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Introduction
Nearly 35 million people all over the world are infected with Human 

Immunodeficiency Virus (HIV), the causative agent of Acquired 
Immunodeficiency Syndrome (AIDS). Around 2 million people get 
infected with the virus each year and the pandemic continues to devastate 
despite three decades of our understanding of the pathogenesis [1]. 
The mechanisms by which HIV causes AIDS are multifaceted and still 
not completely understood and this is the main reason why HIV has 
not been eradicated from the world. While therapeutic interventions 
are ongoing, there is a pressing need for in-depth understanding of 
correlates of protection and the development of an effective HIV 
vaccine. The early hypothesis that AIDS is a result of uncontrolled 
replication and that with the administration of Antiretroviral Therapy 
(ART), the diseases is ‘latent’; is no longer supported by the available 
scientific evidence. The observation that Simian Immunodeficiency 
Virus (SIV) infection of natural hosts is nonpathogenic despite high 
viremia and short life span of infected cells demonstrates that AIDS is 
not the necessary consequence of any primate lentiviral infection [2,3]. 
Multiple studies have shown that several immunological features play a 
crucial role in causing progression to AIDS. The most prominent reason 
is the establishment of chronic state leading to generalized immune 
activation strikingly absent in nonpathogenic model of SIV infection 
[4,5]. Chronic HIV infection is mainly characterized by increased 
expression of pro-inflammatory cytokines and increased expression 
of T cell activation or exhaustion markers. Among pro-inflammatory 
cytokines, interferons, IL-6, IL-8, IL-1β and certain serum markers of 
inflammation including soluble CD14 (sCD14), C-Reactive Protein 
(CRP), D dimers have been implicated in HIV associated immune 
activation [6-9]. T cell activation markers like CD38 and HLA-DR, 
Programmed Death-1 (PD-1), Tim-3, CTLA-4 and PD-1 Homologue 
(PD-1H) may also interfere with ongoing HIV specific cell responses 
[6-9]. It is now believed that levels of chronic immune activation predict 
the progression to AIDS independently from viral loads or CD4+ T 
lymphocyte counts. Both HIV and SIV infections of natural hosts are 
associated with loss of integrity of the mucosal barrier in the intestine 
leading to translocation of microbial products like Lipopolysaccharide 
(LPS) and flagellins into the circulation [10]. Serum levels of LPS, 
flagellin, peptidoglycan and CpG rich DNA correlated strongly with T 
cell activation levels leading to conclusion that translocation of immune 
stimulatory products contribute to systemic immune activation [11]. 
Pathogenic HIV and SIV infections lead to irreversible loss of memory 

CD4+ T cells leading to decline in CD4+ T cell pool and establishing a 
“latent pool” of HIV infected cells. In recent years, multiple studies have 
shown that HIV infected individuals have elevated levels of immune 
activation markers and these do not normalize with long term ART 
[12-14]. In addition, immune activation is most likely to be a significant 
contributor in initial establishment and maintenance of viral reservoir, 
which is the key obstacle to any HIV eradication strategy [15,16]. In 
this review, we discuss our understanding of HIV associated immune 
activation and several therapeutic approaches with the goal to decrease 
persistent immune activation.

Why is understanding immune activation important?

Immune activation, a natural host response during an infection is 
tightly regulated by a complex cascade of biochemical signals directed 
at clearing the pathogen. Immune activation clears in majority of 
the infections and eventually gets resolved itself to prevent immune-
mediated pathology and exhaustion. However, in case of HIV or 
Hepatitis C infection, the virus persists indefinitely and in response the 
body maintains its state of immune activation [17]. Once the viral loads 
are brought under control, immune activation decreases dramatically 
but residual virus provides a constant trigger to the immune system and 
low-level activation persists [18].

Highly active ART was assumed to have an asymptomatic phase of 
infection with undetectable viral loads and improved lifestyle. It came 
as a surprise when in patients with undetectable viral load; continual 
CD4+ T cell depletion was observed and could not be linked to actively 
replicating virions. Preliminary hypothesis included direct toxicity 
of antiretroviral drugs, [19,20], metabolic changes, and additional 
risk factors such as smoking, alcohol and other substance abuse [21]. 
However, none of these factors fully explained all the risk of non-AIDS 
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Abstract
HIV infection is associated with continued activation of immune system and this is known to be the driving 

force behind CD4+ T cell depletion and progression to AIDS. Nonpathogenic Simian Immunodeficiency Virus (SIV) 
infections of natural hosts are characterized by low levels of immune activation even in the chronic phase of infection. 
Effective Antiretroviral Therapy (ART) does not fully resolve immune activation and HIV infected patients continue 
to experience non-AIDS related events leading to premature immune senescence. In this review, we summarize 
the possible mechanisms driving HIV associated immune activation, and novel therapeutic interventions that show 
promise in treating the disease.
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related mortality. The concept of chronic immune activation was first 
proposed by Ascher and Sheppard [22] and further recognized by other 
groups. Dr. Giorgi pioneered in advocating her theory of immune 
activation in by suggesting that although it starts out as a protective 
mechanism towards enhancing survival, immune activation ultimately 
proves to be more pathogenic than being protective [23]. Thus while 
HIV infection leads to AIDS, the hallmark of which is immune 
deficiency, the larger part of the chronic pathology of HIV infection is 
founded on persistent immune activation [24].

Causes of persistent immune activation

Breach of gastro-intestinal mucosa and microbial translocation: 
A potential mechanism contributing to chronic immune activation is 
the mucosal immune dysfunction demonstrated by severe and rapid 
depletion of CD4+ T cells from the gut [25]. This is associated with 
loss of intestinal epithelial cells, disruption of tight junctions, and 
compromised integrity of the mucosal intestinal barrier that results 
in a significant increase in bacterial components, including LPS and 
16s DNA in the blood [10,26-28]. Gut associated lymphoid tissue 
constitutes nearly 95% of the body’s CD4+ T cells and this compartment 
is essentially lost and never restored even with rigorous ART [29]. 
LPS concentrations in the circulation of HIV-infected individuals 
correlate strongly with T-cell activation levels [26,30]. Other bacterial 
products, such as flagellin, peptidoglycan, and bacterial CpG-rich DNA 
domains that are recognized by Toll Like Receptor (TLR) 2, 5, and 9 
respectively, may also contribute to immune activation [31]. Through 
the stimulation of TLRs, these bacterial products may also induce 
pro-inflammatory cytokine production such as TNF-α, IL-6, IL-8, IL-
1β and type I interferons [32,33]. Although it is widely accepted that 
insults to mucosa result in immune activation, the relative contribution 
of this phenomenon is incompletely understood. Follow up studies in 
macaques have shown that in spite of survival of mucosal CD4+ T cells, 
activation was observed suggesting that immune activation due to gut 
damage may not be required to develop AIDS [34-36].

To maintain the balance of immune system there is a sync between 
the numbers of a specialized T cell category called the regulatory T cells 
(Tregs) and Th17 cells that produce IL-17, IL-21 and IL-22 [37,38]. 
Disruption of gut integrity in pathogenic SIV and HIV infection is 
associated with depletion of Th17 cells that has been held responsible 
for chronic immune activation in pathogenic HIV infection [39,40]. In 
SIV infected Rhesus Macaques (RM), treatment with IL-21 resulted in 
the maintenance of intestinal Th17 cells, and a reduction of microbial 
translocation and systemic inflammation [41]. Currently, the Th17/
Treg balance and the role of Th17 cells and Th17-derived cytokines in 
HIV infection is a subject of intensive study.

HIV replication and immune response to the virus: HIV 
infection itself is the prime cause of immune activation. HIV RNA 
directly activates TLR7 and 8 further inducing the release of type I 
interferons [42,43]. Both HIV antigens and its components can activate 
T, B and NK cells and lead to release of pro-inflammatory cytokines 
like IFN-α, IL-6, IL-8, Macrophage Inflammatory Protein (MIP)-1a, 
adhesion molecules like ICAM and VCAM [44-47]. In spite of the 
proven contribution of HIV replication to immune activation and 
inflammation, several hitches exist. Firstly, the frequency of activated 
T cells exceed the number of cells infected that does not include other 
cells types that get activated like B, NK cells and monocytes [26,28,48]. 
Secondly, immune activation is a better predictor of declining CD4+ T 
cells counts as compared to viral loads [23,49]. Thirdly, despite successful 
ART administration and viral replication control to undetectable levels, 
the main markers of immune activation remain high [12,50]. Fourthly, 

in natural hosts of SIV infection, high viral loads fail to induce sufficient 
T cell proliferation or activation and progression to AIDS [51,52]. 
Lastly, in a rare subset of HIV infected population called Virologic Non 
Progressors (VNPs), CD4+ T cell counts are maintained remarkably 
well and despite high viral loads, immune activation markers are 
comparable to uninfected individuals [53]. Together, these studies have 
shown that HIV viral loads play a critical role in immune activation but 
are neither exclusively responsible nor necessary to induce pathological 
levels of immune activation. Thus, in the last couple of years, attention 
has been focused on the causes of immune activation and modulation 
strategies that help regulate immune activation.

Loss of specific CD4+ T-cell subsets: CD4+ T cells can be classified 
based on phenotype, function, and anatomic distribution in broad 
subsets of naïve, central memory, and transitional memory and effector 
memory cells. Based on their function, cytokine, and transcriptional 
profile, they are classified as Th1, Th2, Th17, Tfh, and regulatory 
T-cells. Being the prime targets for HIV/SIV infection, restoring 
CDt+ T cell counts is an attractive strategy to combat infection related 
abnormalities. Moreover, some subsets were affected differently in HIV 
and SIV infection suggesting their variable roles in the course of disease 
progression. Thus, characterization of these different subsets in cases 
of HIV/SIV infection may lead to determining the role of these cells in 
establishing immune activation.

Th17 cells: Th17 cells are recognized by their ability to produce IL-
17 and IFN-γ. The levels of these cytokines in HIV infected patients are 
increased and have been shown to directly contribute to maintenance 
of gut surface integrity [54,55]. Th17 cell numbers are relatively 
well preserved in SIV infected macaques that show no microbial 
translocation and lack chronic immune activation [37,39]. In HIV 
infected individuals classified as long term non progressors, there is a 
preferential preservation of intestinal Th17 cells [56,57]. The severity 
of Th17 cell depletion correlates with microbial translocation, chronic 
immune activation, and disease progression in HIV/SIV-infected 
subjects [56,58]. 

Central memory CD4+ T cells: CD4+ T Central Memory (TCM) 
cells are long lived self-renewing cells that reside in the lymphoid 
tissues and represent the largest reservoir of infected CD4+ T cells 
in HIV-1 infection [15,59]. In SIV-infected primates, progressive 
depletion of CD4+ TCM defines progression to AIDS, [60,61]. It has 
been hypothesized that memory CD4+ T cells are the reservoir that 
carry HIV-1 provirus. The process includes infection of a CD4+ T cell 
being infected in an activated state and surviving long enough to move 
to resting state [62]. However, some evidence indicates that a CD4+ T 
cell may be permissive to HIV-1 infection without being activated [63]. 
It has been proposed that naïve CCR5-CD4+ T cells may in fact have 
a very low level expression of CCR5 that may be sufficient to support 
infection by HIV-1 [64].

Infection and depletion of CD4+ TCM cells is hypothesized to 
contribute to the establishment of chronic immune activation by 
either affecting T cell proliferation or activation concentrated in local 
anatomic sites [52]. Low levels of TCM infection have been described 
in (i) long-term non-progressors, (ii) early treated patients that show 
a prolonged control of viremia and preserve CD4+ T cells after ART 
interruption, and (iii) VNPs that preserve CD4+ T-cell counts despite 
high levels of viral load [65].

Regulatory T cells: Tregs are identified by the expression of 
CD25 and FOXP3. These cells are important for maintaining immune 
system homeostasis by preventing autoimmunity and by suppressing 
activation and effector functions mainly through expression of IL-10 
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and TGF-β [66,67]. The role of Tregs in HIV infection and associated 
chronic immune activation is still intensively debated. On one end Tregs 
suppress general immune activation that may be beneficial to host by 
delaying progression to AIDS [68,69]. On the other hand, Tregs may 
suppress HIV related effector T cell immune responses contributing to 
HIV pathogenesis [70,71].

T-follicular (Tfh) helper cells: Tfh are found in the lymphoid 
germinal centers expressing high levels of ICOS, CD40 ligand, PD-
1, BTLA, as well as high levels of the cytokine IL-21. These cells play a 
critical role in the activation, differentiation, and survival of B cells. The 
role of Tfh cells in HIV immune activation is unclear. In SIV infection, 
TfH cells have been shown to suffer decreased survival, cycling, and 
trafficking suggesting a loss of function, while another study showed that 
Tfh cells remain capable of stimulating B cells’ Ig production [72,73].

CD8+ T cells and HIV infection; Control of plasma viral loads in 
acute infection of HIV directly coincides with CD8+ T cell functions 
[74]. In both acute and chronic models of primates with SIV infection, 
CD8+ T cell numbers tightly regulate viral replication. The primary 
function of CD8+ T cells is to recognize and kill infected cells via 
perforin/granzymes or via Fas ligand [75]; they are quite competent 
in producing a broad array of cytokines like IL-2, IFN-γ, TGF-β and 
TNF-α, RANTES, MIP-1α, MIP-1β [76]. T-bet, a transcription factor 
and regulator of cytolytic effector cells has been shown to play a pivotal 
role as a determinant of Th1 lineage commitment and is essential for 
the development of autoimmune diseases in transgenic mice [77-79]. 
During HIV infection, CD8+ T cells lose the ability to express T-bet and 
this correlates to cytolytic dysfunction [77]. In elite controllers, T-bet 
expression levels are maintained as compared to chronic progressors 
[80]. Of note, the number of CD8+ T cells secreting cytokines did 
not differ between chronic progressors and elite controllers but 
they were able to produce more cytokines especially IL-2 per cell 
suggesting that the quality of CD8+ T cells responses is directly related 
to immune protection [81-84]. It is becoming increasingly clear that 
polyfunctionality of these cells and transcription factors like T-bet 

should also be used to define correlates of immune activation. In 
conclusion, the mechanism of HIV pathogenesis and its contribution 
to immune activation significantly relies on the balance of the different 
CD4+ T-cell subsets. 

Immune exhaustion: In addition to immune activation, another 
feature of chronic HIV-1 infection is ‘immune exhaustion’. Immune 
exhaustion is characterized by the loss of T cell effector functions [85], 
upregulation of negative regulatory markers on both CD4 and CD8+ T 
cells [6,7,8,86] and deficiency of positive costimulatory molecules such 
as CD28 and BB-1 [87,88]. Blocking of negative regulatory molecules 
like PD-1 has received considerable attention due to partial restoration 
of immune functions upon modulation of these receptors [6,7,89,90]. 
Recently a new member of the same family, PD-1H was implicated 
to play an important role in pro inflammatory cytokine secretion 
and enhancing immune responses to HIV antigens [9]. The authors 
demonstrated that PD-1H in primary human monocytes led to secretion 
of pro-inflammatory cytokines like IL-6, TNF-α and IL-1β. In patients 
with chronic HIV infection on ART, PD-1H levels on monocytes were 
significantly higher as compared to elite controllers and uninfected 
donors. Surprisingly, in patients with acute HIV infection, PD-1H levels 
were lower than those in chronic phase, emphasizing that PD-1H maybe 
the molecule or a part of the mechanism responsible in triggering immune 
activation especially in the chronic stage of the disease. In addition, PD-
1H expression on monocytes in chronic HIV patients correlated with 
T cell immune activation (CD38 and HLA-DR) and exhaustion (PD-
1) markers suggesting that this molecule should be pursued to target 
immune activation and exhaustion both in HIV infected patients.

Pathogenic effects of immune activation and inflammation: The 
role of chronic immune activation is well established in the setting of 
HIV infection even though it is still not fully comprehended how it 
makes host immune system dwindle under its pressure. One of the 
proposed mechanisms is the preferential depletion of CD4+ T helper 
cells that are the key components to host immune response [85]. 
Reduction in numbers of these cells may eventually lead to inability 

Figure 1: Factors involved in HIV associated immune activation. Various factors are associated with HIV associated immune activation. Acute/chronic immune 
activation maybe a result of activation induced by binding of viral proteins to TLRs, altered CD4+ T cell subsets, CD4+ T cell proliferation and apoptosis, pro-inflammatory 
milieu generated by infected antigen presenting cells or activation of cytolytic T cells and leaky gut allowing microbial translocation. In addition, each mechanism may 
inadvertently synergize with other mechanisms and alter the relative contribution of each factor [10,25,31,32,37,43,57,61,69,71,73,77].
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of the body to deal with range of potential pathogens. The other 
mechanism is by providing targets for HIV replication (Figure 1). 
Depletion of CD4+ T cells may trigger activation, proliferation and 
differentiation of naïve and memory T cells to maintain homeostasis. 
However, they may also get infected by HIV and sustain a vicious cycle 
in which infection leads to cell death and further proliferation [86]. 
An additional key mechanism may be inhibition of normal functions 
by B, NK and other antigen presenting cells leading to less efficient 
viral control, increased virus replication and thus immune activation 
[87,88]. Further immune activation of these cells may lead to secretion 
of pro-inflammatory cytokines that can induce cardiovascular damage 
and cancer [89]. Immune activation studies in HIV/SIV infection have 
shown structural damage to lymphoid tissues that are crucial for T cell 
regeneration and function [90,91]. Loss of lymphoid network may lead 
to loss of cytokines that maybe essential to the survival and decreased 
availability of T cells [90]. In a nutshell, chronic immune activation 
wreaks havoc in the setting of an established pathogenic HIV/SIV 
infection in humans and macaques via multiple ways. The best way 
to determine interventions would be blocking them and optimizing 
treatment in humans.

Interventions to control chronic immune activation

Targeting chronic immune activation is of prime importance in 
optimizing HIV infection in humans. Over the last couple of years it 
has become clear that non-AIDS related events such as increased aging, 
cardiovascular disorders, neurodegenerative disorders and cancers 
correlate with increased mortality in HIV patients. Vaccine based 
approaches are not eliciting the required response to prevent or cure 
HIV infection; thus new strategies need to be explored to improve 
overall immune function.

Antiretroviral therapy

Introduction of potent ART has made it possible to achieve control 
of viral replication and improved immune function in majority of the 
treated patients [92,93]. As ART significantly reduces morbidity and 
mortality associated with HIV replication, interruption in the regimen 
fails to achieve functional eradication of the infection [94,95]. Although 
ART has achieved reduction in immune activation to significantly lower 
levels with successful control of viremia, the immune activation never 
returns to the baseline like uninfected controls [96]. The mechanisms 
underlying immune activation are multifactorial and do not solely 
depend on virus replication, hence ART can achieve only so much. The 
size of stable reservoir compartments needs to be closely monitored as 
it appears to be the determinant of the level of residual virus replication 
[15].

Alternative drug therapies

Cyclosporine A is a cyclic peptide commonly used as an immune 
suppressive agent, inhibits T cell activation, proliferation and 
effector functions [97]. Studies conducted in HIV patients show that 
administration of cyclosporine A as supplemental therapy may help 
stabilize mean CD4+ T cell counts and even lower the risk of progression 
to AIDS [98,99]. However, there have been contradictory studies stating 
no beneficial effects in terms of viral replication or any immunologic 
benefits [100,101]. Thus, cyclosporine A has been concluded to not have 
any advantage during ART treatment. Among other classes of tested 
agents include chloroquine that showed significant promise in reducing 
HIV viral loads in ART naïve patients without the patients developing 
drug resistance [102,103]. HIV infection is associated with excessive 
production of TNF-α, thus blocking TNF-α secretion appears to be an 

appropriate choice to reduce HIV related immune activation. Etanercept 
protein binds to TNF receptor acting as a competitive inhibitor for 
TNF-α and encouragingly appears to improve HIV related symptoms 
[104,105]. Certain cytokines when administered exogenously may 
help regulate the proliferation and survival of CD4+ T cells. Naïve and 
memory CD4+ T cells progressively deplete during HIV infection and 
IL-7 administration has been shown to be important in restoring their 
function [106]. IL-7 treatment may also activate latent virus replication 
thereby helping in targeting viral reservoirs [15]. Another cytokine 
IL-21 has been shown to prevent Th17 cell loss during SIV infection 
[58]. Certain other compounds like rapamycin and mycophenolic acid 
may help as additive therapy in conjunction with ART in HIV infected 
patients by reducing T cell proliferation and activation, thus reducing 
available targets for HIV replication and viral loads as well [107,108].

Conclusions
Immune activation associated with HIV infection in recent years 

has been given undivided attention. The factors responsible and the 
mechanisms behind immune activation are being aggressively pursued. 
As recent studies have shown immune activation is linked to the 
perturbations in the human body and predictor of progression to AIDS 
in case of HIV infection, active research on both viral and host factors 
contributing to this phenomenon are underway. This review highlights 
the benefits associated with targeting immune activation to reduce 
disease progression and non-AIDS related pathological side effects on 
HIV induced chronic immune activation.
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