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Immune checkpoints constitute a distinctive set of proteins that 
belong to the B7 family. The engagement of these transmembrane 
receptors with their ligands provides critical signals to inhibit T cell 
activation and promote for immune tolerance. Tumor and infected cells 
can hide from the immune system by overexpressing these proteins, 
leading to T cell exhaustion [1]. Blocking these interactions emerged as 
a ’game changing’ approach in anticancer and antiviral immunotherapy 
[2-4]. Current immune checkpoints blockers are limited to antibodies 
[5] and possess a unique mode of action; they reactivate exhausted
T cells, allowing them to proliferate and recognize and kill infected
and tumor cells [4,6]. Despite their outstanding success the ultimate
therapeutic target or combination of targets, from these proteins is
still to be determined. The list of immune checkpoints is continuously
growing and new effective targets are being frequently added [7]. In
addition, very little is known about the underlying mechanisms that
follow the engagement of these receptors with their ligands. For
example, apart from the recruitment of tyrosine phosphatases to PD-1
(CD279) [8], the mechanism by which these interactions maintain T
cell exhaustion is still a mystery. Furthermore, each receptor/ligand
from this family can interact with more than one protein. For example, 
CTLA-4 (CD158) interacts with the two ligands, B7-1 (CD80) and B7-2 
(CD86), promoting for T cell exhaustion. The same ligands stimulate
T cells by interacting with a different receptor, CD28 [9,10]. Another
example is the PD-1 receptor, which interacts with two different ligands, 
namely PD-L1 and PD-L2 [11,12]. On the other hand, the ligand PD-
L1 also interacts with another ligand, B7-1[11]. This small network of
protein-protein interactions is aminute part of a more complex and
intricate arrangement among the members of the B7 family of proteins. 
The complexity of this network requires a multidisciplinary effort that
involves molecular and mathematical modelers [12-14], immunologists 
[15], structural and bio-informaticians, systems biologists, oncologists
and many others to search for a magical combination of protein targets 
that can possibly lead to a complete clinical cure of chronic infection
and malignant tumors.

A harmony among these different disciplines will not only identify 
the optimal combination of thesetherapeutic target(s), but can also 
help expand the current immune checkpoints’ blocking agents 
beyond antibodies and use state-of-the-art technologies [13,16-23] to 
design small molecule inhibitors for these targets [12]. Take the PD-
1, CTLA-4 and TIM-3 pathways as an example. Currently, these are 
the leading immune checkpoints targets, particularly, for advanced 
metastatic melanoma. One important aspect in prioritizing or 
combining these targets is their expression level in the host. A widely 
expressed checkpoint molecule could promote autoimmune-like side 
effects. For example, CTLA-4 is up-regulated on all effector T cells 
and is also expressed on all regulatory T cells (Tregs). Consequently, 
blockade of CTLA-4 could disrupt CTLA-4–driven regulation of 
effector T-cell responses or interfere with the function and/or number 
of Tregs, as has been suggested by recent studies [24-26]. Although 
PD-1 is similarly up-regulated on all effector T cells, autoimmune-like 
toxicities have been observed in a lower scale relative to CTLA-4 in 
patients treated with anti–PD-1 antibodies [27,28]. TIM-3, however, 
is not expressed on all T cells; rather, it is selectively expressed on T 

cells that have differentiated toward an IFN-g–producing phenotype 
[29], and in patients with cancer, TIM-3 seems to be expressed 
primarily in intratumoral T cells [30]. TIM-3–deficient mice do not 
exhibit autoimmunity [31], unlike both CTLA-4 deficient [9,10] 
and PD-1–deficient mice [32]. Thus, from an expression point of 
view, TIM-3 blockade is favored over CTLA-4 or PD-1. However, 
another important aspect in prioritizing these targets is the available 
structural and experimental data that can help in rationally design 
blocking inhibitors for these proteins. In this regard, CTLA-4 can be 
ranked first as it is the most understood pathway and with the most 
structural information available. Structurally and mechanistically, 
TIM-3 is ranked last relative to both PD-1 and CTLA-4, since there 
are only two crystal structures for the unbound mouse variant and the 
TIM-3 pathway is relatively new and not well understood. Although 
the structural information for PD-1 is not as comprehensive as that of 
CTLA-4, available data can be used to understand how these molecules 
interact in human. Taken together and although we raised here more 
questions rather than answers, it seems that the concept of blocking the 
immune checkpoints is still in its infancy and more efforts are needed 
to fully exploit this very new and exiting area of research toward a 
magic bullet for cancer and chronic infectious diseases.
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