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Abstract

Cross-species comparison of gene expression profiles allows deciphering fundamental and species-specific

transcriptional programs of cells and offers insight into organization and evolution of the genome and genetic

network. Here, we propose an algorithm for comparing microarray data from different species to unravel tran-

scriptional modules that are conserved or divergent through evolution. The proposed algorithm is based on

cross-species matrix decomposition that includes a nonlinear independent component analysis followed a gener-

alized probabilistic sparse matrix factorization on microarray data from different species. The proposed algo-

rithm captures transcriptional modularity that might result from highly nonlinear interactions among genes, and

partitions genes into mutually non-exclusive transcriptional modules. The conserved transcriptional modules

are identified by the latent variables that are associated with predominant biological prototypes shared across

species. We illustrated the application of the proposed algorithm by an analysis of human and mouse embryonic

stem cell (ESC) data. The analysis uncovered conserved and divergent transcriptional modules in the ESC

transcriptomes, shedding light on the understanding of fundamental and species-specific regulatory mechanisms

controlling ESC development.

Keywords: Comparative transcriptomics; Transcriptional modules; Generalized probabilistic sparse matrix factorization;

Embryonic stem cells

Abbreviations

GPSMF: Generalized Probabilistic Sparse Matrix Factor-

ization

ESCs: Embryonic Stem Cells

NICA: Nonlinear Independent Component Analysis

Introduction

Given the completion of genomic sequencing of various

mammalian and other organisms, transcriptomes of differ-

ent species can be readily compared across species through

the identification of orthologous genes (Ihmels et  al., 2005;

Li et al., 2007a; McCarroll et al., 2004; Stuartet al., 2003).

One of the most important and widespread mechanisms used

by a cell in functional regulation is the coordinate modula-

tion and interaction of genes. By organizing genes into dif-

ferent transcriptional modules, a living cell coordinates the

activities of genes and carries out complex functions. Im-

portant sequence elements in the genome, as well as impor-

tant biological processes or pathways, are often evolution-

arily conserved (Ihmels et al., 2005; Li et al., 2007b; Stuart
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et al., 2003; Zhan et al., 2005). The comparative

transcriptomics study allows uncovering transcriptional

modules conserved or divergent through evolution, and has

shown to be a powerful approach in deciphering fundamen-

tal or species-specific regulatory programs of cells and for

insights into organization and evolution of the genome and

genetic network (Alter et al., 2003; Bergmann et al., 2004;

Ihmels  et al., 2005; Li et al., 2007a; McCarrollet al., 2004;

Stuart et al., 2003; Vallee  et al., 2006; Zhou and Gibson

2004). In most comparative transcriptomics analyses, lin-

ear correlations between genes are evaluated using con-

ventional clustering methods such as hierarchical cluster-

ing, k-means, and SOM, and genes are partitioned into mu-

tually exclusive modules (Atkinson et al., 2003; Ihmels et

al., 2005; Li et al., 2007b; Yuh et al., 1998; Zhou and Gibson

2004). However, nonlinear interactions among genes are

often observed in transcriptional networks, such as in nega-

tive feedback events or two consecutive biological events

of threshold and saturation (Alter et al., 2000; Li et al.,

2007a). Moreover, a single gene may participate in multiple

biological processes or pathway activities, so that belong to

multiple transcriptional modules. In addition, the clustering-

based methods identify transcriptional modules by assum-

ing that genes with similar expression profiles share similar

functions or pathways. However, genes involved in the same

biological process or pathway can have different expres-

sion patterns (Li et al., 2007a; Zhou et al., 2002). Different

from clustering-based methods, matrix decomposition meth-

ods (e.g. singular value decomposition, independent com-

ponents analysis, non-negative matrix factorization, network

component analysis, and sparse matrix factorization) do not

cluster genes based on the pair-wise similarity measure-

ment in microarray data analysis (Alter et al., 2000;

Carmona-Saez et al., 2006; Chiappetta et al., 2004; Dueck

et al., 2005; Frigyesi et al., 2006; Kim and Tidor, 2003; Lee

and Batzoglou, 2003; Liao et al., 2003; Liebermeister, 2002;

Wang et al., 2006). In these methods, genes with related

functions or regulatory programs can be clustered together

even they have different expression profiles. A gene can be

partitioned to multiple mutually non-exclusive modules if the

gene participates in multiple biological processes or have

multiple functions. However, the matrix decomposition meth-

ods use linear models, describing gene expression as linear

combinations of latent biological sources, which is often not

true for gene-gene relationships and gene expression data.

To overcome the problem, we recently developed a two-

stage matrix decomposition method, which is based on a

nonlinear independent component analysis (NICA) on the

expression data, followed by probabilistic sparse matrix fac-

torization (PSMF), for transcriptional module discovery (Li

et al., 2007b). The method combines both projection and

model-based approaches and is free from both linear-mod-

els and similarity measurements, providing a more suitable

solution for transcriptional module discovery from gene ex-

pression data.

In the present study, we extend the two-stage decompo-

sition method to cross-species studies on gene expression

data for uncovering transcriptional modules conserved and

divergent through evolution. A generalized probabilistic

sparse matrix factorization (GPSMF) approach is particu-

larly proposed to simultaneously decompose two indepen-

dent latent component matrices from different species. A

framework is then implemented for identifying evolution-

arily conserved and divergent transcriptional modules from

the outcomes of GPSMF and NICA analyses. In compari-

son with another method, our algorithm can better uncover

functionally relevant transcriptional module. We applied the

newly developed methodology in analyzing gene expression

data of embryonic stem cells (ESCs) from human and

mouse. The results demonstrated that the new algorithm

can unravel conserved and divergent modules that are sig-

nificantly associated to ESC development, shedding light on

fundamental and species-specific mechanisms controlling

ESC self-renewal and differentiation.

Materials and Methods

The NICA decomposition

Suppose we have two microarray data matrices
1

1

N M×

∈ ℜX and 
2

2

N M×

∈ ℜX  with the same sample size M,

where N
1
 and N

2 
are the numbers of genes in the two data

sets, the microarray data can be described by the noisy non-

linear mixing model

1 1 1 1

2 2 2 2

( )

( )

f

f

= +

= +

X S O

X S O
 (1)

where 1

1
N M ′×

∈ℜS and 2

2
N M ′×

∈ℜS denote the two latent

source matrices, M′ is the number of latent sources. O
1

and O
2 
are the white Gaussian noise matrices. The nonlin-

ear mappings f
1
(.) and f

2
(.) are modeled by a multilayer

perceptron (MLP) network  (Haykin, 1999) with one non-

linear hidden layer as:
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where B
m
 and C

m
 are the weight matrices of the hidden

and output layers, and D
m
 and E

m
 are the corresponding

bias matrices for m = 1,2.

Assuming that the source signals S
m
 at the input layer of

the MLP network have simple Gaussian distributions, we

obtain a nonlinear principal component analysis solution for

S
m
 based on variational Bayesian learning for blind estima-

tion and separation in the nonlinear mixture data model in

Eq. (1). This solution models nonlinear mixtures (observed

data), but provides no estimate of independent source sig-

nals. To find independent components from S
m
, we apply a

standard linear ICA to S
m
 using the FastICA algorithm

(Hyvarinen and Oja, 2000). The goal of the linear ICA is to

decompose m m m= ⋅S S A so that columns (components) of

mS are statistically as independent as possible.

The GPSMF model

The GPSMF approach we propose is a generalized ex-

tension of probabilistic sparse matrix factorization (Dueck

et al., 2005) and used to decompose two data matrices si-

multaneously in comparative analysis of two microarray data

sets. Given two matrices 1

1
N M ′×

∈ℜS and 2

2
N M ′×

∈ℜS de-

rived from the NICA procedure, the GPSMF is to find

1

1
N L×

∈ℜY , 2

2
N L×

∈ℜY and L M ′×∈ℜZ such that

1 1= ⋅S Y Z and 2 2= ⋅S Y Z . Here the columns of 1S and 2S

represent independent latent components. N
1
 and N

2 
are the

number of genes in the two data sets, M′ is the number of

latent sources. Y
1
 and Y

2 
are factor weighting matrices. Each

row of Y
1
 and Y

2 
has at most K non-zero entries. Row vec-

tors of Z contain unobserved L latent factor profiles. Spe-

cifically, let m
ik  be the number of non-zero entries ( m

ik K≤ )

of the row vector 1m L
i

×∈ℜy in Y
m
 and ( )1 2,, , , m

i

m
i i i ik

l l l=l �

be the vector that contains column indices of non-zero en-

tries of m
iy , where m=1, 2 for two data sets, we model each

gene “hidden” expression profile across the independent

latent component 1m M
i

′×
∈ℜs , as a linear combination of

m
ik of the factor profiles 1 M

l
′×

∈ℜz , plus noise:

1

m

i

ik ik

km m m
i il l ik

y
=

= +∑s z n 1,2m =  (3)

Supposing the noise is Gaussian with variance 2m
iσ  for m

is ,

then the likelihood of m
is  can be written as:

2 2

1
( | , , , , ) Ν( , )

m

i

ik ik

km m m m m m m
i i i i i il l ik

P k yσ σ
=

= ∑s y Z l z I

1,2m =  (4)

Assume that z
l 
is normally distributed, m

il  is uniformly dis-

tributed, and m
ik is multinomially distributed. Multiplying these

priors by Eq. (4) forms the joint distribution

( , , , , | )m m m m mP S Y Z L K Σ . From the joint distribution, we

first estimate elements in Y
1
 and Z by utilizing a factorized

variational inference method (Dueck et al., 2005; Jordan

et al., 1999) from 1S that contains the independent latent

components in the primary (“reference”) organism. Then,

we estimate elements in Y
2
 by the same method from 2S that

contains the independent latent components in the second

(“target”) organism and Z.

When applying the GPSMF, the choices of the param-

eters L and K affect the structure of decomposition. L is the

predefined number of possible latent variables that deter-

mines the number of modules identified by our algorithm. L

should be much smaller than N
1
 and N

2
 (i.e. total gene num-

bers in the two data sets), since the expression of most

genes is thought to be influenced by a small set of genes

that act in combination as key regulators or network hubs to

maintain the overall expression pattern of a transcriptional

module. K is the maximum number of “effective” latent

variables and should be less or equal to L. In the case of K =

1, each row in the data matrix is associated with only a single

factor, and the sparse matrix factorization is a clustering of

the data rows. When K = L, the factorization is simply a low

rank approximation. Since our assumption is that the ex-

pression of each gene is determined by only a small set of

possible key genes, we heuristically set K = 3 in our study.

Identification of conserved and divergent modules

Given the factor weighting matrices Y
1
, Y

2
, and the factor

profile matrix Z, we propose an approach for identifying

conserved and divergent transcriptional modules. Let us

define

setA
l
 := (orthologous geneID1[i

1
], satisfy

1

1 0i ly ≠ , for

1 11, ,i N= � )

setB
l
 := (orthologous geneID2[i

2
], satisfy

2

2
0i ly ≠ , for

 2 21, ,i N= � )

where 
1

1
i ly and 

2

2
i ly  are the elements of Y

1
 and Y

2
, respec-

tively, 1, ,l L= � . We then determine 1) conserved tran-
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scriptional modules as the common orthologous genes in

both setA
l
 and setB

l
 (i.e., set setl lA B∩ ); 2) divergent mod-

ules in the primary organism as the orthologous genes in

setA
l
 but not in setB

l
  (i.e., set setl lA B− ); and 3) divergent

modules in the second organism as the orthologous genes in

setB
l
 but not in setA

l
 (i.e., set setl lB A− ).

Results and Discussion

Cross-species matrix decomposition of microarray

data

Figure 1 shows a general schema of the proposed algorithm.

The algorithm is based on two-stage matrix decomposition

on two microarray datasets from different species to iden-

tify conserved or divergent transcriptional modules. We first

apply the NICA transformation to capture the nonlinear

structure in the data and represent the data with indepen-

dent latent components. We then apply GPSMF to simulta-

neously decompose the two independent latent component

matrices of different species. We finally identify conserved

and divergent transcriptional modules from the outcomes of

the matrix decomposition.

The NICA method that we adopt is based on a variational

Bayesian learning (Jutten and Karhunen, 2004; Lappalainen

and Honkela, 2000). The method uses a multilayer perceptron

(MLP) network as a nonlinear mapping to model nonlinear

mixtures of data. The MLP network can model any nonlin-

ear mapping from sources to observed data with certain

accuracy, given enough nodes in the hidden layer (Haykin,

1999). The MLP network also provides a flexible nonlinear

mapping because its model complexity scales linearly with

the dimension of the latent source space (Lappalainen and

Honkela, 2000).

The GPSMF approach we propose is used to simulta-

neously decompose two matrices derived from the NICA

procedure on microarray data of different species. The

GPSMF models the expression profiles in each species as a

linear weighted combination of profiles from a small num-

ber of prototypes that represent the influence of different

biological or experimental factors shared by the two spe-

cies. The GPSMF modeling is based on the following as-

sumptions: a) the expression of each orthologous gene re-

sponding to experimental conditions is equivalent in both

species; b) the expression profile of a gene is determined

by a linear combination of hidden biological sources or vari-

ables, represented by the latent components; and c) the two

Figure 1: A general framework of the proposed algorithm

From orthologous gene expression profile data sets X
1
 (N

1
 genes and M samples) in organism A and X

2
 (N

2
 genes and M

samples) in organism B, the NICA extracts nonlinear independent components (columns in 1S and 2S ). At the GPSMF stage,

1S and 2S are jointly approximated by the product of sparse matrix Y
1
 and low-rank Z and the product of sparse matrix Y

2
 and

Z, respectively. The values of all matrices are color coded by using a color heatmap, from dark green (minimum) to dark red

(maximum). In the clustering process, conserved and divergent gene modules are identified by finding the common and

different orthologous genes corresponding to nonzero indices of each column of Y
1
 and Y

2
.
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species examined share, to a certain degree, a small set of

biological prototypes that have predominant influence on the

expression patterns of most of genes. The GPSMF proce-

dure is appropriate for modeling gene expression data across

species, since while many genes are involved in gene regu-

lation, a small set of transcriptional regulators or network

hub genes have a predominant impact on the overall ex-

pression patterns of most of genes. The biological proto-

types with the predominant impact and their activities are

either conserved across species or divergent, which pro-

vides a basis for the identification of conserved and diver-

gent transcriptional modules in our algorithm. The conserved

transcriptional modules are likely related to fundamental bio-

logical processes, pathways or molecular mechanisms. The

divergent modules are suggestive of species-specific tran-

scriptional programs.

Transcriptional modules in embryonic stem cells

The gene expression in embryonic stem cells (ESCs) is

carefully regulated so that the cells either maintain the pluri-

potent state by self-renewal or undergo differentiation. An

understanding of gene regulatory mechanisms is essential

for realizing the great potential of ESCs in regenerative

medicine. The Oc4/Sox2/Nanog-directed network is a cen-

tral regulatory circuitry controlling ESC self-renewal and

differentiation (Boyer et al., 2005; Loh et al., 2006; Sun et

al., 2006; Zhan, 2008; Zhan et al., 2005). However, whether

there are fundamental or species-specific mechanisms un-

derlying the activity of this critical network in ESCs has not

been adequately explored. As described above, our method

is particularly designed for identifying conserved and diver-

gent transcriptional modules in which a small set of proto-

types (e.g. transcriptional factors or network hub genes)

control the overall expression pattern. The method is thus

suitable for analyzing the Oct4/Sox2/Nanog-directed regu-

latory network for insight into fundamental and species-spe-

cific mechanisms in regulating ESC development.

For the analysis, we selected 1681 orthologous genes

bound by Oct4, Sox2 and Nanog in human and mouse ge-

nomes, and examined their expression profiles determined

from multiple cell lines of undifferentiated ESCs and their

earliest differentiated counterparts, embryoid bodies (EBs).

Totally 18 samples were examined for human and mouse

cells, respectively. The human microarray data were ob-

tained from our previous studies on ESCs and other publi-

cations (Li et al., 2006; Li et al., 2007a; Liu et al., 2006;

Sato  et al., 2003). The mouse microarray data were ob-

tained from the GEO database (accession numbers:

GSE3231, GSE2972 and GSE3749) (http://

www.ncbi.nlm.nih.gov/geo). The expression data deter-

mined by BeadArray were normalized using the quantile

method, and the data by Affymetrix were normalized using

the RMA method. The expression data were then converted

into log2 ratios of expression values over the average ex-

pression value for each gene. The missing data in the data

sets were filled by KNN imputing. Human and mouse

orthologous genes were obtained from the Affymetrix hu-

man-mouse ortholog links.

In the analysis, we set the number of independent latent

components equal to the number of experimental conditions

Figure 2: Heatmap of conserved and divergent tran-

scriptional modules

Gene expression profiles of conserved (C1, C2, C3) and

divergent (D1, D2, D3) transcriptional modules identified

from Oct4/Sox2/Nang-directed network genes in human and

mouse ESCs. Each module is presented by a heatmap of

the expression profile (red: gene up-regulated in compari-

son with the mean, green: gene down-regulated, black: no

change on the expression level).
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for simplicity. We set the number of hidden neurons in the

MLP network as twice as the number of independent latent

components for an accurate nonlinear mapping. We also

set K to 3 and L to 3 through 10 in the computation. For

each identified transcriptional module, we identified biologi-

cal processes or pathways that were significantly over-rep-

resented, using the Fisher’s exact test followed by the false

discovery rate adjustment. Figure 2 shows the identified con-

served and divergent transcriptional modules with heatmap

presentations of the expression profiles. The gene list of

each transcriptional module is provided in Supplementary

File 1.

We identified three conserved and three divergent tran-

scriptional modules that showed distinctive expression pat-

terns (Figure 2 - C1, C2, C3, D1, D2, D3; Supplementary File

1). The conserved module C1 showed repressed expres-

sion in undifferentiated ESCs of both human and mouse, as

illustrated by the heatmap (Figure 2 - C1). The module, com-

posed of 401 genes, was enriched by genes involved in de-

velopment (27.3% of the total genes in the module, p-value

2.52×10-20), morphogenesis (14.04%, p-value 5.92×10-12),

and cell differentiation (13.5%, p-value 2.24×10-11). Em-

bryonic development (p-value 4.93×10-7), mesoderm devel-

opment (p-value 2.70×10-3), cell proliferation (p-value

2.61×10-5), pattern specification (p-value 3.70×10-5), em-

bryonic pattern specification (p-value 1.50×10-3), and

apoptosis (p-value 1.60×10-3) were particularly enriched in

this module. Also included in this module were members of

the Wnt pathway (p-value 6.87×10-5; including Jun, GSK3b,

Dkk1, Fzd1, Fzd2, Fzd8, Sfrp1, and Tbl1x), BMP pathway

(p-value 2.70×10-3; including Twsg1, Tob1, Gpc3, Bmp2,

Prss11), TGFb pathway (Bmp2, Bmp5, Bmpr2, Smad3, Id2,

and Pitx2), JAK-STAT pathway (Bcl2l1, Cntfr, Pias4, Stat2,

and Stat3), and PI3K pathway (Eif2ak3, Pik4ca, Pip5k1c,

and Pik3r1). All these enriched biological processes and sig-

naling pathways are critical for ESC development (Li et

al., 2007b; Sun et al., 2006). In addition, the module con-

tained 30 transcription factors, including Hand1, GATA6 and

ZIC1, which are know to be repressed in ESCs of both

human and mouse (Li et al., 2007a; Sun et al., 2006). The

conserved module C2, on the other hand, showed elevated

expression in undifferentiated ESCs of both human and mouse

(Figure 2 - C2). This transcriptional module, containing 67

orthologous genes, was enriched by genes participating in

cell cycle (14.7% of the module genes, p-value 2.11×10-4)

and regulation of biological process (38.2%, p-value 2.71×10  ).-5

The conserved transcriptional module C3, however,

showed a mixed expression pattern in both human and mouse

ESCs (Figure 2 - C3). The module contained 28 genes, mainly

participating in metabolism (67.9%, p-value 1.30×10-3). The

module also included members of the Wnt pathway (Myc,

Senp2, Ppp2r1a). The divergent transcriptional modules, on

the other hand, shared little similarities between human and

mouse ESCs on the predominant regulatory programs. The

divergent module D1 showed transcriptional modularity in

human but not in mouse ESCs, as illustrated by the heatmap

(Figure 2 - D1). The module, composed of 106 orthologous

genes,  showed repressed expression in undifferentiated

ESCs in human but little transcriptional changes during ESC

differentiation in mouse. The genes of the module were

mainly involved in development (26.4% of the total genes in

this module; p-value 1.29×10-5) and morphogenesis (16.9%;

p-value 1.48×10-5). Also enriched in the module were pat-

tern specification (p-value 5.55×10-4), cell differentiation (p-

value 4.80×10-3) and cell fate commitment (p-value 1.40×10  ).-2

The module included six transcription factors: Lef1,

Hoxb5, Hoxb6, Hoxb9, Hoxc5 and Rax, all of which were

related to development. The module also included members

of the TGFb pathway (Bmp4, Thbs3, and Inhba). The di-

vergent module D2, on the other hand, showed transcrip-

tional modularity in mouse but not in human ESCs (Figure 2 -

D2). The module consisted of 59 orthologous genes, which

were repressed in undifferentiated ESCs in mouse but

showed no consistent trend of expressional changes in hu-

man ESCs. The module was enriched by genes participat-

ing in development (25.4%, p-value 3.60×10-3) and mor-

phogenesis (15.6%, p-value 8.60×10-3), including embryonic

development (p-value 1.50×10-2) and pattern specification

(p-value 2.60×10-3). Also enriched were the BMP signaling

pathway (p-value 3.40×10-3) and TGFb signaling pathway

(p-value 6.00×10-3; including ligand Bmp7, receptor Acvr1b,

and signal transducers Smad1 and Smad 5). The divergent

module D3, strikingly, showed transcriptional modularity of

opposite transcriptional trends between human and mouse

ESCs (Figure 2 - D3). The 43 orthologous genes of this mod-

ule were over-expressed in mouse ESCs while under-ex-

pressed in human ESCs. The module was mainly enriched

by genes involved in translation (14.0%, p-value 5.24×10-5),

particularly translational initiation (9.3%, p-value 2.52×10-4)

and regulation of translational initiation (7.0%, p-value

1.00×10-3).

The conserved and divergent transcriptional modules un-

derlie the fundamental and species-specific gene regula-

tory mechanisms in ESCs. The results of this study suggest
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that the Oct4-Sox2-Nanog-directed regulatory network is

not only responsible for primary “stemness” properties of

ESCs, but also maintains species-specific programs in regu-

lating pluripotency. The results are consistent with the fact

that significant differences exist on the potential targets of

Oct4, Sox2 and Nanog between human and mouse, despite

of a certain overlap (Loh et al., 2006).

Comparison with generalized singular value decom-

position (GSVD)

A GSVD-based matrix decomposition method was previ-

ously proposed for cross-species analysis of gene expres-

sion data (Alter et al., 2003). Different from our method,

the GSVD method is based on a linear model and one-step

matrix decomposition, conducted by singular matrix decom-

position. We compared our method with the GSVD method

through analysis on the same set of ESC expression data to

further evaluate our method. We firstly identified three con-

served modules and three divergent modules using the

GSVD method, as we did by using our method, from the

human and mouse ESC data. We then conducted functional

analyses on each of the identified modules, using DAVID

tools (Huang da et al., 2007). Table 1 shows the statistical

enrichment of functional categories in the transcriptional

modules identified by both methods. The functional catego-

ries included Gene Ontology (GO) terms, protein-protein

interactions, protein functional domains, bio-pathways, and

literatures. The enrichment level was calculated by trans-

forming the enrichment p value after FDR correction to a

negative log value and averaged over all functional catego-

ries for corrected p < 0.05. If no functional categories were

found for corrected p < 0.05, the smallest value of cor-

rected p was taken for calculating the enrichment level. As

illustrated, our method outperformed the GSVD method on

the functional enrichment in both the conserved and diver-

gent modules. This implies that our method can better iden-

tify functionally coherent transcriptional modules that are

either conserved or divergent through evolution.

Future Perspectives

The method presented in this study demonstrates suc-

cess in identifying evolutionarily conserved and divergent

transcriptional modules. Nevertheless there remain limita-

tions of the reported method. For example, the current ap-

proach can only apply to microarray data of two species.

Moreover, challenges still remain in designing in vitro or in

vivo experiments to validate the results predicted by ours

or other approaches. In the further research, we will ex-

tend our approach to compare more than two species. We

will also integrate gene expression data with transcription

Our method GSVD-based method 

Gene  module 
Enrichment 

level 
Gene  module 

Enrichment 

level 

Conserved modules 

C1 (401 genes) 3.63 C1 (250 genes) 3.08 

C2 (68 genes) 3.32 C2 (74 genes) 2.47 

C3 (28 genes) 1.87 C3 (39 genes) 1.66 

Averaged over 

conserved modules 
2.94 

Averaged over 

conserved modules 
2.40 

Divergent modules 

D1 (106 genes) 1.44 D1 (101 genes) 1.25 

D2 (59 genes) 1.07 D2 (57 genes) 0.84 

D3 (43 genes) 2.30 D3 (44 genes) 1.68 

Averaged over 

conserved modules 
1.60 

Averaged over 

conserved modules 
1.26 

Table 1: Comparison with the GSVD method based on DAVID functional analysis

Three conserved modules and three divergent modules identified by each method were evaluated. The functional enrichment level in each

gene module is calculated by transforming the enrichment p value after FDR correction to a negative log value and averaged over all

functional categories for corrected p < 0.05. If no functional categories are found for corrected p < 0.05, the smallest value of corrected p

is taken for calculating the enrichment level.
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factor binding information into this method to identify TF-

mediated regulatory modules conserved or divergent across

species. This would allow experimental validation of genes

in a regulatory module by either ChIP methods or RNAi–

mediated depletion of the specific transcription factors.

Conclusion

In this study, we present an algorithm for cross-species

analysis of microarray data to address the challenge of dis-

covering transcriptional modules conserved and divergent

through evolution. The proposed algorithm tackles two

microarray data sets from different species as inputs, im-

posing two stage matrix decomposition on the microarray

data, firstly by NICA and then by GPSMF. The new algo-

rithm captures transcriptional modularity that might result

from highly nonlinear interactions among genes, and parti-

tions genes into mutually non-exclusive transcriptional mod-

ules. The conserved transcriptional modules are identified

by the latent variables that are associated with predominant

biological prototypes shared across species. The identified

transcriptional modules are highly associated with biologi-

cal functions, in comparison with those identified by another

method. As demonstrated by the analysis on human and

mouse ESC data, the newly developed methodology can

identify evolutionarily conserved and divergent transcrip-

tional modules and facilitate the comparative transcriptomics

studies.
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