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Abstract

Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis,
Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular
mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair,
but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in
the inflammation cascade holds promise for identification and quantification of the disease process before it is too
late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target
inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational
potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal
models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging
techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon
emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image
adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress,
granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition,
several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation
such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular
imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made
to bring more of these novel imaging agents from the “bench to bedside.”
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Introduction
Neuroinflammation plays a central role in a variety of neurological

diseases, including cerebrovascular disease (e.g., stroke),
demyelinating diseases (e.g., multiple sclerosis, MS),
neurodegeneration (e.g., Alzheimer’s disease), and malignant CNS
neoplasms (e.g., glioblastoma multiforme), among many others [1-6].
Depending on the specific condition, different cell types and molecular
mediators (e.g., cytokines, chemokines) participate in a cascade of
events in the brain that is ultimately aimed at control, regeneration
and repair, but leads to damage of brain tissue under pathological
conditions [2,7,8]. Activation of the resident leukocyte in the brain, the
microglia, presents one of the hallmarks of neuroinflammation, which
is often accompanied by blood-brain barrier (BBB) breakdown,
cytokine and chemokine release, as well as blood-borne leukocyte
infiltration. Damage to neurons and myelin sheaths can be caused by
myeloid cells through oxidative stress, phagocytosis, and proteases,
and by lymphocytes through antibody-dependent cell-mediated
cytotoxicity or cytolytic granule release [9].

Therefore, neuroinflammation is a highly relevant diagnostic and
therapeutic target, but several characteristics of the brain make both
goals more difficult than at other sites in the body. First, the brain has
the BBB, which prevents most molecules from entering the brain.
Thus, imaging probe and drug design needs to bypass this challenge.
Second, cranial bones complicate direct access to the brain for
diagnostic (e.g., biopsies for tissue sampling) or therapeutic (e.g.,

surgery) interventions, and even distorts signal of certain (e.g., optical)
imaging techniques. Lastly, the brain has very limited regeneration
capacity, which makes secondary and tertiary prevention more
difficult, so early diagnosis is of utmost importance.

Although neuroinflammatory diseases have been visualized with a
variety of imaging techniques and agents, the majority of imaging in
current clinical practice is done with methods not specifically targeted
at molecular mediators of the immune system. For example,
gadolinium-enhanced magnetic resonance (MR) imaging detects BBB
breakdown but is not specifically targeted at the molecules and cells
that facilitate this process. It is therefore not surprising that BBB
breakdown on MR imaging and inflammation do not always correlate
[10].

Molecular imaging techniques that non-invasively visualize specific
targets of the inflammation cascade using specific and sensitive probes
could be powerful tools to evaluate neuroinflammation in the clinical
and pre-clinical settings. This could allow for more sensitive and
earlier detection as well as for monitoring disease progression and
response of patients to therapeutic interventions. Over the past decade,
a plethora of molecular imaging agents have been developed and
tested in animal models of neuroinflammation, and a few have been
translated from bench to bedside. The most promising imaging
techniques to visualize neuroinflammation include MRI, positron
emission tomography (PET), single photon emission computed
tomography (SPECT), and optical imaging methods. In this review, we
focus on molecular imaging techniques that target inflammatory cells
and molecules that are of interest in neuroinflammation, especially
those with high translational potential. Figure 1 illustrates the targets
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and the imaging agents for neuroinflammation, while Figure 2 shows
the targets and agents for damage caused by neuroinflammation.

Figure 1: Targets and probes in molecular imaging of
neuroinflammation. Key cellular players in neuroinflammation are
activated microglia, monocytes/macrophages, neutrophils, T-
lymphocytes and B-lymphocytes. Microglia are resident brain
leukocytes, and upregulate translocator protein (TSPO),
cyclooxygenase 1 (COX1), and cannabinoid receptor 2 (CB2) under
inflammatory conditions. Blood-borne leukocytes extravasate into
the brain through interaction of cell surface integrins with specific
endothelial adhesion molecules (e.g., ICAM-1, VCAM-1, P-/E-
selectin). Once in the subendothelial space, exposure to chemokines
(e.g. CCL2 released by microglia) further directs them towards their
target. Stimulated cells then secrete effector molecules (e.g., matrix
metalloproteinases [MMPs] and myeloperoxidase [MPO]), which
trigger axonal damage and/or demyelination. Cell interaction
between antigen-presenting cells (APCs, e.g., B-lymphocytes,
microglia, dendritic cells) is mediated via CD40 amongst other
molecules. Activated platelets can also produce reactive oxidative
species and trigger thrombosis. BL: Bioluminescence imaging; FL:
Fluorescence Imaging (Adapted from Servier Medical Art).

Adhesion Molecules
Migration of blood-borne leukocytes through the endothelium (and

the BBB) is a multi-step process consisting of chemoattraction,
adhesion, and transmigration [11,12]. While chemoattraction is
mediated via various cytokines that often have redundant functions
and cell targets, adhesion is mediated through interaction of
endothelial cell selectins (e.g., P- or E-selectin), VCAM-1, or ICAM-1
with leukocyte integrins (e.g., VLA-4, LFA-1, Cd11b, etc.). Further
interaction with adhesion molecules such as PECAM-1 facilitates

extravasation into the subendothelial space, where exposure to the
local cytokine microenvironment directs leukocytes further towards
their target [12]. Drugs that target leukocyte adhesion molecules can
be highly efficient, exemplified by the monoclonal antibody
natalizumab, which binds α4β1 integrin and is an established drug for
MS [13].

Figure 2: Molecular imaging targets and probes to visualize damage
caused by neuroinflammation. Neuronal damage and
demyelination are hallmarks of neuroinflammation. Injured
neurons express phophatidylserine, which can be targeted by
annexin-V. Caspases are key mediators of neuronal apoptosis,
while Aposense agents enter dying cells that have lost integrity of
their membranes. GABAa-receptor expression has been established
as a marker for neuronal integrity. The myelin sheath around axons
is electrically insulating and allows for fast signal transmission.
Several different agents have been demonstrated to specifically bind
to myelin, thus allowing for assessment of demyelination in
neuroinflammation. FL: Fluorescence imaging (Adapted from
Servier Medical Art).

Molecular imaging probes to detect adhesion molecules must have
several characteristics to be successful: First, their physical size has to
be big enough (generally >500 kDa) to prevent non-specific leakage
through a compromised BBB. Second, good binding capacity under
conditions of high shear stress in vessels is important. Finally, high
sensitivity and specificity is key to detect subtle changes in the
expression of these molecules in inflammation.

Vascular cell adhesion molecule-1 (VCAM-1 or CD106)
VCAM-1 is an adhesion protein of the immunoglobulin

superfamily expressed on endothelial cells. It is highly upregulated
following stimulation with cytokines, and facilitates adhesion of
different leukocyte populations. In a proof-of-concept study, McAteer
et al. [14] conjugated an anti-VCAM-1 antibody to 1 μm sized micron
particles of iron oxide (MPIO), further referred to as VCAM1-MPIO.
In a mouse endothelial cell line stimulated with TNF to upregulate
VCAM-1 expression, VCAM1-MPIO retention was detected. In vivo,
after intracerebral injection of IL-1β into the striatum, focal
hypointensities on T2 weighted MR imaging were detected consistent
with accumulation of VCAM1-MPIO (Figure 3A). Specificity of this
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approach was demonstrated by injecting an isotype IgG antibody
conjugated to MPIO (IgG-MPIO) and pre-treatment with an anti-
VCAM-1 antibody to block binding of VCAM1-MPIO. In both
experiments, no significant T2 signal alteration was detectable [14].
Applying the same probe to a mouse model of brain metastases using
4T1 or MDA231BR cell injections, VCAM1-MPIO allowed for earlier
detection of metastases, and the authors concluded this might translate
to improved detection of metastases [15]. In cerebral ischemia using
the middle cerebral artery occlusion (MCAO) model, a greater area of
VCAM-1 expression was detected compared to the DWI hyperintense
area, suggesting that hypoperfused brain regions at risk for infarction
upregulate VCAM-1 [16]. In experimental autoimmune
encephalomyelitis (EAE), a mouse model of MS, VCAM1-MPIO
allowed for detection of subclinical disease at a stage when lesions
were undetectable by DTPA-Gd enhanced MR imaging. In
symptomatic mice, VCAM1-MPIO detected all lesions visible with
DTPA-Gd plus additional lesions corresponding to areas of leukocyte
infiltration on histology [17]. Finally, utilizing the pilocarpin model of
seizure, focal hypointensities were found in the periventricular organs,
the hippocampus, and cerebral cortex with VCAM1-MPIO [18].

While these studies provide proof-of-principle evidence that
molecular MR imaging targeting endothelial VCAM-1 expression in
vivo is feasible, a major concern is sensitivity in diseases with only
subtle inflammation, such as dementia. Montagne et al. [19] addressed
this issue by using a different anti-VCAM-1 antibody clone. While
McAteer et al. used M/K-2, Montagne et al. evaluated both M/K-2 and
A(429), and found a greater than 250% signal increase with A(429).
With this optimized agent, they were able to detect not only
inflammation in EAE and after intracerebral TNF injection (Figure
3B-3C), but also in the unilateral common carotid artery occlusion
model of vascular dementia, the APPPS1 model of Alzheimer disease,
as well as subtle neuroinflammation after systemic challenges with
LPS, ethanol, or glucose [19]. Extending their findings to stroke, the
same group found extended VCAM-1 upregulation with permanent
but not transient MCAO in peri-infarct areas, suggesting an
inflammatory penumbra that subsequently infarcts [20].

Another approach to image VCAM-1 not yet applied to
neuroinflammation includes affinity peptide ligands for MRI or
PET/CT. In one study, phage display derived peptides were screened
in vitro through a murine endothelial cell line to identify a candidate
peptide that is internalized specifically via VCAM-1. This peptide was
conjugated to CLIO-Cy5.5 for dual MR and fluorescence imaging of
atherosclerosis [21]. In vivo phage display later identified a linear
peptide affinity ligand named VINP-28, further refining this approach.
VINP-28 is homologous to VLA-4, which is a known ligand for
VCAM-1. After conjugation to CLIO-Cy5.5, affinity was found to be
20 times higher compared to the former approach, and dual modality
imaging was performed with MR and fluorescence imaging in
atherosclerosis [22]. A similar affinity peptide ligand was also labeled
with 18F for PET/CT imaging, and successfully tested in mouse
models of atherosclerosis, myocardial infarction, and cardiac
transplant rejection [23].

E-/P-selectin (CD62)
E- and P-selectins (or CD62E/P) are adhesion molecules expressed

on endothelial cells, and they are also upregulated in the presence of
inflammation. A binding partner for these molecules is sialyl Lewisx

(sLex), which is expressed on leukocytes. Interaction between selectins

and sLex mediates rolling adhesion of leukocytes alongside activated
endothelial cells in inflammatory conditions. Fu et al. [24] synthesized
a mimetic of sLex coupled to DTPA. The resulting Gd chelate, Gd-
DTPA-B(sLeX)A was then tested in intracerebral injection of TNF and
IL-1β, where a moderate increase in the MRI T1-weighted signal was
seen at 50 minutes post contrast injection, while no difference was
appreciated after injection of the nonspecific DTPA-Gd [25]. In the
transient MCAO stroke model, the same agent was capable of
detecting upregulation of E-/P-selectin in the infarcted brain region,
again with relatively low sensitivity [26]. To address the issue of
sensitivity, the same group developed MNP-PBP, a peptide ligand
specific for P-selectin conjugated to a 50 nm diameter aminated
dextran superparamagnetic iron oxide (SPIO) nanoparticle. This agent
was again tested in the transient MCAO stroke model with improved
but still suboptimal sensitivity [27].

To further increase sensitivity, a glyconanoparticle (GNP) reagent
named GNP-sLex was designed to bind to E- and P-selectin. This
nanoparticle bears 105 to 107 sLex moieties on the surface of an amine-
functionalized dextran-coated ultra-small paramagnetic iron oxide
(USPIO). Using an unmodified control nanoparticle as a comparison
proved specificity of GNP-sLex. After intracerebral injection of IL-1β,
upregulation of E-/P-selectin was detectable in the injected
hemisphere. These results were further corroborated in focal MOG-
induced EAE and endothelin-1 (ET-1) induced stroke in rats
(intracerebral injections). In both disease models, T2 hypointense
areas were detected consistent with upregulation of E-/P-selectin in
neuroinflammation [28]. Importantly, control nanoparticle did not
reveal any changes, and injection of DTPA-Gd did not show BBB
alterations or changes in CBV, confirming specificity and subclinical
detection capability of this approach. In a follow-up study, this agent
was also used to evaluate subclinical focal EAE lesions after
reactivation with systemic LPS, where GNP-sLex was a highly sensitive
marker for subclinical inflammatory foci (Figure 3D) [29].

Intercellular adhesion molecule 1 (ICAM-1, or CD54)
ICAM-1 is another endothelial cell expressed member of the

immunoglobulin superfamily involved in adhesion of leukocytes to the
endothelium. The first approach to perform MR imaging of an
adhesion molecule, and in this case ICAM-1, was undertaken by
Sipkins et al. [30], when they used an anti-ICAM-1 conjugated
liposome chelate. Using ex vivo brain MR imaging after injection of
their agent in the EAE model of MS, they were able to detect
upregulation of ICAM-1 in the inflamed brain. Localization of this
probe to the endothelium was confirmed with a Texas red tagged
probe under fluorescence microscopy [30]. Subsequently, Deddens et
al. [31] designed and tested two different probes targeted at ICAM-1.
Their first probe, an anti-ICAM-1 functionalized Gd liposome (similar
to the probe used by Sipkins et al. [30]) with a size of approximately
200 nm worked in vitro when tested in brain endothelial cells
stimulated with TNF, but lacked sensitivity to detect ICAM-1
upregulation in a murine stroke model. In contrast, an anti-ICAM-1
functionalized MPIO (ICAM-MPIO) with a size of approximately 1
μm bound specifically to TNF-stimulated brain endothelial cells in
vitro, and showed T2 hypointense brain areas 1 hour after induction of
the transient MCAO stroke model in vivo [31]. In a subsequent study
using the same agent, upregulation of ICAM-1 in the brain after
radiation injury could be visualized [32].
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Figure 3: MR Imaging of adhesion molecules in neuroinflammation. (A) VCAM-MPIO compared to IgG-MPIO enhanced MR imaging after
intracerebral injection of IL-1β, axial T2*-weighted images and 3-dimensional volumetric maps of VCAM-MPIO (or IgG-MPIO) binding are
shown. (B) VCAM-upregulation after intracerebral injection of TNF on histology and VCAM-MPIO-enhanced MRI. (C) Diffuse VCAM
upregulation in the brain of an EAE mouse on VCAM-MPIO-enhanced MRI. (D) 3D reconstruction maps of GNP-sLex- and control GNP-
enhanced MRI in EAE mice reveal increased selectin expression in the inflamed brain. (Modified from McAteer etl al. [14], Montagne et al.
[19], and Serres et al. [29] with permission).

Integrin αvβ3
Integrin αvβ3, a cell adhesion molecule not only expressed on

endothelial cell but also on macrophages and platelets, has also been
targeted for non-invasive imaging. Peptides containing the three
amino acid sequence arginine-glycine-aspartic acid, called RGD
peptides, have been shown to be specific ligands for integrin αvβ3, and
were labeled with radioactive tracers for PET and SPECT [33,34]. Two
agents, 18F-galacto-RGB for PET and 99mTc-NC100692 for SPECT
have been translated [35], but human studies have been restricted to
evaluation of tumor angiogenesis and not neuroinflammation. In
addition to nuclear imaging, MR imaging with RGD peptides
conjugated to Gd-based paramagnetic nanoparticles [36], and USPIO-
based superparamagnetic nanoparticles [37] were used to assess tumor
angiogenesis. Furthermore fluorescent molecular tomography (FMT)
with RGD-peptides conjugated to Cy5.5 [38] and quantum dots [39]
have been reported. In a mouse model of glioma, Cy5.5-RGD binding
was evaluated on fluorescence reflectance imaging (FRI), and signal
intensity correlated well with tumor size on MR imaging. Binding was
blocked by pre-injection with unlabeled RGD, and Cy5.5 signal co-
localized with vasculature on fluorescence microscopy [40]. Using a
tetrameric 64Cu labeled RGD peptide, Wu et al. [41] similarly
demonstrated rapid and significant probe uptake into mouse gliomas,

and specificity was confirmed by pre-injection with unlabeled RGD to
block binding sites.

Leukocyte Functions

Oxidative stress
Myeloperoxidase: Myeloperoxidase (MPO) is a proinflammatory

and oxidative enzyme secreted by activated neutrophils and
monocytes in inflamed tissues, facilitating the conversion of H2O2 to
HOCl [42]. Querol et al. [43,44] synthesized the paramagnetic
activatable MPO sensor Gd-bis-5-HT-DTPA (MPO-Gd). MPO
oxidizes the sensor’s 5-hydroxytryptophan (5-HT) moieties to results
in two effects: 1) oligomerization of the sensor and 2) binding of the
sensor to proteins. Both effects lead to an increase in T1 relaxivity, and
because the sensor is retained at sites of MPO activity, delayed image
acquisition improves sensitivity and specificity [43]. Probe retention
and biodistribution were investigated by labeling bis-5-HT-DTPA
with 111In, and the MPO sensor was more than fourfold increased at
MPO-rich sites [43].

Since then, MPO-Gd has been used in several neuroinflammatory
diseases. In EAE, MPO-Gd detected more and smaller active
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inflammatory brain lesions than DTPA-Gd (Figure 4A), and MPO-
expressing cells and demyelinated areas correlated well with MPO-Gd
enhanced MR imaging findings [45]. In a subsequent study, a
preclinical MPO-inhibitor was found to significantly ameliorate
clinical disease in EAE mice by reducing infiltrating inflammatory
cells and demyelination, and MPO inhibition resulted in reduced
lesion volume, lesion number, and enhancement intensity on MPO-
Gd enhanced MR imaging [46]. These findings suggest that MPO
could be a potential treatment target and imaging biomarker in MS.

In the MCAO mouse model of stroke, MPO-Gd enhanced MR
imaging detected widespread secretion of MPO into the ischemic
areas, and MPO-Gd positive lesion volume correlated well with infarct
size (Figure 4C) [47]. MPO-specific signal peaked on day 3 after
stroke, which was confirmed using in vitro MPO activity and RT-PCR
assays [47]. In addition, specificity of MPO-Gd in vivo was confirmed
by imaging MPO-knockout stroke mice, in which no specific MPO
enhancement was detected [47]. In a mouse model of silent brain
ischemia induced by intra-arterial injection of microbeads or
fractionated clots, MPO-Gd positive brain areas co-localized with
embolic material [48].

Gliomas are known to trigger inflammation, and one clinical
problem is to distinguish recurrent growth from inflammation. Kleijn
et al. [49] injected rats intracerebrally with D74/HveC glioma cells or
mice with CT-2A cells, and treated the resulting gliomas with an
oncolytic virus. MPO-Gd enhanced MRI detected the inflammatory
changes induced by treatment with oncolytic virus longitudinally in
vivo: On day 1 after virus injection, intratumoral MPO activity
elevated. On days 3-7 after virus injection, while tumor size decreased
and intratumoral MPO activity decreased, peritumor MPO activity
increased (Figure 4B). Upon translation, this might allow
differentiation of tumor from inflammation.

Another approach to detect oxidative stress generated by the MPO
system is based on emission of chemiluminescence by oxidizable
probes. While luminol has been found to specific to MPO [50],
lucigenin requires NADPH oxidase for activation [51]. Luminol has
been used to visualize oxidative stress in vivo in a mouse model of
stroke [52] and in EAE [53]. Because tissue absorption and light
scattering are an issue for translation to humans, a chemilumescence
resonance energy transfer methodology was recently described, where
luminol emitted light excites nanoparticles to emit far-red
fluorescence, resulting in signal amplification and reduced tissue
absorption [54].

Free radicals: To detect free radicals, the radical spin trap 5,5-
dimethyl-1-pyrroline N-oxide (DMPO) was injected into mice
followed by an antibody against DMPO conjugated to albumin-biotin-
DTPA-Gd. This approach proved fruitful in a mouse model of
diabetes, where in vivo MR imaging distinguished diabetic from
control mice [55]. In mice with a mutant form of superoxide
dismutase 1 (SOD1), which develop a disease resembling amyotrophic
lateral sclerosis (ALS), DMPO imaging was also successful in detecting
free radicals. There, T1 signal 120 minutes post agent injection was
elevated compared to control mice, and probe retention in the spinal
cord of ALS mice but not control mice was confirmed ex vivo with
streptavidin-Cy3 (which binds to the biotinylated probe) on
fluorescence microscopy [56]. This suggests successful detection of
oxidative stress in vivo in a mouse model of ALS.

Electron paramagnetic resonance imaging (EPRI) in principle is
capable of detecting unpaired electrons in free radicals, but because
free radicals are short-lived and exist at very low concentrations in
vivo, administration of imaging agents with unpaired electrons or
precursors of such agents is necessary [57]. In the kainic acid model of
epilepsy in rats, a BBB-permeable nitroxide radical was injected to
evaluate the reduction capability of certain areas in the brain. In the
hippocampus, the ability to reduce radical was diminished compared
to other brain regions and to hippocampus of control animals [57],
and these findings were confirmed in the FeCl3 seizure model [58].
Using an oxidizable precursor sensor, increased levels of oxidative
stress were detected in hippocampus and striatum in kainic acid
induced seizure [59]. In a mouse model of cerebral ischemia-
reperfusion, nitroxide radical enhanced EPRI demonstrated impaired
reduction ability in the ischemic brain [60]. With EPRI, one of the
limitations is spatial resolution. Overhauser MR (OMR) imaging
couples the sensitivity of EPRI with the spatial resolution of MRI by
making use of the Overhauser effect [61]. In mice with cerebral
ischemia-reperfusion, decreased reduction capacity was detected in the
affected hemisphere with methoxycarbonly-PROXYL (a redox
sensitive agent) on OMR imaging [62]. Similarly, in the 6-
hydroxydopamine model of Parkinson’s disease, decreased reduction
capacity was detected in the injected hemisphere [63].

Other approaches: Other approaches to image oxidative stress in
vivo are less advanced, or have not been applied to study
neuroinflammation. A PET agent named 18F-5-Fluoro-L-
Aminosuberic Acid (18F-FASu) is taken up by a cystine/glutamate
transporter that is upregulated when cells experience oxidative stress
to make substrate available for the antioxidant glutathione. 18F-FASu
has been validated in vitro and in vivo using mouse xenograft tumors
[64]. Peroxy Caged Luciferin-1 (PCL-1) is a bioluminescent probe
specific for H2O2. In the presence of firefly luciferase and H2O2,
luciferin is released from PCL-1 and triggers bioluminescence. This
system’s suitability for in vivo imaging has been demonstrated in a
mouse model of prostate cancer [65]. Lastly, CePO4:Tb, Gd hollow
nanoparticles have been described to form nanospheres in the
presence of H2O2, thus making them potentially suitable for
fluorescence and MR imaging [66], but have not been tested in vivo.

Proteolytic activity
Proteases such as matrix metalloproteinases (MMPs), which are a

family of zinc-dependent endopeptidases with over 25 members, as
well as cathepsins, which are cysteine proteases with at least 12
members, are crucial mediators of tissue damage secreted mostly by
microglia, astrocytes, and monocytes/macrophages. MMPs degrade
extracellular matrix and are associated with excitotoxicity, neuronal
damage [67], and opening of the BBB [68].

MMPsense is an activatable near-infrared fluorescence probe that
can be cleaved by various MMP types [69]. MMPsense has been used
visualize MMP activity in stroke, where increased MMP activity on
FRI was detected in the ischemic brain (Figure 5B-5C) [70].
MMPsense signal was detectable at 24 hours, remained elevated until
day 7, and was inhibited by a preclinical MMP inhibitor [70],
suggesting specificity of this probe.
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Figure 4: Molecular MR imaging of myeloperoxidase. (A) MPO-Gd enhanced MRI in EAE, where more lesions (arrows) are detected with
MPO-Gd compared to DTPA-Gd. In addition, delayed enhancement confirms MPO-mediated activation. (B) MPO-Gd enhanced MRI in
glioma shows low MPO activity before oncolytic virus administration (day 0). On days 1 and 3, MPO-Gd contrast increased in the peritumor
area but is still present in the tumor center. On day 7, most of the enhancement in the center fades, but persistent MPO-Gd enhancement in
seen in the periphery. (C) MPO-Gd enhanced MRI on day 3 after stroke correlates well with infarct on H&E staining on histology, where
MPO immunostaining is present. (Modified from Chen et al. [45], Breckwoldt et al. [49], and Kleijn et al. [47] with permission.)
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Figure 5: MMP imaging in neuroinflammation (A) Combined FMT and MR imaging of brain tumors with Prosense demonstrates focal
activity of protease activity associated with gliomas. Prosense signal correlated well with tumor size on MRI. (B) In vivo fluorescence imaging
at 24 hours after MCAO in mice, where strong fluorescence was detected over the infarcted hemisphere. In contradistinction, very little signal
increase was seen with MMPsense in sham mice or with control probe in stroke mice [70]. (C) Ex vivo correlation of Prosense signal (Cy5.5
channel) with TTC staining, and with BBB breakdown (FITC-albumin) in stroke mice. (Modified from McCann et al. [72] and Klohs et al.
[70] with permission.).

Prosense is a similar activatable near-infrared fluorescence probe
that can be cleaved by cathepsin, B, L, and S. It was first evaluated in
the 9L gliosarcoma mouse model in the brain, where elevated
fluorescence signal was detected using FMT [71]. The same probe was
also used in a study utilizing nude mice implanted with U87 human
glioma cells. FMT was fused with MR imaging by use of landmarks
such as ears, eyes, snout, and tumor foci for better anatomical
coregistration. Prosense signal location and intensity correlated well
with tumor location and growth (Figure 5A), and the response to
chemotherapy with temozolomide could be visualized [72]. A
fluorescent sensor specific to cathepsin B (Cath B 680 FAST) was
successfully used in mice with EAE, where it distinguished EAE from

control mice and demonstrated elevated cathepsin B activity in brain
and spinal cord [73].

For nuclear imaging of MMPs, the MMP-3 inhibitor CGS 27023A
has been radiolabeled with fluorine-18 (18F) for potential PET imaging
[74]. An iodine-123 (123I) ligand of the same compound has been used
to image vascular inflammation after carotid artery ligation with
SPECT [75].

Other approaches include a radiolabeled antibody against MMP-14,
which has been used to image inflammation in atherosclerotic ApoE
deficient mice with SPECT [76], and the PET probe copper-64 (64Cu)-
DOTA-CTT, which is based on the peptide MMP-2/9 inhibitor CTT,
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but poor in vivo stability and low affinity have halted further studies
[77].

Cyclooxygenase (COX)-1 and 2
COX-1 and 2 are key enzymes that catalyze conversion of

arachidonic acid to prostaglandins, which play crucial roles in
inflammation. While generally COX-1 is thought of as constitutively
expressed, COX-2 is often upregulated during inflammation.
However, in the brain it has been suggested that microglia express
COX-1 and upregulate this enzyme in various inflammatory diseases,
while COX-2 is mostly expressed by neurons in a constitutive way
[78].

To visualize COX-1 activity, the PET ligand 11C-ketoprofen was
successfully tested for specificity in COX-1 and COX-2 knockout mice.
After intracerebral injection of LPS in rats, increased uptake of 11C-
ketoprofen was seen as early as 6 hours and returned to baseline by
day 7. This correlated with presence of COX-1 but not COX-2
expressing microglia at the site of injection [79]. Consistent with these
findings, a PET agent selective for COX-2 did not show significant
changes in a rat model of HSV encephalitis [80], and a different
COX-2 PET agent showed high uptake in the brain reflective of
constitutive neuronal COX-2 expression [81].

Glycoprotein IIb/IIIA (GPIIb/IIIa)
GPIIb/IIIa is an integrin complex found on platelets, and is

important for platelet activation. In cerebral malaria, extensive damage
to vascular endothelial cells and platelet thrombi are typical disease
features, and related to platelet activation via GPIIb/IIIa. Von zur
Muhlen et al. [82] have conjugated a single-chain antibody directed
against the ligand-induced bindings sites (LIBS) of GPIIb/IIIa on
platelets to MPIO. The resulting agent LIBS-MPIO specifically detects
the LIBS epitope, which is only exposed upon platelet activation. In a
mouse model of cerebral malaria, using LIBS-MPIO enhanced MR
imaging, they were able to detect activated platelets in the brain
vasculature at a stage when conventional MR imaging was negative
and clinical findings absent.

Translocator protein (TSPO)
TSPO (formerly peripheral benzodiazepine receptor) is not

expressed on neurons but rather micro- and macroglial cells, and is
upregulated with microglia and astrocyte activation in different
neuroinflammatory conditions as measured with PK11195, a specific
ligand for TSPO [83,84]. However, subsequent studies revealed that
binding of PK11195 correlated better with the number of activated
microglia/infiltrated monocytes than astrocytes in models of TBI and
stroke [85,86]. In rats induced with stroke, carbon-11 (11C)-PK11195
PET revealed microglia activation/monocyte infiltration into the
infarct [87] This was subsequently confirmed in a human stroke
patient, where 11C-PK11195 enhanced PET showed increased uptake
in the affected hemisphere 13 and 20 days after stroke [88]. Moreover,
PK11195 binding co-localized with activated microglia in a mouse
model of Alzheimer’s disease [89]. Investigating microglia activation
with 11C-PK11195 in 8 patients with Alzheimer’s disease, increased
11C-PK11195 uptake was observed in the entorhinal, temporoparietal
and cingulate cortex (Figure 6A) [90].

Since then, 11C-PK11195 PET has been used in a variety of
neuroinflammatory diseases both in rodents and humans. In a mouse
model of TBI, prolonged microglia activation was detected 10 days

after the insult [91]. In 10 patients with TBI, there was no increased
binding of 11C-PK11195 PET at the original site of focal brain injury,
but in the thalamus, putamen, internal capsule, and occipital cortices
(Figure 6C). Additionally, microglia activation could be detected even
17 years after TBI, suggesting a potential for therapeutic intervention
even at this time point [92].

In a study of 6 stroke patients, microglia activation was observed as
early as day 3 post stroke, first at the outer rim of the infarct and
spreading to the core (Figure 6B), but was also seen in distant brain
areas consistent with Wallerian degeneration [93]. In 18 stroke
patients imaged between 2 weeks and 6 months post symptom onset,
microglia activation in the infarct was initially elevated, normalized
over the study period, but– if prolonged – correlated negatively with
clinical outcome. In addition to microglia in the infarct, there was
prolonged microglia activation along the damaged pyramidal tract
(PD) in the brainstem in patients where the PD was affected, and this
correlated positively with clinical outcome [94]. These results support
the hypothesis that microglia have both neurotoxic and
neuroprotective functions depending on location and timing.

In a study on 12 patients with MS, microglia activation was not only
detected in areas correlating with lesions detected on conventional
MRI, but also in normal-appearing areas including cortical areas [95].
Furthermore, 11C-PK11195 binding in cortical areas correlated with
clinical disability in a study of 18 RR and SP-MS patients [96]. In a
PET-MRI correlation study on 22 MS patients, 11C-PK11195 binding
was increased in DTPA-Gd enhancing lesions but was decreased in
T2-lesions. However, during a relapse, an increase in normal-
appearing white matter as well as transient increased uptake in T2-
lesions was seen [97]. Lastly, 11C-PK11195 uptake in normal-
appearing white matter increased with the degree of brain atrophy
[98]. These results suggest that microglia activation is present outside
of MRI-detected lesions, and that microglia activation contributes to
both relapses and chronic progression in MS.

In two patients with Rasmussen’s encephalitis, PET imaging with
11C-PK11195 showed diffuse and focal increase in signal throughout
the affected hemisphere consistent with postmortem
neuropathological studies of diffuse microglia activation [99].
Microglia activation was also detected in the brains of patients with
Parkinson’s disease and ALS [100,101], in spinal cords of rats after
sciatic nerve injury [102], and in striatum of patients with
Huntington’s disease [103].

Although 11C-PK11195 has been widely used in both animal and
human research, it suffers several set-backs: It is associated with a high
level of nonspecific binding, and has a poor signal-to-noise ratio
[104,105]. In addition, 11C has a very short half-life of only 20 minutes
which also negatively affects widespread clinical use. Therefore, several
alternative TSPO agents have been synthesized [106].

Several second generation TSPO agents were tested in
neuroinflammatory models on ex vivo autoradiography: The
benzodiazepine Ro5-4864 was radiolabeled with 125I and evaluated in
the rat C6 glioma model, with increased probe uptake in the tumor
[107]. 18F labeled PK14105 and 11C labeled AC-5216 were compared
to PK11195 in rodents intracerebrally injected with kainic acid, and
demonstrated similar characteristics [108,109]. Price et al. [110] tested
three compounds in a rat model of Huntington’s disease, but the
compound with the highest contrast over normal-appearing brain had
similar characteristics as 11C-PK11195. 123I-CLINDE was used in rat
EAE and the cuprizone mouse model of demyelination [111,112].
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Most promising are agents that have been directly compared to 11C-
PK11195 in in vivo PET studies, or have been conjugated with
radiolabels that have better characteristics than 11C, such as 18F. For
example, 11C-DAA1106 showed specific binding 5 times higher than
11C-PK11195 in rodent models of Parkinson’s disease and TBI
[113,114]. A slightly improved tracer, 18F-fluorethyl-DAA1106 was
capable of visualizing inflammation in APP23 Alzheimer’s mice [115].
However, in patients, no difference was detected between Alzheimer’s
patients and control patients [116], or between MS patients and
control patients [117], suggesting different receptor-ligand interaction
depending on the species.

After intracerebral injection of the excitotoxin AMPA, the tracer
11C-CLINME identified inflamed brain tissue with higher binding
potential compared to PK11195 [118]. 18F-PBR111, the fluorinated
version of 11C-CLINME, has been used to image acute and chronic
EAE [119], and is currently undergoing a clinical trial on MS patients.
11C-vinpocetine showed favorable characteristics compared to 11C-
PK11195 in four patients with stroke [120], and the sensitivity of 11C-
vinpocetine for activated microglia was confirmed in a study of 9

stroke patients [121]. The same agent detected elevated microglia
activation in elderly compared to young subjects, but failed to detect a
difference between elderly subjects and patients with Alzheimer’s
disease [122]. 11C-PBR28 was successfully tested in the MCAO rat
stroke model, and demonstrated microglia activation in the outer
infarct rim [123]. In MS patients, 11C-PBR28 binding was seen in
active inflammatory lesions confirmed with contrast-enhanced MR
imaging (Figure 6D), and sometimes preceded appearance of MRI
lesions [124]. Other agents include 18F-DPA714, which has been tested
in EAE and rodent herpes encephalitis [125,126], and demonstrated
higher contrast-to-noise ratios than 11C-PK11195 in a murine stroke
[127].

Challenges in optimizing TSPO agents for human imaging include
interspecies variations in affinity of different agents, which makes
extrapolation of rodent studies difficult to impossible, as well as recent
discovery of a polymorphism in the TSPO gene that determines
binding affinity to TSPO, which affects all agents but 11C-PK11195
[128].

Figure 6: TSPO PET imaging in neuroinflammation. (A) 11C-PK11195 PET in patients with Alzheimer’s disease shows increased uptake
suggestive of microglia activation in the entorhinal, temporoparietal and cingulate cortex. (B) 11C-PK11195 PET in a patient with acute
ischemic stroke. Coregistered T1-weighted MRI and PET demonstrated 11C-PK11195 enhancement surrounding the infarct seen on MRI on
day 5, while considerable overlap between MRI and PET was found on day 13. (C) Chronic microglia activation following TBI as evaluated by
11C-PK11195 PET, where increased uptake in the thalami of all TBI subjects is seen compared to control individuals. (D) In a patient with MS,
focally increased uptake of the TSPO PET agent 11C-PBR28 is seen in gadolinium enhancing and FLAIR hyperintense MRI lesions (arrows).
(Modified from Cagnin et al. [90] Gerhard et al. [93], Ramlackhansingh et al. [92], and Oh et al. [124] with permission.)
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Cannabinoid receptor 2 (CB2)
While the cannabinoid receptor 1 is constitutively expressed in a

variety of cell types, CB2 is thought to be expressed on microglia/
macrophages and is upregulated with activation of these cells [129].
Horti et al. [130] evaluated 11C-A836339, a selective CB2 agonist, as a
candidate probe for neuroinflammation and specifically for activated
microglia. They found increased uptake with LPS-induced
neuroinflammation and in the transgenic APPswe mouse model of
Alzheimer’s disease. A similar probe, 11C-KD2 showed increased
uptake in spinal cord sections from ALS patients on autoradiography
[131]. However, another probe, 11C-NE40 did not detect a difference
between stroke and sham-operated rats in the photothrombotic stroke
model [132]. Lastly, a near-infrared probe selective for CB2 has been
developed and successfully tested in a mouse tumor model [133]. The
major challenge for CB2 imaging is specificity of CB2 for microglia/
macrophages, because in neuroinflammation CB2 can be detected on
T-lymphocytes, astrocytes, and microglia [134].

Leukocyte Labeling

Radiolabels
Decades ago, leukocytes were harvested from blood samples,

labeled with indium-111 (111In) and re-injected to localize
inflammation on SPECT. While first studies were mostly on sepsis foci
detection [135-137], further studies extended the use of this approach
to cerebral abscesses [138], brain metastases [139], and stroke [140].
However, 111In labeling damages leukocytes and this results in reduced
proliferative capacity and DNA damage [141]. To circumvent this,
technetium-99m (99mTc) has been used, which carries a much lower
risk of leukocyte damage [142]. In stroke, patients injected with 99mTc-
labeled leukocytes with poor outcome had higher signal in the affected
hemisphere compared to patients with good outcome, suggesting a
clinically relevant effect of leukocyte infiltration [143]. Wang et al.
[144] demonstrated that 99mTc-leukocyte signal is higher in acute than
chronic stroke and that signal persists for several weeks. In a larger
study on 88 stroke patients, leukocytes accumulated in infarcted brain
areas and this correlated with brain tissue damage and poor
neurological outcome [145]. To specifically track neutrophils, Price et
al. [146] labeled these cells in vitro with 111In-troponolate. In 15 stroke
patients, they found that neutrophils recruit to the infarcted brain
within 24 hours (Figure 7A), and degree of neutrophil recruitment
correlated with infarct extension [146].

Since then, this method has been adapted for PET imaging by
labeling autologous cells with 18F-FDG and re-injecting them into
patients. In a pilot study on 21 patients with fever of unknown etiology
or unknown extent of infection, PET/CT imaging demonstrated
general feasibility [147]. Additionally, labeling of leukocytes with 64Cu
has been published [148].

However, there are several shortcomings of this approach: first,
release of the radiolabel from the cells, which can penetrate a
compromised BBB, leads to non-specific signal [149]; second,
intraparenchymal versus intravascular signal cannot be distinguished
[149]; third, false positive (e.g., GI bleeding, pseudoaneurysms, and
tumors) and false negative (encapsulated nonpyogenic abscess,
chronic low-grade infection, hyperglycemia, steroids) results are not

uncommon [150]. Finally, length of follow up depends on the half-life
of the radiolabel and on the proliferative capacity of the labeled cells
(dilution of label per cell with signal loss).

Iron oxide particles
Superparamagnetic iron oxide particles consist of an iron-oxide

core embedded in dextran, citrate, or polymer shell, and several
different particle sizes exist: ultra-small superparamagnetic iron oxide
(USPIO, 10 – 50 nm), superparamagnetic iron oxide (SPIO, 50 – 100
nm), and micrometer-sized iron oxide (MPIO, >1 μm) [151]. These
agents possess large negative magnetic susceptibilities, resulting in
negative contrast on T2-weighted sequences. Virtually any cell type
can be labeled in vitro with different-sized iron oxide nanoparticles,
although for cells that do not phagocytose a transfection agent might
be needed to increase iron oxide uptake [151].

Two main approaches in how iron oxide particles are used to image
neuroinflammation exist: in the first, iron oxide is injected
intravenously and taken up by phagocytic cells (e.g. monocytes,
macrophages, microglia) in vivo, which are thus labeled, and the
second, where autologous cells are harvested and labeled in vitro, then
re-injected to trace the labeled cells.

Iron oxide labeling in vitro: In one of the few studies on iron oxide
leukocyte labeling in neuroinflammation, Stroh et al. [152] isolated
splenic mononuclear cells and labeled them with USPIO before
systemic reinjection into stroke mice. They were able to detect injected
cells at 48 hours in the lesion border for up to 5 weeks post stroke
[152]. In a proof-of-concept study, human monocytes were labeled
with superparamagnetic iron oxide (SPIO, Feridex, size 120-160 nm),
which were injected into the basal ganglia of SCID mice. The SPIO
nanoparticles were tracked by MRI for up to 14 days after injection,
and MR imaging localization of monocytes was confirmed on
histology [153].

Yeh et al. [154] labeled rat T-lymphocytes in vitro with USPIO,
which took up by these cells via endocytosis, and reinjected them into
the same rats for tracking by MRI. Anderson et al. [155] used SPIO-
poly-L-lysine to label T-lymphocytes in vitro, before stimulation and
adoptive transfer of these cells into recipient mice to induce EAE.
SPIO-labeled T-lymphocytes were readily detected in the spinal cord
of mice on in vivo and ex vivo MRI (Figure 7B) [155]. Using a similar
approach, T-lymphocytes were labeled with SPIO in the presence of
the transfection reagent protamine sulfate, which increased labeling
efficiency and also allowed for detection of injected cells in the spinal
cord on MRI [156].

Iron oxide particle labeling in vitro shares similar issues with
radiolabeling. Cells might lose the label or die, both of which will
result in nonspecific signal, and cell proliferation will dilute the signal.
Both effects pose a limit on the time window of imaging. For clinical
safety and validity of study results, any effects of iron oxide particles
on their target cells need to be addressed. In one in vitro study, iron
oxide nanoparticles did not affect proliferative capacity of a human
macrophage cell line but transiently increased oxidative stress [157],
consistent with phagocytic oxidative burst after phagocytosis of these
particles. In addition, phagocytosis of SPIO or USPIO shifted rat and
mouse macrophages towards an anti-inflammatory phenotype [158].
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Figure 7: Cell tracking strategies. (A) Noncontrast CT in acute ischemic stroke and SPECT of in vitro 111In-troponolate-labeled neutrophils
demonstrate cell infiltration into the infarcted brain region. (B) In vivo and ex vivo MR imaging of iron oxide labeled T-lymphocytes in EAE
mice, and corresponding histological evidence of demyelination (H&E and luxol fast blue staining). (C) MBP-specific CD4+ T-lymphocytes
were transduced with a GFP-luciferase retroviral vector and transferred into naïve or MBP-immunized EAE mice. On bioluminescence
imaging, cells localized at the immunization sites as well as the brain in a clinically symptomatic mouse but not in a naïve control mouse. (D)
MRI and PET of a patient with glioma injected with genetically targeted autologous cytolytic CD8+ T lymphocytes to express the IL-13
zetakine gene and herpes simplex virus 1 thymidine kinase suicide gene, which allows for PET detection using the radiotracer 18F-FHBG.
(Modified from Price et al. [146], Anderson et al. [155], Costa et al. [205] and Yaghoubi et al. [206] with permission).

Another limitation is the restriction to one label with MR imaging
(in contrast to fluorescence imaging, which can distinguish labels
based on excitation and emission wavelength). Thus, cell co-
localization and interaction cannot be investigated with conventional
MR imaging and gadolinium or iron oxide based contrast agents.

Recently, however, an interesting approach utilizing paramagnetic
chemical exchange saturation transfer agents has been reported. There,
lanthanides such as Yb and Eu are conjugated to HPDO3A, and these
agents have similar pharmacokinetic and biosafety properties as Gd-
HPDO3A. Using these agents, two different cell lines were labeled and
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could easily be distinguished in vitro as well as in vivo after injection
into mice [159].

Phagocytosis/uptake in vivo: The first study using iron oxide to
track cells that take up iron oxide particles via phago- or endocytosis
in vivo was in a rat glioma model using C6 cells. C6 cells are known to
phagocytose, and uptake of monocrystalline iron oxide nanoparticles
(MION) of 20 nm diameter was shown in vitro by radionuclide and
fluorescent labeling of MION. In vivo, gliomas showed uptake of
MION on MRI [160]. In a human study involving 55 patients, in 19 of
34 glial tumors iron oxide enhanced as much or more than DTPA-Gd
[161]. Taschner et al. [162] reported USPIO enhancement in 7 of 9
glioma patients, but only detected USPIO in macrophages in 2
patients, casting doubt on the cellular identity imaged with this
approach.

For most other neuroinflammatory diseases, however, the ability of
certain leukocytes (macrophages, neutrophils, monocytes, microglia,
dendritic cells) to phagocytose iron oxide nanoparticles has been used
in an attempt to specifically visualize these cells.

In the rat EAE model, USPIO-enhanced MR imaging, lesions of low
T2 signal were seen and histologically confirmed to be phagocytic
leukocytes [163]. When comparing USPIO enhancement (phagocytes)
to DOTA-Gd enhancement (BBB breakdown), uptake of USPIO was
detected in areas without DOTA-Gd enhancement, and vice versa
(Figure 8A) [10]. In addition, USPIO enhancing lesions had low
magnetization transfer ratios, possibly indicating co-localization of
phagocytic cells with areas of demyelination [10]. USPIO lesion load
and volume at the acute EAE stage correlated with inflammation,
phagocyte infiltration, demyelination, axonal damage and extent of
axonal loss [164].

In a study investigating BBB breakdown with DTPA-Gd and
phagocyte infiltration with USPIO suggested that BBB breakdown
preceded phagocyte infiltration in acute EAE [165]. In 19 patients with
relapsing-remitting (RR)MS, who underwent serial MR imaging with
USPIO and DTPA-Gd, 188 USPIO positive lesions were seen, 144 of
which did not show DTPA-Gd enhancement. Of 59 lesions with
DTPA-Gd enhancement, 15 did not show USPIO uptake, and USPIO
uptake preceded DTPA-Gd enhancement in some lesions (Figure 8B)
[166]. These results suggests that BBB breakdown and phagocyte
infiltration are different pathophysiological events and might occur
independently of each other at different stages or types of MS lesions,
with no clear temporal relationship.

In the transient MCAO stroke model in rats, USPIO could be
detected in vessels 24 hours after administration, and in infarcted
tissue on day 2, consistent with neutrophil and monocyte infiltration
at this time [167]. Localization of USPIO within phagocytic cells was
confirmed on histology [168]. Wiart et al. [169] demonstrated peri-
infarct USPIO uptake followed by signal spread to the contralateral
hemisphere, correlating with areas of inflammation on histology. In a
rat model of cerebral ischemia-reperfusion, SPIO uptake was mostly
seen in the damaged brain and corresponded to areas of macrophages
infiltration on histology [170]. To further clarify the timing of
phagocytosis and possible cell migration, USPIO was injected on day 0
and uptake in stroke was investigated from days 1-7 after permanent
MCAO in rats, and the following pattern was found: first, phagocytic
cells accumulated in the boundary zone, then they were found in the
infarct core on days 2-4, before clearing by day 7 (Figure 8C) [171].

This raised the question whether these cells could migrate into the
ischemic lesion from the periphery. To address this question, the
photothrombotic stroke model in rats, which yields highly
reproducible infarcts without surrounding penumbra, was utilized.
MR imaging was performed on days 3, 6, 8, and 14 post stroke
induction, and 24 hours after injection of USPIO. On day 6, the outer
infarct rim showed USPIO uptake, while by day 8 the infarct core was
T2 hypointense [172]. In addition, there was BBB breakdown as
evidenced by DTPA-Gd enhancement at all time points, indicating
that BBB breakdown and phagocyte infiltration are unrelated [172].
Interestingly, when USPIO were injected on day 5, an outer rim of
USPIO uptake was detected on days 6 and 8, indicating that
phagocytes remain sessile [172]. Importantly, while macrophages were
still found in infarcted tissue on day 14, no USPIO uptake was
detected [172], suggesting a switch toward a non-phagocytic
phenotype.

In a study on 10 ischemic stroke patients injected with USPIO 7
days after symptoms onset, USPIO uptake was seen in ischemic brain
area and differed from DTPA-Gd indicated BBB breakdown, showing
that phagocyte imaging is feasible in stroke patients (Figure 8D) [173].
In a second study of 10 stroke patients, USPIO volume did not
correlate with DWI volume or BBB disruption, also suggesting that
iron oxide MR imaging could provide information in addition to
infarct size [174].

A central question when tracking phagocytic cells in the brain with
iron oxide particles is when cells took up the particles. The first
possibility is that circulating leukocytes phagocytosed particles in the
blood stream and subsequently infiltrate into the brain. The second is
that already infiltrated or resident microglia phagocytosed particles in
the brain in situ. In the latter case, nonspecific signal from passage of
particles through an impaired BBB can be problematic. Disrupting the
BBB using the freezing lesion model, dextran-coated iron oxide
(approximately 50 nm in size) was detected in endothelial cells on
electron microscopy after 1 hour and persisted for 4-8 hours. On MRI,
iron oxide enhancement was seen consistent with BBB breakdown
[175]. After opening the BBB with mannitol, both MION (size 20 nm)
and SPIO (size 200 nm) led to enhancement in the entire hemisphere.
While MION was detected in the intercellular space, SPIO were found
in endothelial cells but did no cross the basement membrane [176].
These findings indicate that the size of iron oxide particles may
determine passage through an impaired BBB. In an experiment using
crush injury of the sciatic and optic nerve, Bendszus et al. [177]
detected USPIO uptake in sciatic nerve where they also found
monocyte infiltration, but did not detect USPIO uptake in the optic
nerve where they found microglia activation without monocyte
infiltration. These findings suggest that phagocytes take up iron oxide
in the blood en route to the brain. However, a study comparing USPIO
injection versus re-injection of in vitro SPIO-labeled monocytes in
photothrombotic stroke found that contrast enhancement was
markedly different. While USPIO enhancement was seen within
hours, SPIO labeled monocytes were not detected until after 72 hours,
suggesting that USPIO does not represent signals from monocytes
labeled en route to the brain but rather nonspecific penetration of the
BBB or endothelial cell uptake [178]. Therefore, caution and careful
validation need to be performed when tracking cell using parenterally
injected iron oxide nanoparticles. In vitro labeling of the cells prior to
injection should be preferred to avoid nonspecific signal.
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Figure 8: Imaging of phagocytic cells with iron oxide-enhanced MR imaging. (A) USPIO and DOTA-Gd-enhanced MR imaging of EAE rats.
A periventricular lesion shows DOTA-Gd enhancement but not USPIO uptake. Vice versa, a ventral lesion shows USPIO uptake but no
DOTA-Gd enhancement. No enhancement is seen in a control animal. (B) Pre-Gd T2 MRI on a MS patient demonstrates multiple lesions,
and while there is a DTPA-Gd and USPIO enhancing lesions (arrow), there also is an USPIO-uptake-only lesion (arrowhead). (C)
Spatiotemporal profile of USPIO uptake in the ischemic rat brain over 7 days. While USPIO uptake is first seen in the periphery of the infarct
(ADC map), uptake becomes more central on the following days, while no uptake is seen on day 7. (D) Comparison of USPIO and DTPA-Gd
in a patient with ischemic stroke. Diffusion-weighted imaging displays ischemic area. Areas of USPIO uptake are clearly different from
gadolinium enhancement. (Modified from Rausch et al. [10,171], Vellinga et al. [166] and Saleh et al. [173] with permission.)

Another potential issue with iron oxide phagocytosis is that
phagocytosis per se does not differentiate between tissue damage and
repair, as pro-inflammatory cells as well as anti-inflammatory cell can
phagocytose. In human monocytes, it has been shown that CD14++

CD16- classic (proinflammatory) monocytes phagocytose significantly
more iron oxide than CD14++ CD16+ non-classical (anti-
inflammatory) monocytes, as tested with three different SPIO agents
(Ferumoxides, Ferucarbotran, CLIO) and one MION agent
(MPIO-48) in vitro [179]. However, both monocyte subsets did take
up all four particle types. This distinction is of clinical relevance,
because in MS, macrophages that have phagocytosed myelin have been
shown to be of the anti-inflammatory (repair) M2 phenotype [180].
Thus, one needs to corroborate the imaging findings against other
datasets to ascertain the type of the cells imaged.

Perfluorocarbons 19F-MRI, Gadofluorine M
Another approach to phagocytic cell labeling is fluorine 19F-MR

imaging. In stroke mice injected with nanoemulsions of
perfluorocarbons increased (19F) MR signal was detected in the border

zone of ischemia, and these areas were confirmed to contain
phagocytic leukocytes on histology [181]. Gadofluorine M is a
gadolinium based agent with a perfluorinated side chain which forms
small aggregates and micelles in solution approximately 5 nm in
diameter [182]. Phagocytes and endothelial cells have been shown to
take up this agent, and in a study on EAE, more lesions were detected
compared to DTPA-Gd, with signal corresponding to areas of
inflammation and demyelination [183]. Gadofluorine M also can be
used to label cells in vitro, as shown with monocytes that could be
detected on MR imaging for up to 7 days [184]. Little specificity data is
available for these agents for phagocytosis imaging. However, given
the size of these two agents, they may share similar limitations as
USPIO nanoparticles regarding cell phenotype and nonspecific
leakage.

Specific cell subset labeling
Neutrophils: Neutrophils was first imaged with SPECT using

99mTc-anti-CD15 (LeuTech) [185,186] an anti-granulocyte fab
fragment of anti-NCA-90 conjugated to 99mTc (LeukoScan) [187], or
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BW 250/183 anti-granulocyte antibody [188]. Another approach is to
use formyl peptides, which comprise of a large group of heterogeneous
molecules (e.g. Lipoxin A4, fMLF from E.coli, humanin) that bind to
the formyl peptide receptor (FPR) group. FRP1 is mostly expressed on
neutrophils and mediates migration to the site of inflammation [189].
111In or 99mTc labeled synthetic fMLF was successfully used to detect
bacterial infection in experimental models [190,191], but it has been
known to cause neutrophil activation and degranulation, making these
compounds less desirable as imaging agents. The peptide cFLFLF is a
high affinity antagonist for FRP1 and has been labeled with 64Cu
resulting in the PET agent 64CU-PEG-cFLFLFK. This agent has been
used to image lung inflammation [192]. The same peptide has been
labeled with 99mTc for SPECT, Cy7 for fluorescence imaging, and
gadolinium for MRI [193-195]. Neutrophils also had been imaged
using radiolabeled IL-8 [196], which binds to the IL-8 receptor on
neutrophils and is important for chemotaxis, and a radiolabeled
peptide binding to PF4/CXCL-4 [197], another important
chemoattractant for neutrophils. However, none of these neutrophil
labeling agents have been used to image neuroinflammation. Thus,
neutrophil imaging is an untapped area of research and translation for
neuroinflammation.

T-lymphocytes: First approaches to T- lymphocytes imaging were
radiolabeled antibodies against CD3 and CD4, which were used to
detect models of rheumatoid arthritis [198,199]. Radiolabeled
cytokines such as IL-1 and IL-2 for SPECT were also used to detect
inflammation in rheumatoid arthritis [200] and other autoimmune
diseases [201, 202]. Recently, IL-2 was radiolabeled for PET with 18F
resulting in 18F-FB-IL2, which was able to detect activated T-
lymphocytes injected into SCID mice [203]. Unfortunately, injecting
even small doses of cytokines often results in intolerable side effects.

Using an optical imaging approach, Berger et al. [204] labeled T-
lymphocytes in vitro with Cy5.5-Tat, and tracked these cells to the
brains of EAE mice after intravenous injection using FRI. Refining this
approach, Costa et al. [205] isolated MBP TCR-Tg CD4+ TH
lymphocytes and genetically engineered them to express GFP and
luciferase. After injection into EAE mice, cells were tracked with
bioluminescence imaging, and CD4+ TH lymphocytes were found first
at sites of immunization and within the brain a few days later,
persisting up to 50 days (Figure 7C) [205].

In an elegant proof-of-concept study in one patient with glioma,
Yaghoubi et al. [206] genetically engineered autologous cytolytic CD8+

T lymphocytes to express the IL-13 zetakine gene and herpes simplex
virus 1 thymidine kinase suicide gene. The former facilitates targeting
of these cells to glioma cells, while the activity of the latter can be
imaging with PET using the radiotracer 18F-FHBG (Figure 7D) [206].
This approach allowed for selective PET imaging after injection of
genetically engineered lymphocytes, and avoided cell label loss or
dilution.

B-cells: 99mTc-labeled rituximab (anti-CD20) has been used to
image B-cell infiltration in patients with RA, Sjogren’s syndrome,
Behcet’s disease, and sarcoidosis, but not yet in neuroinflammation
[207]. Similarly, radiolabeled anti-CD19 and CD22 antibodies have
been reported for B-cell imaging [208,209].

Monocytes/macrophages: 99mTc-labeled nanobodies directed
against the macrophage mannose receptor have been utilized for
SPECT in a mouse model of rheumatoid arthritis [210]. Similarly, the
macrophage folate receptor has been targeted with a 68Ga labeled PET
probe to detect foreign body reactions in a mouse model [211]. Lastly,

radiolabeled CCL2/MCP-1 (a chemoattractant for monocytes) was
used to visualize sterile inflammation in rats [212], and atherosclerosis
in rabbits [213].

CD40 on antigen-presenting cells (APC): CD40 is required for
activation of APCs, and binds to CD40L on Th lymphocytes. In the
transient MCAO stroke model in mice, a monoclonal antibody against
CD40 was conjugated to Cy5.5 and used to evaluate CD40 expression
in the brain. No difference was seen in sham or stroke mice injected
with Cy5.5-labeled control antibody, and sham or CD40 knockout
stroke mice receiving Cy5.5-CD40, proving specificity. Increased
fluorescent signal in the affected hemisphere was only seen in vivo in
stroke mice injected with Cy5.5-CD40. Areas of CD40 signal
corresponded to ischemic areas on TTC staining, and on histology
CD40 signal partially co-localized with microglia and partially with
cells in the vasculature [214].

Damage Caused by Inflammation

Demyelination
Demyelination is one of the consequences of neuroinflammation,

especially in MS. While MRI has been used to evaluate myelination, all
available techniques suffer from low specificity towards myelin
[215,216].

Recently, a Congo red derivative named BMB, which shows
spontaneous fluorescence, was synthesized and shown to specifically
bind to myelin tracts on histology. In addition, this probe crossed the
intact BBB and was sensitive to demyelination in two different
dysmyelinating mutant mice, in brain slices from MS patients, and
after radiolabeling with 11C for PET visualized myelin tracts in the
brain of baboons [217]. A similar compound with higher solubility,
named case imaging compound (CIC) was developed by the same
group and shown to penetrate the BBB and bind to myelinated areas in
the brain. 11C-labeled CIC was successfully used in longitudinal PET
imaging in rats injected with lysolethicin to induce focal
demyelination followed by remyelination [218].

Wu et al. [219] synthetized several PET agent candidates that
somewhat resemble the chemical structure of luxol blue, a histological
stain used to observe myelin. These compounds are thought to bind to
myelin through direct and specific interaction with MBP. Their lead
compound MeDAS was labeled with 11C, bound specifically to myelin
(Figure 9A) and reliably distinguished PLP-Akt-DD mice, which
develop hypermyelination, from wildtype mice [220]. In a study
involving intracerebral injection of LPS to induce neuroinflammation
without demyelination, focal demyelination, and EAE, 11C-MeDAS
enhanced PET imaging demonstrated that agent uptake is unchanged
after LPS injection, but uptake correlated with demyelination in
lysophosphatidylcholine induced focal demyelination and EAE (Figure
9B) [221]. In a direct comparison study of 11C-CIC and 11C-MeDAS in
the cuprizone mouse model, the latter showed superior correlation of
de- and remyelination on PET [222].

For optical in vivo imaging on FRI, the compound DBT, a similar
agent that emits fluorescence light in the near-infrared spectrum was
capable of visualizing and quantifying myelination in hypermyelinated
PLP-Akt-DD mice, hypomyelinated shiverer mice, and the process of
demyelination and remyelination following treatment with cuprizone
(Figure 9D) [223].
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Figure 9: Molecular imaging of demyelination. (A) In vitro MeDas staining of myelin sheaths in the corpus callosum and comparison with
Black Gold staining. (B) 3D PET and CT fusion image of a rat after injection of 11C-MeDas demonstrates decreased tracer uptake in the
thoracic spinal cord in EAE versus preimmunized state. (C) PET-MR fusion imaging of demyelination with 11C-PIB in a patient with MS. MS
plaques (arrows) and grey matter (arrowheads) sow decreased tracer uptake, suggesting reduced myelin content. (D) Optical near-infrared in
vivo imaging of demyelination using the fluorescent compound DBT. In the cuprizone model of demyelination, reduced DBT uptake was
detected compared to control mice. (Modified from Wu et al. [220,221], Stankoff et al. [227], and Wang et al. [223] with permission.)

Case myelin compound (CMC) is another compound that
specifically binds to myelin. Conjugated to DOTA-Gd, CMC bound to
myelin in mouse brain sections but did not cross the BBB [224]. When
DOTA-Gd-CMC was injected intraventricularly and MR imaging was
performed at various time points after injection, MR signal
corresponded to myelination on histology. In addition, DOTA-Gd-
CMC enhanced MR imaging was capable of detecting focal
demyelination induced by injection of lysophosphatidylcholine [225].
Similarly, a second MR probe, Gd-DODAS was also found to bind to
myelin after intracerebral injection [226].

The thioflavine-T derivative Pittsburgh compound B (PIB) is well
known to bind to beta-amyloid and has been used in clinical PET
studies in Alzheimer’s patients. However, this compound was also
shown to bind to myelin, identified demyelinated lesions on brain
slices from MS patients, and was subsequently used for PET imaging
of two patients with MS. There, lesions seen on MRI had lower 11C-
PIB uptake compared to normal-appearing white matter, and DTPA-
Gd enhancing lesions showed more 11C-PIB uptake than non-
enhancing lesions, consistent with active inflammation and beginning
demyelination versus chronic inflammation with more severe
demyelination (Figure 9C) [227].

Neuronal death
Probably the most important consequence of neuroinflammation is

damage to neurons. In MS, neuronal loss correlates significantly with
disease progression and irreversible disability [228,229]. In stroke, the
“time is brain” paradigm underlines the importance of early treatment
to prevent neuronal death and its clinical consequences [230].

The central benzodiazepine receptor, which can be targeted with
11C-flumazenil enhanced PET, is expressed on neurons and has been
shown to be good marker for neuron integrity in stroke [231,232]. In
patients with Alzheimer’s disease, reduction of 11C-flumazenil
binding corresponded precisely with areas of neuronal loss on post-
mortem histology (Figure 10A) [233]. In epilepsy, it revealed neuronal
loss in the epileptogenic focus [234]. For MS, an ongoing trial is going
to evaluate the prognostic value of neuronal damage as assessed by
11C-flumazenil PET in early MS. However, this technique might not be
sensitive enough to detect neuronal loss in hyperacute ischemia [235],
and could be confounded in diseases affecting the GABA
neurotransmitter system such as epilepsy [236].

A more specific approach to imaging of neuronal death is targeting
annexin-V. Annexin-V is a protein that binds with high affinity to
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apoptotic cells expressing phosphatidylserine (PS) on their cell surface
[237]. Using 99mTc labeled annexin-V, apoptosis was successfully
detected on SPECT imaging in mouse models of fulminant hepatic
apoptosis, acute cardiac transplant rejection, and cyclophosphamide
treatment of a murine B cell lymphoma [238]. In a first clinical trial,
99mTc-annexin-V showed increase uptake in 5 out of 18 patients after
cardiac transplant, of whom all showed at least moderate transplant
rejection and apoptosis on histology [239]. Since then, this probe has
been used to detect neuronal damage corresponding to CT images in
12 acute ischemic stroke patients [240], and has demonstrated
increased probe uptake in the cortex but not cerebellum of patients
with Alzheimer’s disease [241]. For fluorescence imaging, Cy5.5
labeled annexin-V has been used in a mouse model of ischemic stroke
to visualize neuronal death on FRI (Figure 10B) [242]. In addition,
CLIO-labeled annexin-V for MR imaging [243], and 18F-labeled
annexin-V for PET imaging [244] have been reported.

Caspases are cysteine-aspartic proteases that are crucially involved
in cell death. They are grouped into an execution group (caspases 3, 6
and 7) and an initiation group (capases 8 and 10). Activation of the
latter group is mediated via an intrinsic (release of cytochrome c from
mitochondria) or extrinsic (via TNF, TRAIL, or FasL) pathway.

Utilizing a far-red fluorescent pan-caspase inhibitor (NIR-VAD-fmk),
Lawson et al. [245] identified activated (cleaved) caspases in brains of
mice infected with prions using FRI, and this correlated with elevated
levels of activated caspase-3 in the brain.

Other compounds belonging to the small molecule Aposense family
have been designed. The small molecule DDC was radiolabeled with
3H for ex vivo autoradiography and detected neuronal death in rodent
models of ischemic stroke and TBI [246,247]. Another small molecule,
ML-10 was radiolabeled with 18F for PET imaging and studied in the
MCAO mouse model of ischemic stroke. 18F-ML-10 was taken up into
apoptotic but not necrotic cells in vitro, penetrated an intact BBB,
increased signal in the affected hemisphere (Figure 10D), with areas
with probe uptake correlated well with TUNEL+ areas on histology
[248]. 18F-DFNSH enhanced PET was used in postnatal day 7 rats
treated with ketamine anesthesia, which has been shown induce
neuronal apoptosis [249]. Lastly, the compound GSAO rapidly
accumulates in the cytoplasm of dying cells, coinciding with loss of
plasma membrane integrity. Labeled with the near-infrared
fluorochrome AF750, GSAO allowed for visualization of neuronal
damage with FRI in a mouse model of TBI (Figure 10C), and signal
correlated with apoptotic neurons on TUNEL stain on histology [250].

Figure 10: Molecular imaging of neuronal death. (A) PET-MR fusion imaging of a patient with Alzheimer’s disease using 11C-flumazenil.
Regions with decreased tracer binding are shown in red on brain surface images, and yellow-red on axial images, and correspond to regions
with greatest degree of neuronal loss in neuropathological studies. (B) In vivo and ex vivo near-infrared fluorescence annexin A5 imaging of
ischemic stroke mice. Strong fluorescence is seen over the ischemic hemisphere only after injection of active Cy5.5-annexin A5. (C) In vivo
and ex vivo imaging of mice with TBI using GSAO-AF750 or a nonspecific control probe. Specific uptake is seen in the damaged brain region.
(D) PET using 18F-ML-10 to detect cell death in stroke mice in vivo demonstrates tracer uptake in the ischemic hemisphere. (Modified from
Pascual et al. [233], Bahmani et al. [242], Xie et al. [250] and Reshef et al. [248] with permission.)
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Conclusion
Neuroinflammation is a highly complex process involving many

different cell types and signaling molecules with the aim to control,
regenerate, and repair. Under pathological conditions, however,
neuronal loss and demyelination result in clinical disease and
disability. The limited regenerative capacity of the brain makes early
diagnosis and treatment the ultimate goal, and non-invasive molecular
imaging of key players in the inflammation cascade holds promise for
identification and quantification of the disease process before it is too
late for effective therapeutic intervention. This would lead to early
diagnosis and localization of pathology, better prediction of
responders to treatment, and improved monitoring of treatment
response. Additionally, many molecular imaging techniques are highly
suitable to aid drug development in preclinical and clinical studies by
allowing noninvasive longitudinal quantification of disease activity in
the same subject.

Techniques such as TSPO PET imaging for microglia activation/
monocyte infiltration, iron oxide particle enhanced MR imaging for
phagocyte labeling, genetically engineered T-lymphocytes for PET, as
well as myelin and neuronal death PET imaging have been already
translated and tested in humans. In addition, preclinical methods such
as MPO, MMP, and adhesion molecule imaging have already
improved our understanding of the pathophysiology of many
neuroinflammatory diseases. In the future, distinguishing neurotoxic
from neuroprotective leukocyte populations, identification and
visualization of key molecules and their receptors in vivo, and imaging
the targets of future therapeutics together with key outcome predictors
such as neuronal integrity to ensure success of a therapeutic
intervention non-invasively will likely be the next goals of molecular
imaging research. As we continue to make progress in utilizing
molecular imaging technology to study and understand
neuroinflammation, increasing efforts and investment should be made
to bring more of these novel imaging agents from the “bench to
bedside.”
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