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Abstract

Recent studies indicate that functional T-lymphocyte defects compromise anti-tumor responses in various
cancers. It appears that tumors not only effectively bypassed the host immune system, but have also actively
corrupted the host anti-tumor response via several distinct mechanisms. Cancer Immunotherapy has made
significant strides in recent years, due to improved understanding of the underlying principles of tumor biology and
immunobiology. This review attempts to identify strategic factors involved in anti-cancer immune impairment,
understand the mechanisms underlying reported immunosuppression and highlight some of the most promising
present day immunotherapy approaches progressing successfully in clinics.
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Introduction
Tumors effectively bypass the host immune system by altering the

immunogenic potential, via secretion of immunosuppressive factors
and inhibition of immunomodulatory cell types. Immunotherapy, also
called biological therapy, designed to boost the body’s natural defenses
to fight cancer has become an important part of treating some types of
cancer in the last few decades. Immunotherapy shows better responses
in some cancers than others either as a single agent or in combination
with other types of treatment. Despite the advancements made in
cancer therapies over the decades, there has been no significant
improvement in the survival rate and morbidity for many types of
malignant neoplastic diseases [1,2]. This is frequently due to limited
understanding of the biology of the tumor and late diagnosis calling
for further in-depth studies to identify early-stage diagnostic markers
and novel treatment modalities. It is hoped that newer studies in
immunotherapy would provide more impetus for understanding
tumor biology and design effective treatment modes for management
of cancers. In this review, we focus on the role of T cells in
immunomodulation and immunotherapy as evidenced from studies
carried out by the authors and others.

Studies carried out in Regional cancer centre, Trivandrum by the
authors. T-lymphocyte numbers and function correlate with
immunological dysfunction and poor treatment responses [3]. The
major observations made were imbalance of lymphocyte populations
[4,5] lymphocyte functions as evidenced by cellular assays and
molecular alterations [3,6], inhibitory effects of lymphocyte functions
mediated by serum factors [6] and impairment of cytokine and
cytotoxic functions. In our study, in oral cancer patients, we have
noticed that T-Lymphocytes with cellular and molecular defects
correlate with immunological function and treatment response [3].

Preliminary studies reported by our group, among others, reveal
gross immunological alterations on various cancers such as imbalance
of lymphocyte population [4,5] lymphocyte function [3,6] and
inhibitory effects of lymphocyte function in cancer patient serum [6].
These findings indicate that cancer patients generally display impaired
tumor response. Numerous investigators have reported imbalance in
T-lymphocyte numbers and signal transduction abnormalities as the
origin of immune defects in cancer [7,8]. Altered T-cell signal
transduction is reported to be demonstrated as the reason for reduced
IL-2 secretion and IFNγ responses [9]. Moreover, reduced expression
of the T-cell receptor zeta chain has been shown as a clear predictive
marker of poor survival [3,10]. Many in-vivo and in-vitro experiments
demonstrate the restoration of impaired T-cell function with the
administration of IL-2 [11]. Cytokines such as IL-2, CSF, IFN, TNF-
alpha have also been tested as cancer immunotherapy agents. However,
IL-2 was approved as an immunotherapeutic agent for metastatic renal
cell carcinoma [12] with clinical trials having an overall favorable
response rate of 20% [13].

Since 1990 onwards more than 25 immunotherapeutic products
have received regulatory approval based on anticancer activity as single
agents and/or in combination with chemotherapy. All these products
are widely using against various malignancies. Very recently
immunotherapy is rising as a major treatment option because of the
recent success of using monoclonal antibodies (mAbs) targeting
various proteins. There have been a number of studies by using gene-
engineered TCRs or CARs for the treatment of cancer across the world
[14] demonstrated that receptor-engineered T cells mediate long-term
remissions of solid and hematologic cancers [15].

T cell signal transduction
Recent progressions in basic immunology and tumor biology have

rendered tremendous amounts of information about crosstalk between
tumor cells and the immune system. Identification of novel antigens
and exploitation of various immunological pathways have provided
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new and innovative immunotherapy strategies. The ability of T-
lymphocytes to recognize antigen and transduce signal to the nucleus
successfully is a key component in the initiation and maintenance of
the immune response [16,17].

TCR-ζ protein is an essential component of the TCR complex that
binds zap 70 and transduces signals following TCR activation [18]. The
protein tyrosine kinase zap-70 is implicated, together with Src kinase
p56 Lck, in controlling the early steps of the T cell antigen receptor
(TCR) signaling cascade. TCR ligation by antigen/ MHC or by anti-
CD3 monoclonal antibodies induce rapid tyrosine phosphorylation of
the immunoreceptor tyrosine-based activated motifs (ITAMS) present
in their cytoplasmic tails, an event essential for activation of
lymphokine genes. ITAM phosphorylation allows recruitment of the
ZAP70 to the TCR via binding to the two tandemly arranged ZAP-70
SH2 domains to the two phosphorylated tyrosine residues, a
modification contributing as catalytic activation. T-cell activation leads
to translocation of Rel-A, a component of NFκB to the nucleus and
plays a role in the transcription of a variety of genes including IL2.
Inability to translocate Rel-A has been observed in lymphocytes of
Oral cancer patients, cervical cancer patients and Renal Cell
Carcinoma patients’ cells & culture model [3,5,18].

Protein tyrosine phosphorylation is a major step in T cell signaling
and it must be carefully controlled. This is achieved mainly by the
action of the tyrosine kinase Csk which phosphorylates a critical Tyr at
the C-terminal domain of Lck rendering it inactive [19]. The role of the
tyrosine kinase cascade in T cell signaling is demonstrated by the use
of tyrosine kinase inhibitors such as Genistein and Staurosporine
which are able to block T cell function both in vitro and in
vivo [20,21].  Elevated intracellular Ca2+ levels need to be maintained
for several hours in order to permit downstream signaling events such
as NFAT translocation to the nucleus [22]. This sustained Ca2+

elevation is accomplished by the concerted action of several receptors,
kinases and ion channels [23]. PKC and Ras activation results in the
activation of several members of the mitogen-activated protein kinase
(MAPK) superfamily. The MAPKs are serine/threonine kinases that
activate kinases (and other) signaling cascades that result in the
activation of the transcription factors NF-κB and AP-1, both of which
are necessary for the transcription of several key genes involved in the
T cell immune response.

Studies from several laboratories suggest that alterations in function
and expression of signal transduction molecules associated with TCR
are responsible for the deficiencies observed in various cancers
[7,24,25]. A reduced expression of the signaling molecules of T-cell
receptor (TCR-ζ, CD3-ε, Zap-70 and PKC) was reported by us in oral
cancer patients as well as cervical cancer patients on stimulation with
anti-CD3 [3,5]. Down regulation of TCR-ζ has been reported in
various pathologies and is considered crucial for receptor assembly,
expression and signaling [26,27]. Zap-70 has been reported to be an
indispensible link in the activation of the T cells by regulating the
intracellular events [26].

Immune escape
Immune escape is indicative of the failure of the immune cell to

actively respond to the abnormally proliferating tumor cell. The major
obstacles for the development of an effective immunotherapy approach
are the complicated interactions of host-tumor and various tumor
escape mechanisms. These tumor cells escape the immune response
due to the mechanism of immune editing [28,29], the inefficiency of T-
helper and cytotoxic cells [3,5], soluble factors and other tumor-

derived immunosuppressive factors [30,31], impairment of T cell
signal transduction and cytokine production [3,5], activation-induced
cell death of T cells [32] and exosome-induced immunosuppression
[30]. These are the notable tumor escape mechanisms which require
further clinical research.

In immunized animals, tumor cells administrated in sufficiently low
doses develop into cancers where greater doses are rejected, that is,
under conditions theoretically optimized for rejection, tumor cells may
‘sneak through’ and not be recognized until growth is established and
beyond recall. A recent approach to this aspect has been to model
mathematically the kinetic interrelationship between tumor and
various cell types that would be involved in tumor elimination. This
illustrates well the point that this kinetic argument can account for
many features of tumor escape mechanisms such as development of
cell mediated suppression, soluble factors and other tumor derived
immunosuppressive factors [33,34]. IL-10 produced by Th2 cells and
Tregs but also by tumors such as non-small cell lung cancer, pancreatic
cancer, and squamous cell carcinomas of the head and neck, impairs
DC function and effector T-cell activity and is involved in skewing T-
cell helper responses to the Th2 subtype. Prostaglandins, particularly
PGE2 , generated by cyclooxygenase-2 (COX-2), which is over
expressed in many cancers, suppress T- and B-cell proliferation, inhibit
NK cell-mediated cytotoxicity, and inhibit TNF production [33,34].

Figure 1: TCR signal transduction pathway.

Defects in T cell signaling
Defects in the TCR signaling pathways, particularly the loss of the

zeta chain portion of the CD3-receptor complex, have been reported in
patients with melanoma, renal cell carcinoma, ovarian carcinoma,
cervical carcinoma, colon carcinoma, and prostate cancer [35-38]. The
zeta chain is an important component of T-cell activation via the TCR
and NK cells via the FcyRIII. Defects in signaling ultimately result in
lower proliferative responses to antigen, lower cytotoxic function, and
lower production of Th1 cytokines. Decreased levels of TCR-ζ
expression correlate with prognosis in terms of tumor progression and
aggressiveness [39]. The mechanism for zeta chain loss is not clear, but
hydrogen peroxide production by tumor-associated macrophages,
cleavage by caspases, and granzyme B have all been suggested [40-42].
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Finally, some patients may experience defects in the T cell signaling
mediated by nuclear factor κB, which is important for regulating
expression of IL-2, TNF, GM-CSF, MCSF, and IFNγ [18,43] (Figure 1).

The authors in a study carried out in 112 oral cancer patients T-
lymphocytes, noticed a stage-wise and histology-wise reduction in the
lymphocyte response to anti-CD-3 in terms of defects in proliferation,
decreased expression of TCR signal transduction protein and reduced
secretion of IL-2 (Table 1). These demonstrate that oral cancer patients
are immunocompromised resulting in reduced efficiency of the oral
cancer patient’s immune system to mount a response against tumor
attack [3]. Researchers have pointed out a subset of suppressive T cells
known as CD4+CD25+ regulatory T cells (Tregs) contribute to the
observed immune suppression in patients with HCC by inhibiting the

beneficial antitumor immunity [44-46]. Clinically, a high number of
Treg number is an indicator of poor prognosis, while a low number of
Treg correlates with improved survival [47]. Researchers have also
shown that Tregs derived from patients with HCC are functionally
more suppressive [48]. The importance of Treg cells in the dynamics of
tumor immunity make them critical elements to understand and
potentially valuable targets as novel treatment options. These
immunosuppressive cells express CTL-A (cytotoxic T lymphocyte–
associated protein 4) which is well correlated with advancement of
tumor burden [48]. Monoclonal antibodies against CTLA-4 and PD-1
were approved recently by FDA renders hope for further developments
of immunotherapy against various types of cancers.

Protein Expression in:

Cancer Stage Histology Anti-CD3 response
rIL2

Response

Treatment Response

Responder Non-Res
ponder

+ve -ve Bad Good

TCRζ

↓

→Control

to stage III

↓stage IV

→ ↑ ↓ → → ↓ ↑

CD3ε ↓ → → ↑ ↓ → → → →

LCK ↓ → → → → → → → →

ZAP-70 ↓ ↓ → ↑ ↓ ↑ ↓ ↓ →

PKC → → → ↑ ↓ → ↓ → →

Table 1: Table showing the status of T cell signal transducing proteins in response to stimulation by anti-CD3 and augmentation with rIL-2 [3].

Blocking factors of T-lymphocyte signal transduction
The functional role of exosomes in cancer progression has become

the center of interest of cancer research, because of the apparent roles
attributed to them. The great extent repertoire of proteins and nucleic
acids that is assembled within exosomes appear to reflect the
substantial, multiple and intricate signaling potential of these nano-
vehicles. Exosomes are tumor-derived microvesicles released into the
extracellular milieu having a vital role in immune regulation.
Exosomes generate a pro-tumor micro-environment which regulates
immune response and favors carcinogenesis. Apoptosis of cytotoxic T
cells and reducing proliferation of the NK cells are the major
mechanisms by which exosomes regulate the immune response.
Various reports have shown that tumor-derived exosomes induce
differentiation of T helper cells to regulatory T cells, which may
potentially be a possible mechanism for immune surveillance. NK cells
exposed to tumor-derived exosomes fail to respond to IL-2 [49-51].
Apoptosis of T cells was also induced by tumor-derived exosomes,
which contains pro-apoptotic proteins like Fas-L and TNF-alpha
[51,52]. Tumor-derived exosomes from the ascites of ovarian
adenocarcinoma were found to be immunosuppressive by affecting T
cell signal transduction mechanism [30].

Use of exosomes as vehicles for drug administration has generated
tremendous attention recently because of their tolerance,
bioavailability and their targetability to specific tissues. Researchers
have shown that exosomes can deliver drugs, micro RNAs and
antigens to target receptors. Exosomes are also used to target Si RNA

and micro-RNA to regulate the gene expression within the target cells.
Studies have also shown that exosomes can also be an option for the
delivery of tumor-derived antigens to mount an effective immune
response [31,53]. Exosomes secreted from dendritic cells could present
antigens to T cells to induce an anti-tumor immune response in mice
[30] these findings progressed further by using peptide loaded
dexosomes as a cancer vaccine and which are presently in the clinical
trial phase.

Exosomes secreted by tumor cells circulate in the blood and contain
specific antigens potentially useful for immunotherapeutic purposes.
The ability of these factors to modulate lymphocyte and monocyte
functions has been analyzed in several tumors [30,54-56]. The shed
membrane vesicles have been demonstrated to exhibit the ability to
modulate lymphocyte and monocyte functions in several tumor
models [30,56,57]. The tumor-derived factors were also shown to
suppress lymphocyte activation with phytohemagglutinin,
Concanavalin A, or anti-CD3 [58]. The nature of regulation of the
signal transduction proteins in T-lymphocytes, which could proceed to
an impairment/enhancement of T cell function by these exosomes is
not confirmed to date.

Immunotherapy
Cancer has surpassed heart diseases as the leading cause of death

across the world [60]. Most of the cancers are now highly treatable and
curable, but cancer induced mortality is mainly associated with the
metastatic nature of the disease. For most of the distant metastatic
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cancers, disease management is the only vital option. Immunotherapy
is an emerging treatment option for patients with advanced cancers.

The immune system is unique and dynamic in specificity, mode of
action, and memory. The immune response provides long-lasting
protection against specific antigens. Researchers over the decades have
tried to utilize or manipulate the immune response in the fight against
cancer or other diseases because of its safety, efficacy, specificity and
long lasting effects. The initial experiments of immunotherapy for
cancer was done by William Coley [59], used bacterial products to treat
Ewing sarcoma, though the cellular and molecular mechanisms
underlying the process were unknown. There are several feasible
immune strategies to achieve these goals; one of these strategies is the
use of cytokines to augment anticancer immune effector mechanisms
[60]. Interferon-α and interleukin-2 are the two cytokines successfully
using in the clinic at present. Later a series of monoclonal antibodies
were added to the clinic few notable products are rituximab,
ofatumumab, alemtuzumab, trastuzumab, bevacizumab, cetuximab,
and panitumumab; the radiolabeled antibodies Y-90 ibritumomab
tiuxetan and I-131 tositumomab. The anti-CTLA-4 monoclonal
antibody ipilumumab, which blocks regulatory T-cells [61] and
programmed cell death protein-1 (PD-1) [62] were effective against
several malignancies like melanoma [61,62], renal cell carcinoma [62],
lung cancer [62,63], bladder cancer [64], ovarian cancer [65],
Hodgkin's lymphoma [66], and gastrointestinal cancers [67]. Recently
FDA approved the prostate cancer antigen specific vaccine sipuleucel-
T for the treatment of advanced prostate cancer [68]. In spite of the
fact that the immune system has long been identified with the works of
various researchers as a preferred strategy to treat cancers, the full
capacity to develop into the mainstream therapy has not been
accomplished to date.

Adoptive Cell Therapy
A number of new strategies have been developed which use T cells

as immunotherapeutic tools against tumors. Adoptive cell therapy is
the utilization of tumor infiltrating lymphocytes (TIL) from neoplastic
lesions, which mainly consist of T cells. Tumor-specific T cells were
expanded by co-culture with patient tumors in the presence of
cytokine IL-2 [69]. Administration of the activated T cells in the
patient's body resulted in a significant response. 72 % patients
expressed objective response and 40 % patients experienced complete
regression [69]. In most of the cases the response appeared to be
durable. Among the metastatic melanoma patients who achieve a
complete tumor regression (22% of the patients, n=20), 95% of them
have ongoing complete regressions beyond 5 years and may be cured
[70]. Unmodified T cells can also be used to treat EBV or HPV-
associated cancers. Autologous EBV-specific T cells showed promising
response in nasopharyngeal carcinoma [71,72] and Hodgkin disease
[73,74].

Genetically modified T cells
Adoptive cell transfer of T-cells engineered to express artificial

receptors that target tumor cells is an exciting innovative approach.
The progresses in genetic engineering and cellular immunology
enabled to generate T-lymphocytes that successfully target the tumor.
These methodologies radically change the immunotherapy and leads to
the latest entry of the drug industry. There is cumulative attention in
harnessing regulatory T cells (Tregs) to deregulate the unwanted
immune responses. This approach was successful in autoimmune and

allograft rejection. The principles of engineering T-reg cells show
promise in preclinical models of autoimmunity.

Engineered T cell receptors against MART-1 (Melanoma Ag) and gp
100 produced objective response 30% and 19% respectively [75].
Chimeric antigen receptors (CARs) composed of antigen binding
fragments and T cells signaling domains from CD3-z, CD-28, and
other signaling molecules are the further progression of the approach
[76]. Recruiting B cell leukemia cells expressing CD-19 have shown
positive response in the clinic [77] by inducing a significant response
against tumor burden by completely eliminating or producing an
objective response. In chronic lymphocytic leukemia (CLL), of 23
patients treated with CD-19 CAR T cells, 17 % achieved a partial
response, with an overall response rate of 39% [77]. During July 2014,
the FDA granted the breakthrough therapy designation to CD-19
CARs for relapsed/ refractory ALL. Chimeric antigen receptor T-cell
therapy has generally shown positive response against advanced types
of leukemias and lymphomas with long disease-free survival periods.
In solid tumors, results have been disappointing. Although engineered
T cell therapy is very promising, it has several limitations, including
toxicity, applicability, and efficacy. Researchers are actively working to
improve production of the T cells and are looking for alternative ways
to use them. Studies progressing to assess the feasibility of this
technique in other types of cancers.

Conclusions
Immunological responses have a very important role to play in the

initiation and progression of various cancers. The impairment of
immunity in patients with cancer indicates the possibility that
significant immune depression develops well in advance of
malignancy. The impairment may be enhanced by the presence of the
tumor. The exact nature of the T cell defect is still not entirely clear
even though defects in receptor integrity, signal transduction
mechanism and cytokine production have been proposed as major
factors. Immunotherapy using biologic mediators is being extended
with varying degrees of success in various parts of the world. Failures
in some cases could be due to a proportion of the patients harboring
defective T cell receptors or signal transduction mechanisms.

Adoptive cell transfer immunotherapy showed very significant
response in advanced stages of cancer patients. Even though adoptive
cell transfer had Striking success, treatment strategies are still is in the
beginning stage. Effectiveness of this strategy to a big extend depends
up on the quality and quantity of the activated T cells. Researchers are
still improving how they make the activated T cells and are learning
the best ways to use them. Further optimization and preconditioning
methods has to be established for the successful conversion of this
technology in to a treatment regime. Vast and growing understanding
of immunogenic principles, mechanism by which tumor evades the
immune response has served as a foundation for further resolution of
these dangerous international health concerns.
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