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Vaccines are the most cost-effective and successful preventative 
measure against infectious diseases. Childhood vaccinations had a 
tremendous impact on public health. The mortality and morbidity 
associated with diseases such as polio, smallpox, measles, mumps, 
rubella, diphtheria, pertussis, tetanus, have reduced radically (>  90-
100%) due to prophylactic vaccines provided during childhood. The 
success of these preventive vaccines lies in their ability to induce an 
effective B cell memory and ongoing production of antibodies that 
either directly neutralize pathogens, or operate with complement 
system or other immune cells to kill pathogens. CD8+ T cell responses 
are also a key component of protective immunity, particularly in case 
of virus infections. More recently, development of cancer vaccines is 
breaking new grounds. 

Ability to evade host immune system is a major roadblock in 
achieving complete protection against persistent viral infections 
and malignant diseases. DNA viruses such as herpes viruses and 
poxviruses encode several genes that directly evade the host innate and 
adaptive immune responses [1-2]. Because of potent immune evasion 
mechanisms, and ability of virus to persist in immune competent hosts, 
a vast majority of the global population remain infected with at least one 
of the herpes virus. Herpes Simplex virus (HSV) type 1 and 2, Varicella 
Zoster Virus (VZV), Human Cytomegalovirus (HCMV), Epstein-Barr 
virus (EBV) and are few examples of herpes viruses [3]. Poxviruses 
cause acute infections, and may establish persistent infection based on 
the immunocompetence of the host and route of infection [4]. Vaccinia 
virus is a poxvirus family virus, which was used as a successful vaccine 
to eradicate the human pathogen variola virus (smallpox). Human 
papilloma virus (HPV) is a causative agent for cervical cancer, and 
establishes persistent infection. Recombinant protein subunits vaccine 
is currently used to combat cervical cancer successfully. RNA viruses 
like human immunodeficiency virus (HIV) and hepatitis C virus 
(HCV) undergo extensive antigenic variations due to selective pressure 
of the immune system, which lead to immune escapes [5,6]. In a 
computational model of HIV-1 infection dynamics in lymphoid tissue 
demonstrated that evasion of immune surveillance by persistent virus 
is sufficient to cause treatment failure in case of structured interruption 
of highly active antiretroviral therapy (HAART) [7].

Although the development of cancer vaccines is gaining new 
grounds, developing immunity against tumors remains a difficult task. 
Recognition of tumor-specific antigens and tumor-associated antigens 
by the host T cells has not been straightforward [8-10]. Examples of 
tumor-specific antigens are p53, BCR-ABL, and Ras, and tumor-
associated antigens are differentiation antigens (tyrosinase, MART-1), 
overexpressed antigens (MDM2, HER-2), and cancer/testis antigens 
(MAGE and RAGE families). These antigens are expressed by germ 
cells, tumor cells, but not by normal somatic cells. Viral infection 
associated cancers such as B cell lymphomas (EBV) and cervical 
cancer (HPV) express viral antigens, and these antigens are considered 
tumor antigens as well. Tumors cells acquire unique immune evasion 
mechanisms to evade host immune attack and develop tumor escapes 
[11,12].

An advance understanding of immune evasion mechanisms by 
viruses and tumors, and strategy to block evasion of host immune 
responses may lead to new prophylactic and therapeutic vaccination 
strategies against persistent viruses and cancers. Immune evasion 
mechanisms used by both viruses and tumors are surprisingly similar 
and achieve a common goal, that is to escape immune response, and 
persist in host. 

Many current vaccination strategies use synthetic peptides, DNA-
encoding tumor antigens, recombinant proteins, antigen-loaded DCs, 
and adoptive transfer of in vitro generated T cells to focus on the 
enhancement of antigen-specific T cell responses. A high frequency of 
specific T cells is critical, but does not guarantee therapeutic efficacy, 
as virus or cancers may evade immunity provided by vaccine and 
become resistant to immune attack. Therefore, strategies that target 
blocking immune evasion may make virus or tumor susceptible to 
host immunity and reduce immune escape variants. One such example 
is the pre-clinical development of vaccine against HSV-2 disease. 
Preclinical studies in animal model show enhanced efficacy of vaccine 
when blocking immune evasion is included in vaccine design [13,14].

The immune evasion by viruses and tumors exploit similar host 
immune pathways. It is also interesting to note that the identification 
of viral evasion proteins may also lead to new therapeutic agents and/
or as targets of immunotherapy. An interesting example is the use 
of viral TAP inhibitors to induce T cells recognizing an alternative 
peptide repertoire carried by tumor cells with antigen processing 
defects [15,16]. Additionally, exploiting capacity of attenuated HCMV 
virus to induce strong memory T cell immunity may be advantageous 
to develop protective immunity against viruses as well as cancer [17]. 
Recently in a monkey CMV model, it is demonstrated that CMV-based 
vectors induces vast effector-memory T cell responses and reduces the 
risk of progressive infection following repeated exposure to simian 
immunodeficiency virus (SIV) [18]. Disruption of immune evasion by 
combined therapeutic (vaccine) strategies to prevent virus propagation 
or tumor growth shows promising outcome in preclinical animal 
models. Combinatorial treatments will presumably also diminish the 
likelihood of emerging viral mutants and malignant cells that become 
resistant.
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