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IL-6 in non-alcoholic fatty liver disease — good, evil or both?
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Introduction

The role of IL-6 in non-alcoholic fatty liver disease (NAFLD)
which is closely associated with obesity and insulin resistance
remains controversial [1,2]. Hepatic steatosis which renders the liver
more susceptible to progressive liver diseases like non-alcoholic
steatohepatitis (NASH) and liver cirrhosis is detected in about 50%
to 60% of obese subjects. Prevalence in the general population is 20%
to 30% [1]. IL-6 is a cytokine with pleiotropic functions and systemic
levels are consistently increased in obesity, a state of low grade chronic
inflammation [1,3,4]. In overweight and obese subjects systemic
IL-6, adipose-tissue released IL-6 and monocyte IL-6 synthesis are
induced [3,5,6]. Systemic concentrations of IL-6 are about 1 pg/ml in
resting, healthy controls and are about 2 to 4 fold higher in obesity [5].
Hypertrophic adipose tissue produces increased levels of IL-6 and about
one third of plasma IL-6 is derived from fat tissue where it is mainly
released by non-adipocytes [7]. Inflammatory cytokines interfere with
insulin signalling and various in vitro and in vivo studies demonstrate
that IL-6 is capable of inducing liver insulin resistance which is a major
contributor to fasting hyperglycemia. IL-6 increases gluconeogenesis in
primary cultures of rat hepatocytes and rat hepatoma cells [8,9]and the
hepatic expression of the gluconeogenic enzyme phosphoenolpyruvate
carboxykinase (PEPCK) is induced in mice by injection of IL-6
[8,10,11]. Whereas fasting glucose is similar in IL-6 knockout mice
compared to wild-type animals blood glucose is mildly increased in the
non-fasting state [9]. Injection of IL-6-neutralizing antibodies in ob/ob
mice markedly enhances insulin-mediated suppression of endogenous
glucose production when determined by hyperinsulinemic-euglycemic
clamp technique [10]. Neutralization of IL-6 further improves insulin
sensitivity determined by 2 h insulin tolerance tests [10]. Sabio et al
demonstrated that c-Jun NH, -terminal kinase 1 (JNK1) activation in
adipocytes enhances IL-6 release which subsequently causes hepatic
insulin resistance partly by upregulation of suppressor of cytokine
signalling 3 (SOCS3) in the liver [11].

Synthesis of IL-6 in visceral fat exceeds production in subcutaneous
fat and IL-6 in portal vein is about 20% to 30% higher compared to
hepatic vein blood and systemic levels [12,13]. IL-6 in the portal vein of
morbidly obese patients positively correlates with systemic C-reactive
protein (CRP) an established marker of inflammation [12]. Visceral
adiposity bears a higher risk to develop NAFLD [1,14]. One possible
explanation is that metabolites / cytokines etc. from splanchnic organs
including visceral fat depots have to pass the liver and thereby may
affect hepatocyte function [12,13,15]. This hypothesis is supported by a
recently published study. Transplantation of epididymal fat pads of mice
into littermates to the parietal peritoneum with caval/systemic venous
drainage has no effect on hepatic insulin sensitivity. Transplantation to
the mesenterium which confers portal venous drainage impairs liver
insulin sensitivity. Here, portal vein but not systemic IL-6 is increased.
Interestingly when mice receive portal drained transplants from IL-6
knockout animal’s glucose tolerance is not impaired [16].

Weight loss and regular physical exercise may reduce ectopic fat
storage and can even improve NASH [17]. Contracting skeletal muscle
releases IL-6 and plasma IL-6 rises by a factor of 10 to 100-fold ranging
from 10 to 100 pg/ml [18]. This increase is proportional to exercise
duration, intensity, muscle mass involved and endurance capacity [19].
IL-6 peak levels are reached at the end of exercise and then rapidly

decline. Muscle derived IL-6 is suggested to enhance hepatic glucose
release to provide additional energy [18-20]. However, plasma glucose
is relatively stable and uptake of glucose by skeletal muscle may prevent
hyperglycemia. Regular training is associated with lower systemic IL-6
levels at rest [18,19].

IL-6 binds to the IL-6 receptor thereby inducing homodimerization
of glycoprotein 130 (gp130) and formation of a functional receptor
complex of IL-6, IL-6 receptor and gp130 [18,21]. IL-6 signalling
involves the Janus kinase - signal transducer and activator of
transcription 3 (JAK - STAT3) pathway. In contrast to data referred
to above showing that IL-6 increases hepatocyte glucose synthesis,
activation of STAT3 is linked to the suppression of gluconeogenic
genes in the liver. Here, IL-6 is shown to downregulate glucose-6-
phosphatase (G6Pase) by STAT3 dependent pathways [22].

Recent findings even indicate that IL-6 mediates the insulin
sensitizing effects of adiponectin. Adiponectin is mainly released
by adipocytes and low levels in obesity are suggested to contribute
to impaired glucose homeostasis and NAFLD [1,23]. Adiponectin
induces IL-6 synthesis in monocytes and macrophages [24-27]. In mice
injection of adiponectin transiently increases IL-6 synthesis in adipose
tissue macrophages and plasma IL-6 is about 6 to 8-fold elevated.
Hepatic STAT3 becomes activated and upregulates insulin receptor
substrate-2 (IRS-2) in the liver and thereby may enhance hepatic
insulin activity [25]. In steatotic liver of ob/ob mice with increased
circulating IL-6, however, hepatic IRS-2 is reduced and contributes to
hepatic insulin resistance [28,29]. This indicates that hepatic insulin
sensitivity is enhanced by transient, high grade elevation of IL-6 but
not by low grade chronically increased IL-6. Nevertheless, long-term
rise of human IL-6 in IL-6 transgenic mice also revealed that animals
become more insulin sensitive when kept on normal and high fat diets
[30]. Mice where IL-6 receptor has been specifically ablated in liver
parenchymal cells have increased hepatic inflammation and impaired
hepatic and peripheral insulin sensitivity [31]. When IL-6 deficient
mice are kept on a high fat diet hepatic insulin resistance becomes
worse and inflammation develops [32].

Choline deficient diets increase liver fat content because release
of triglyceride rich lipoproteins is impaired. Animals kept on this diet
have hepatic inflammation and fibrosis, and therefore, this model is
used to study NASH [33]. It has been shown that IL-6 improves lipid
disturbances in hepatocytes isolated from these animals [34]. IL-6
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injection also lowers steatosis by increasing triglyceride release. In
isolated rat hepatocytes IL-6 also stimulates hepatic triglyceride release
which may contribute to reduce liver steatosis but also promotes
hypertriglyceridemia [35]. Serum aminotransferase concentrations as
a marker of hepatocyte injury are reduced upon IL-6 application in ob/
ob mice as well as in diet-induced obese mice [36]. Here, it has to be
considered that IL-6 has a very short half-life [ 18]suggesting that serum
IL-6 is only transiently increased when injected.

IL-6 knock-out mice fed a choline-deficient, ethionine-
supplemented diet more quickly develop liver steatosis and hepatocyte
injury. Mice where gp130 has been knocked-out in hepatocytes have
steatosis, inflammation and early fibrosis [37]. When db/db mice are
fed a methionine choline deficient diet hepatic IL-6 receptor and gp130
mRNA expression are reduced. IL-6 receptor neutralizing antibody
further lower expression of STAT3 regulated antiapoptotic genes and
increase oxidative stress, hepatocyte apoptosis and liver fibrosis [38].

Systemic IL-6 is increased in obesity, and weight loss as well as
regular exercise are associated with reduced resting serum levels
[6,39,40]. While some of the data mentioned above suggest that higher
IL-6 may contribute to inflammation and eventually insulin resistance it
may also be speculated that IL-6 is increased because of IL-6 resistance.
Indeed it is hard to believe that the modest, 2- to 3-fold increase of
IL-6 in obesity may have harmful physiological consequences. One
major concern of the in-vivo and in-vitro experiments analysing IL-6
effects is that the concentrations used are up to 1000 fold higher than
levels measured in serum. Therefore, studies using physiological IL-6
concentrations may help to resolve the role of IL-6 in obesity and
associated liver disease. The findings that IL-6 is transiently increased
during physical activity and by adiponectin injection argue against
injurious effects of this cytokine in obesity [18,25,41]. Exercise can
elevate systemic IL-6 10 to 100-fold and adiponectin injection in mice
increases IL-6 in serum at least 8-fold [18,25,41]. Nevertheless, it can
not be completely ruled out that low grade chronic and high grade
acute increase of IL-6 have contrary effects. Source of IL-6 may also
have an effect and higher levels in portal vein have been shown to
contribute to systemic inflammation and liver injury independent of
serum IL-6 [12,16]. IL-6 activity is also influenced by other signalling
pathways, cytokines and hormones [42-44] and this further complicates
interpretation of experimental results. In summary the physiological
function of IL-6 in metabolic liver disease is still not well understood.
Whether its effects are good or evil seems to depend on the site and the
time of production, and the metabolic context.
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