECQLSFAEATRKYIEA 231 249 19 1.033 1.361 2.047 non-allergen

CQLSFAEATRKYIEAGKDL 235 253 19 1.033 1.243 1.832 non-allergen

VSKINVNTECQLSFAEATRK 226 245 20 1.032 1.293 2.32 non-allergen

VNTECQLSFAEATRKYIEAG 231 250 20 1.025 1.097 2.23 non-allergen

CQLSFAEATRKYIEAGKDLE 235 254 20 1.023 1.754 2.13 non-allergen

FSSVMFDGSHYSIEENIVKTK 100 120 21 1.018 1.134 1.671 non-allergen

GVSKINVNTECQLSFAEATRK 225 245 21 1.025 1.049 2.481 non-allergen

VSKINVNTECQLSFAEATRKY 226 246 21 1.038 1.661 2.119 non-allergen

VNTECQLSFAEATRKYIEAGK 231 251 21 1.02 1.798 2.395 non-allergen

GVSKINVNTECQLSFAEATRKY 225 246 22 1.031 1.321 2.282 non-allergen

VSKINVNTECQLSFAEATRKYIE 226 248 23 1.035 1.325 1.926 non-allergen

SLGVSKINVNTECQLSFAEATRKY 223 246 24 1.039 1.002 1.979 non-allergen

GVSKINVNTECQLSFAEATRKYIE 225 248 24 1.028 1.101 2.083 non-allergen

VSKINVNTECQLSFAEATRKYIEA 226 249 24 1.036 1.123 1.933 non-allergen

Figure 1: Amino acid composition for class II fructose-1,6-bisphosphate aldolase Clostridium perfringens using 
BioEdit software.
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Figure 2: Multiple Sequence Alignment using BioEdit software.
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Figure 3: Bepipred Linear Epitope Prediction 2.0. Yellow areas above the threshold (red line) are proposed to 
be a part of B cell epitopes. While green areas are not.

Figure 4: Kolaskar & Tongaonkar Antigenicity. Yellow areas above the threshold (red line) are proposed to be 
a part of B cell epitopes.While green areas are not.

Figure 5: Emini Surface Accessibility Prediction. Yellow areas above the threshold (red line) are proposed to 
be a part of B cell epitopes. While green areas are not.
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Figure 6: Parker Hydrophilicity Prediction. Yellow areas above the threshold (red line) are proposed to be a part of B cell epitopes. 
While green areas are not.

Figure 7: Proposed B cell epitopes. Diagram shows the position of (SLGVSKINVNTECQLSFAEATRKY) and 
(FSSVMFDGSHYSIEENIVKTK) in yellow colour at structural level using Chimera software.



8

Elhag M, et al. OPEN ACCESS Freely available online

Immunome Res, Vol.17 Iss.1 No:184.

Prediction of Cytotoxic T-lymphocyte epitopes and 
modelling

Class II fructose-1, 6-bisphosphate aldolase Clostridium perfringens 
reference protein was analyzed using (IEDB) MHC-I binding 
prediction tool to predict T cell epitopes suggested interacting 
with different types of selected Human MHC Class I alleles, based 
on Artificial Neural Network (ANN) method with half-maximal 
inhibitory concentration (IC50) less than 100 nm. 41 peptides were 
predicted to interact with different MHC-I alleles. Epitopes and 
their corresponding MHC I alleles are shown in Table 3 followed 
by the three-dimensional structure of the proposed T cell epitope 
(Figure 8).

Table 3: The most promising T cell epitopes and their corresponding 
MHC I alleles.

Peptide MHC I alleles

SVMFDGSHY
HLA-A*29:02, HLA-B*15:01, HLA-A*30:02, 

HLA-A*11:01

EELKIAVPV HLA-B*40:02, HLA-B*18:01, HLA-B*40:01

KYMCGFKTI HLA-A*23:01, HLA-C*14:02, HLA-A*24:02

MLAAGIGNI HLA-A*02:01, HLA-A*02:06, HLA-A*68:02

YMCGFKTIV HLA-C*12:03, HLA-A*02:01, HLA-A*02:06

AMDAGFSSV HLA-A*02:06, HLA-A*02:01

KLLNPGFEA HLA-A*02:06, HLA-A*02:01

MALVNAKEM HLA-C*03:03, HLA-B*35:01

MVNGMLEEL HLA-A*68:02, HLA-A*02:06

YSIEENIVK HLA-A*68:01, HLA-A*11:01

Prediction of the Helper T-lymphocyte epitopes and 
modelling

Class II fructose-1,6-bisphosphate aldolase Clostridium perfringens 
reference sequence was analyzed using (IEDB) MHC-II binding 
prediction tool based on NN-align with half-maximal inhibitory 
concentration (IC50) less than 500 nm. 222 predicted epitopes 
were found to interact with MHC-II alleles. The most promising 
epitopes and their corresponding alleles are shown in Table 4 along 

with the 3D structure of the proposed epitope (Figure 9).
Table 4: The most promising T cell epitopes and their corresponding 
MHC-II alleles.

Peptide HLA Alleles

INNLEWTKAILLTAQ

HLA-DQA1*01:02/DQB1*06:02, 
HLA-DRB1*07:01, HLA-DPA1*03:01/

DPB1*04:02, HLA-DRB1*01:01, 
HLA-DPA1*02:01/DPB1*01:01, HLA-

DRB1*09:01, HLA-DPA1*01:03/
DPB1*02:01, HLA-DRB4*01:01, HLA-

DRB1*15:01, HLA-DRB1*04:04, 
HLA-DQA1*05:01/DQB1*03:01, HLA-
DRB1*08:02, HLA-DRB5*01:01, HLA-

DRB1*13:02, HLA-DPA1*01/DPB1*04:01, 
HLA-DRB1*11:01, HLA-DRB1*04:01, HLA-

DQA1*03:01/DQB1*03:02,

NNLEWTKAILLTAQE

HLA-DQA1*01:02/DQB1*06:02, 
HLA-DRB1*07:01, HLA-DPA1*03:01/

DPB1*04:02, HLA-DRB1*09:01, 
HLA-DPA1*02:01/DPB1*01:01, HLA-

DRB1*01:01, HLA-DPA1*01:03/
DPB1*02:01, HLA-DQA1*03:01/
DQB1*03:02, HLA-DRB4*01:01, 
HLA-DQA1*05:01/DQB1*03:01, 

HLA-DRB1*11:01, HLA-DRB1*04:05, 
HLA-DRB1*04:04, HLA-DRB1*15:01, 
HLA-DRB1*08:02, HLA-DQA1*04:01/
DQB1*04:02, HLA-DRB5*01:01, HLA-

DRB1*04:01

NLEWTKAILLTAQEN

HLA-DQA1*01:02/DQB1*06:02, 
HLA-DRB1*09:01, HLA-DPA1*02:01/

DPB1*01:01, HLA-DPA1*03:01/
DPB1*04:02, HLA-DRB1*07:01,HLA-

DRB1*01:01, HLA-DQA1*03:01/
DQB1*03:02, HLA-DRB1*11:01, 

HLA-DRB4*01:01, HLA-DQA1*04:01/
DQB1*04:02, HLA-DRB1*04:05, HLA-

DRB1*04:04, HLA-DQA1*05:01/
DQB1*03:01, HLA-DPA1*01:03/

DPB1*02:01, HLA-DRB1*04:01, HLA-
DRB1*15:01, HLA-DRB1*08:02

FKTIVGMVNGMLEEL

HLA-DRB1*01:01, HLA-DRB1*04:04, 
HLA-DRB1*04:05, HLA-DRB1*09:01, 
HLA-DRB1*07:01, HLA-DPA1*02:01/

DPB1*01:01, HLA-DRB5*01:01, 
HLA-DQA1*05:01/DQB1*02:01, 
HLA-DQA1*05:01/DQB1*03:01, 

HLA-DRB1*04:01, HLA-DRB1*15:01, 
HLA-DQA1*04:01/DQB1*04:02, 
HLA-DQA1*01:02/DQB1*06:02, 

HLA-DRB4*01:01, HLA-DPA1*01:03/
DPB1*02:01, HLA-DPA1*03:01/

DPB1*04:02

Figure 8: Proposed T cell epitopes that interact with MHC I. The arrow 
shows position of (SVMFDGSHY) in green colour at structural level 
using Chimera software. 

NWAGLNFEALANIKA

HLA-DRB1*01:01, HLA-DRB1*09:01, 
HLA-DRB1*04:04, HLA-DRB1*11:01, 
HLA-DRB1*04:01, HLA-DQA1*05:01/

DQB1*03:01, HLA-DPA1*01:03/
DPB1*02:01, HLA-DQA1*01:02/
DQB1*06:02, HLA-DPA1*03:01/
DPB1*04:02, HLA-DPA1*02:01/

DPB1*01:01, HLA-DPA1*01/DPB1*04:01, 
HLA-DRB1*07:01, HLA-DQA1*05:01/
DQB1*02:01, HLA-DRB5*01:01, HLA-

DQA1*03:01/DQB1*03:02, HLA-
DRB1*04:05
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Population coverage analysis

All MHC I and MHC II epitopes were evaluated for population 
coverage against the whole world using the IEDB population 
coverage tool. Epitopes for MHC I with highest population coverage 
were YMCGFKTIV (46.73%) and MLAAGIGNI (42.53%) (Figure 
10 and Table 5). For MHC class II, the epitopes that showed the 
highest population coverage was INNLEWTKAILLTAQ (71.51%), 
NNLEWTKAILLTAQE & NLEWTKAILLTAQEN (69.46%) 
(Figure 11 and Table 6). For MHC class I and II combined, the 
epitopes that showed the highest population coverage were 
INNLEWTKAILLTAQ (71.51%), and NNLEWTKAILLTAQE& 
NLEWTKAILLTAQEN (69.46%) (Figure 12 and Tables 7 and 8).

Table 5: Population coverage of peptides interaction with MHC class I.

Epitope Coverage class 1 (%) Total HLA hits

 YMCGFKTIV 0.4673 3

 MLAAGIGNI 0.4253 3

 AMDAGFSSV 0.406 2

 KLLNPGFEA 0.406 2

 MLEELKIAV 0.3908 1

KYMCGFKTI 0.2843 3

 SVMFDGSHY 0.2793 4

KYAVGQFNI 0.2138 1

 YSIEENIVK 0.2088 2

 EELKIAVPV 0.1802 3

 MALVNAKEM 0.1585 2

 LSFAEATRK 0.1553 1

 FAEATRKYI 0.1031 1

 KAREGKYAV 0.1031 1

 TAQENNSPV 0.1031 1

 KAATGDMPL 0.0812 1

 WAGLNFEAL 0.0812 1

 AIDAMDAGF 0.0785 1

 LEWTKAILL 0.0781 1

 QENNSPVIL 0.0781 1
Table 6: Population coverage of proposed peptides interaction with MHC 

class II.

Epitope Coverage Class II (%) Total HLA hits

 INNLEWTKAILLTAQ 0.7151 18

 CGFKTIVGMVNGMLE 0.6946 12

 GFKTIVGMVNGMLEE 0.6946 13

 MCGFKTIVGMVNGML 0.6946 11

 NLEWTKAILLTAQEN 0.6946 17

 NNLEWTKAILLTAQE 0.6946 18

 AKYMCGFKTIVGMVN 0.6437 9

 AAKYMCGFKTIVGMV 0.6254 8

 FKTIVGMVNGMLEEL 0.6174 16

 PGFEAIKATVKEKME 0.6047 9

 FNINNLEWTKAILLT 0.5831 15

 NINNLEWTKAILLTA 0.5831 15

 QFNINNLEWTKAILL 0.5831 14

 NPGFEAIKATVKEKM 0.5783 10

 WAGLNFEALANIKAA 0.5783 16

Figure 9: Proposed T cell epitopes that interact with MHC II. The arrow 
shows position of (INNLEWTKAILLTAQ) in green colour at structural 
level using Chimera software. 

Figure 10: Population coverage for MHC class I epitopes.

Figure 11: Population coverage for MHC class II epitopes.

Figure 12: Population coverage for combined MHC I and II epitopes.
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 DMIAEAISLGVSKIN 0.5672 8

 MIAEAISLGVSKINV 0.5672 8

 PSDMIAEAISLGVSK 0.5672 8

 SDMIAEAISLGVSKI 0.5672 9

 LEWTKAILLTAQENN 0.563 15

 NWAGLNFEALANIKA 0.563 16

 FEAIKATVKEKMELF 0.5584 7

 GFEAIKATVKEKMEL 0.5584 7

 PLVLHGGTGIPSDMI 0.556 7

 ATGDMPLVLHGGTGI 0.5355 6

 DMPLVLHGGTGIPSD 0.5355 6

 GDMPLVLHGGTGIPS 0.5355 6

 LVLHGGTGIPSDMIA 0.5355 6

 MPLVLHGGTGIPSDM 0.5355 6

 TGDMPLVLHGGTGIP 0.5355 6

 YMCGFKTIVGMVNGM 0.535 9

 KYMCGFKTIVGMVNG 0.5189 8

 CQLSFAEATRKYIEA 0.5094 8

 ECQLSFAEATRKYIE 0.5094 8

 QLSFAEATRKYIEAG 0.5094 6

 TECQLSFAEATRKYI 0.5094 9

 LNPGFEAIKATVKEK 0.5051 9
Table 7: Population coverage of proposed peptide interaction with MHC 

class I and II combined.

Epitope Coverage Class I and II Total HLA hits

INNLEWTKAILLTAQ 0.7151 18

CGFKTIVGMVNGMLE 0.6946 12

GFKTIVGMVNGMLEE 0.6946 13

MCGFKTIVGMVNGML 0.6946 11

NLEWTKAILLTAQEN 0.6946 17

NNLEWTKAILLTAQE 0.6946 18

AKYMCGFKTIVGMVN 0.6437 9

AAKYMCGFKTIVGMV 0.6254 8

FKTIVGMVNGMLEEL 0.6174 16

PGFEAIKATVKEKME 0.6047 9

FNINNLEWTKAILLT 0.5831 15

NINNLEWTKAILLTA 0.5831 15

QFNINNLEWTKAILL 0.5831 14

NPGFEAIKATVKEKM 0.5783 10

WAGLNFEALANIKAA 0.5783 16

DMIAEAISLGVSKIN 0.5672 8

MIAEAISLGVSKINV 0.5672 8

PSDMIAEAISLGVSK 0.5672 8

SDMIAEAISLGVSKI 0.5672 9

LEWTKAILLTAQENN 0.563 15

NWAGLNFEALANIKA 0.563 16

FEAIKATVKEKMELF 0.5584 7

GFEAIKATVKEKMEL 0.5584 7

PLVLHGGTGIPSDMI 0.556 7

ATGDMPLVLHGGTGI 0.5355 6

DMPLVLHGGTGIPSD 0.5355 6

GDMPLVLHGGTGIPS 0.5355 6

LVLHGGTGIPSDMIA 0.5355 6

 MPLVLHGGTGIPSDM 0.5355 6

TGDMPLVLHGGTGIP 0.5355 6

YMCGFKTIVGMVNGM 0.535 9

KYMCGFKTIVGMVNG 0.5189 8

 CQLSFAEATRKYIEA 0.5094 8

ECQLSFAEATRKYIE 0.5094 8

QLSFAEATRKYIEAG 0.5094 6

TECQLSFAEATRKYI 0.5094 9

LNPGFEAIKATVKEK 0.5051 9

GAAKYMCGFKTIVGM 0.499 6

YMCGFKTIV 0.4673 3

AECKQIAELGVTMLA 0.4665 10

ECKQIAELGVTMLAA 0.4665 10

AGLNFEALANIKAAT 0.4448 12

 EWTKAILLTAQENNS 0.4448 13

GLNFEALANIKAATG 0.4448 10

LNFEALANIKAATGD 0.4448 10

ALANIKAATGDMPLV 0.4356 7

EALANIKAATGDMPL 0.4356 7

 GIPSDMIAEAISLGV 0.4306 7

IPSDMIAEAISLGVS 0.4306 7

 AIKATVKEKMELFGS 0.4277 5

 EAIKATVKEKMELFG 0.4277 3

MLAAGIGNI 0.4253 3

FEALANIKAATGDMP 0.422 8

NFEALANIKAATGDM 0.422 9

VTMLAAGIGNIHGKY 0.4194 5

CKQIAELGVTMLAAG 0.4179 9

EGAAKYMCGFKTIVG 0.4139 6

AMDAGFSSV 0.406 2

KLLNPGFEA 0.406 2

KTIVGMVNGMLEELK 0.404 14

TIVGMVNGMLEELKI 0.404 13

KLLNPGFEAIKATVK 0.4025 8

LLNPGFEAIKATVKE 0.4025 7

AGFSSVMFDGSHYSI 0.4002 9

WTKAILLTAQENNSP 0.3953 10

VMFDGSHYS 0.3908 1

NSPVILGVSEGAAKY 0.3527 6

 SPVILGVSEGAAKYM 0.3527 7

KAILLTAQENNSPVI 0.3448 6

AIDAMDAGFSSVMFD 0.3418 6

GAIDAMDAGFSSVMF 0.3418 4

IDAMDAGFSSVMFDG 0.3418 8

IAEAISLGVSKINVN 0.3402 5

NTECQLSFAEATRKY 0.3402 7

PAECKQIAELGVTML 0.3402 6

Molecular docking analysis

Molecular docking analysis for the MHC I epitope YMCGFKTIV 
with HLA allele (HLA-A*02:01) was promising. The model with 
the least RMSD value was chosen for visualization (Figure 13).
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DISCUSSION

The main goal of a vaccine development is to elicit immune 
response against particular pathogen by selectively stimulating 
antigen specific B and T cells [39]. Peptide vaccines overcome 
the side effects of conventional vaccines and are characterized by 
easy production, stimulating effective immune response and no 
potential infection possibilities [19]. Many studies had predicted 
peptide vaccines for different microorganisms such as, Rubella 
virus, Ebola virus, Dengue virus, Zika virus, Human Papilloma 
virus, Lagos rabies virus, mycetoma, pseudomona aeruginosa using 
immunoinformatics tools [40-50].

Current study provides many different peptides for Clostridium 
perfringens vaccine development against FBA protein for the first 
time, including twelve promising peptides that can be recognized 
by B cells and T cells (QENNSPVIL, KYIEAGKDL, EIADPAECK, 
FAEATRKYI, SVMFDGSHY, TAQENNSPV, AECKQIAEL, 
QLSFAEATR, LSFAEATRK, SFAEATRKY, YSIEENIVK, 
NNSPVILGV). These peptides had passed all B cell prediction 
tests as well as MHC I and MHC II tests scoring the lowest rates 
of IC50 with their corresponding HLA alleles, indicating strong 
interaction between the peptide and allele. The resulting peptide 
vaccine is expected to be more antigenic and less allergic than the 
conventional biochemical vaccine.

Clostridium Perfringens FBA protein sequence was subjected to B cell 
epitope prediction test in IEDB. Out of the nine predicted epitopes 
using Bepipred 2 test, eight epitopes were the most promising. A 
peptide length greater than twenty four is not preferred for vaccine 
design as it will turn pathogenic.

B cell immunity stands for short time, while T cell immunity is 
lasts longer. Therefore designing of peptide vaccine against T 
cell is more promising and effective. The protein sequence was 
analyzed to predict T cell epitopes. 41 epitopes were predicted to 
interact with MHC I alleles. Five of them were most promising 
and had the affinity to bind the highest number of MHC I alleles 
(SVMFDGSHY, YMCGFKTIV, MLAAGIGNI, KYMCGFKTI, 
EELKIAVPV). 222 predicted epitopes have interacted with MHC 
II alleles. Six of them had the affinity to bind to the highest number 
of alleles and were the most promising (INNLEWTKAILLTAQ, 
NNLEWTKAILLTAQE, NLEWTKAILLTAQEN,FKTIVGMVN
GMLEEL, WAGLNFEALANIKAA, NWAGLNFEALANIKA). 

All epitopes were tested using population coverage tool of IEDB 
which measures the percentage of people in whole world who 
have potential to develop immune response to vaccine containing 
this epitope. The best epitope with the highest population 

coverage for MHC I were YMCGFKTIV with 46.73% in three 
HLA hits and MLAAGIGNI with 42.53% in three hits, and 
the coverage of population set for whole MHC I epitopes was 
90.46%. Excluding certain alleles for MHC II, the best epitope 
were INNLEWTKAILLTAQ scoring 71.51% with eighteen HLA 
hits and NNLEWTKAILLTAQE scoring 69.46% with eighteen 
HLA hits, and the coverage of population set was 73.08% for 
the whole MHC II epitope set. When combined, the peptide 
INNLEWTKAILLTAQ had the highest population coverage 
percent 71.51 in eighteen HLA hits for both MHC I and MHC II. 

Limitations include the exclusion of certain HLA alleles for the 
MHC II population coverage tests and unavailability of MHC 
II alleles models for docking analysis. We hope that the world 
will benefit from this epitope-based vaccine upon its successful 
development following in vivo and in vitro studies to prove its 
effectiveness.

CONCLUSION

Vaccination is a method to protect and minimize the possibility 
of infection. Design of vaccines using in silico prediction methods 
is highly appreciated due to the significant reduction in cost, 
time and effort. Peptide vaccines overcome the side effects of 
conventional vaccines. We presented different peptides that can 
produce antibodies against FBA of Clostridium perfringens for the 
first time. Nine B cell epitopes passed the antigenicity, accessibility 
and hydrophilicity tests. Five MHC I epitopes was the most 
promising ones, while six for MHC II. For the population coverage, 
the epitopes covered 90.46% and 73.08% of the alleles worldwide 
for MHC I and II respectively excluding certain alleles.
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