
Volume 3 • Issue 2 • 1000e127
Anat Physiol
ISSN:2161-0940 Physiol, an open access journal 

Open AccessEditorial

Monsky, Anat Physiol 2013, 3:2 
DOI: 10.4172/2161-0940.1000e127

Minimally invasive image guided procedures are commonplace in 
nearly all areas of medicine. This is particularly true for the management 
of malignancies where initial diagnosis usually involves image-guided 
biopsy and treatment may involve image guided locoregional therapy 
such as tumor ablation or Transarterial Chemoembolization (TACE) 
[1-3]. Currently, the intra-procedural guidance and subsequent follow 
up for most of these procedures is based on gross anatomic visualization 
with CT, MRI, Ultrasound, and Fluoroscopy. The most important 
endpoint in cancer treatment is overall survival. Nonetheless, tumor 
response and time to progression are commonly used, imaging based, 
surrogate endpoints for assessment of efficacy. Ideally image based 
guidance and assessment of treatment response would evaluate the 
early mechanism of action of therapeutic and not only downstream 
resulting tumor shrinkage. Usual contrast enhanced imaging provides 
relatively general semi-quantitative assessment of perfusion and 
perhaps tissue viability. However, except for invasive angiography, it is 
currently not practical to perform real time enhanced or physiologic 
imaging during a procedure. A number of emerging functional, 
physiologic and molecular imaging approaches offer the promise of 
improved intra-procedural guidance and meaningful assessment of 
the actual mechanism of action of locoregional and targeted therapies. 
Furthermore, novel fusion/navigation approaches allow real time fusion 
of functional/physiological imaging with ultrasound or fluoroscopy for 
intra-procedural guidance [4]. These approaches may optimize tumor 
specific image guided interventions and help advance proteomics, 
targeted therapy and personalized medicine, were tumor cell protein 
expression is targeted or used to guide treatment [5]. Furthermore, they 
may better guide biopsies, increasing yield and reducing sample error. 
This has been a focus of a number of NIH/NCI initiatives including 
the Cancer Imaging Program (CIP) and Image Response Assessment 
Team (IRAT). 

Emerging enhanced dynamic physiologic imaging, such as 
Dynamic Contrast Enhanced (DCE) CT/MRI or Contrast Enhanced 
Ultrasound, is beginning to be incorporated into clinical care. DCE-
MRI or CT allows determination of tissue blood flow, blood volume, 
vascular permeability and mean transit times through the intra- and 
extravascular spaces [6,7]. Diffusion Weighted MRI (DWI) provides 
imaging of free unrestricted water associated with tissue edema, 
fibrosis, necrosis and apoptosis allowing evaluation of tumor viability 
at the cellular level [8,9]. Blood oxygen level-dependent (BOLD) 
magnetic resonance imaging (MRI) has been utilized as a sensitive 
and non-invasive tool to monitor the oxygenation state and blood 
perfusion of tissue [10]. A number of radio nuclides allow physiologic 
and molecular imaging. (18)F Flourodeoxy Glucose positron emission 
tomography (FDG-PET) is part of standard imaging evaluation for a 
large number of neoplasms since metabolically active tumor cells have 
increased glucose uptake [11]. Thymidine analog 3'-deoxy-3'-18F-
fluorothymidine (18F-FLT), is a new radiopharmaceutical for clinical 
PET that specifically visualizes proliferating tissue which permits 
estimation of tumor thymidine kinase-1 expression, and thus, cell 
proliferation [12]. Emerging PET imaging of hypoxia, with agents 
such as 18F Fluoromisonidazole (FMISO), has great potential for 

assessing tumor response, when the mechanism of action is reduction 
of blood flow/ischemia as with anti-angiogenic therapies and TACE 
[13]. These modalities can also be applied to image guided biopsies and 
percutaneous tumor ablation, to guide needle placement into viable 
tumor tissue, which at times may not be conspicuous, particularly with 
non-enhanced imaging [14]. However, it is not currently practical to 
perform procedures under PET guidance or during actual contrast 
enhancement with CT or MRI. 

Emerging technologies allow fusion of images from PET or DCE 
MRI/CT with real time ultrasound to guide the biopsy needle or 
treatment to viable FDG avid or enhancing tumor [15]. Recently 
emerging cone beam CT angiography systems also allow real time 
multi-planar fusion of angiography with any DICOM (Digital Imaging 
and Communications in Medicine) imaging data, for guidance during 
fluoroscopic/angiographic procedures such as biopsies, TACE and 
Tumor Ablation [16]. Ultrasound contrast agents, consisting of a 
gas core encapsulated by a shell of lipid monolayer or cross-linked 
albumin [17], may also be used for real time guidance depicting tumor 
vascularity sensitively and accurately [18,19,20]. To date, no Ultrasound 
contrast agents have received approval from the FDA for radiological 
applications in the USA and only two are approved for cardiac left 
ventricular opacification. Kono et al. demonstrated residual tumor 
blood flow on CEUS performed at 2 or more days after transarterial 
chemoembolization may be predictive of tumor outcome that currently 
requires 3 months to be reliably detected by computed tomography 
and/or magnetic resonance imaging [21].

Transarterial Chemoembolization (TACE) is used for a number 
of intrahepatic primary and metastatic malignancies and has been 
shown to improve survival in patients with Hepatocelular Carcinoma 
[22,23]. TACE efficacy is attributable to direct embolization of the 
tumor vasculature and infusion of high dose localized chemotherapy 
resulting in ischemic as well as cytotoxic injury. The sequence of tumor 
response involves devascularization, microenvironmental changes and 
tumor necrosis with later resultant reduction in tumor diameter. The 
reduction in overall tumor size may take at least a month to be seen 
on anatomic imaging, while devascularization and reduced perfusion, 
occurs immediately. Conventional anatomic imaging endpoints 
including Response Criteria in Solid Tumors (RECIST) [24] and World 
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Health Organization (WHO) Criteria [25], in which single long axis 
or bi-dimensional linear measurements are made across the tumor, 
are likely not adequate for assessment following locoregional therapy 
[26,27]. The delivery of the therapeutic, subsequent intratumoral 
distribution and ultimate efficacy is directly related to tumor perfusion, 
vascular permeability, and interstitial transit. Therefore, assessment of 
tumor physiology, using these advances in imaging, can help to guage 
and optimize the procedure in real time. 

When evaluating molecular targeted and locoregional therapy, 
recent imaging based response criteria has focused on measurements 
of viable enhancing tumor and non-enhancing tumor necrosis on 
CT or MRI as described in The European Association for the Study 
of the Liver (EASL) criteria and the Modified RECIST Assessment 
(mRECIST) [28]. However, evolving techniques in Dynamic Contrast 
Enhanced (DCE) MRI/CT and DWI MRI allow the determination 
of microvascular parameters such as perfusion and permeability and 
apoptosis, which may provide early physiologic assessment following 
locoregional therapy [8,9]. Furthermore, Whal et al. proposed a PET 
based Response Criteria in Solid Tumors (PERCIST) [29]. Metabolic 
volume and total lesion glycolysis, according to PERCIST, predicted 
survival better than RECIST following Yitrium 90 radioembolization 
locoregional therapy of colorectal metastases [30] as well as HCC 
response following TACE [31].

Emerging physiologic imaging approaches should be utilized to 
optimize intraprocedural guidance and response assessment of targeted 
and locoregional therapies.
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