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Abstract
Patterns of DNA methylation in human cells are crucial in regulating tumor growth and can be indicative of breast 

cancer susceptibility. In our research, we have pinpointed genes with significant methylation variation in the breast 
cancer epigenome to be used as potential novel biomarkers for breast cancer susceptibility. Using the statistical 
software package R, we compare DNA methylation sequencing data from seven normal individuals with eight breast 
cancer cell lines. This is done by selecting CG sites, or cytosine-guanine pairings, at which normal cell and cancer 
cell variation patterns fall in different ranges, and by performing upper one-tailed chi-square tests. These selected 
CG sites are mapped to their corresponding genes. Using the ConsensusPath Database software, we generate 
genetic pathways with our data to study biological relations between our selected genes and tumorigenic cellular 
mechanisms. Using breast cancer-related genes from the PubMeth and GeneCards databases, we have discovered 
26 potential biomarker genes, which are biologically linked to genes known to be associated with breast cancer. 
Our results have numerous implications for early screening and detection measures for breast cancer susceptibility. 
Furthermore, novel treatments may be developed as more research is conducted exploring the biomarker genes' 
association with stimulating tumorigenesis.
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Introduction
Breast cancer is especially prevalent in developed countries, due to 

correlations between tumorigenesis and factors such as old age, obesity, 
and lack of physical activity. In developing countries, many cancers are 
strongly linked to viral infections such as hepatitis B, hepatitis C, and 
human papillomavirus and are harder to treat because of the dearth 
of healthcare. Every year, more than 14 million new cases of cancer 
occur globally, causing more than 8 million deaths in the world and 
constituting about 14.6% of all human deaths [1,2]. The financial costs 
of cancer are over 1 trillion dollars annually, showing the necessity for 
improvements in cancer screening for early detection and effective 
treatment [2].

One of the most significant challenges of treating cancer is 
detection at an early stage [3]. While there exist screening tests to 
identify specific cancers and medical imaging to identify cancerous 
tumors throughout the body, such testing is expensive and is thus 
often reserved for those with higher tumorigenesis susceptibility, due 
to family history and environmental factors. Leaving much of the 
population at risk of missing early tumor detection, current medical 
screening is carefully distributed based on cost-benefit optimization. 
Most cancers have much higher cure rates when detected early, 
especially breast cancer; early prevention is much more effective than 
chemotherapy and surgery in the late stages of cancer [3-5]. Therefore, 
there is an urgent need to find early detection methods for breast cancer 
patients. Recently, research on cancer cell line DNA data using novel 
DNA sequencing techniques has identified potential biomarker genes 
that can predict a patient's likelihood of developing breast cancer. These 
genes can be detected within patient DNA before any tumorigenesis, 
allowing for preventative measures and screening to be conducted 
earlier [6]. With the advent of next generation sequencing techniques 

[7,8], many new methodologies to analyze cancer epigenomics have 
arisen, providing faster and cheaper sequencing of epigenetic data. 
We use publicly available epigenomic data from these sequencing 
techniques to examine the relationship between DNA methylation 
variation patterns and breast cancer tumorigenesis, aiming to pinpoint 
potential biomarkers for breast cancer genesis. DNA methylation is the 
biochemical process in which a methyl group is added to the 5' positions 
of the cytosine bases of eukaryotic DNA. Methylation suppresses the 
expression of genes by interfering with DNA transcription in a human 
genome [9]. Methylation on gene promoters may lead to suppression 
of gene expression. Hypermethylation is characterized by an increase 
in methylation of CG sites (i.e., cytosine and guanine pairings), while 
hypomethylation is a decrease in methylation. These terms are defined 
relative to reference DNA methylation levels.

The role of DNA methylation in gene expression makes it crucial 
in the regulation of many cellular processes, such as embryonic 
development, genomic imprinting, X-chromosome inactivation, and 
the preservation of chromosome stability after replication [10-12]. 
Methylation on or near gene promoters will vary depending on cell 
types, indicating the role of methylation in cell differentiation. Many 
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diseases, such as cancers, lupus, muscular dystrophy, and birth defects 
have been linked to differential methylation and defective imprinting. 
Abnormal methylation often leads to either under-expression or over-
expression of the affected gene, as well as any genes indirectly affected 
by the methylated gene, which can lead to several human diseases (e.g., 
cancers) [13-17]. In particular, genes that regulate the cell cycle by 
inducing apoptosis can be affected by differential methylation, leading 
to greater susceptibility of tumorigenesis [6]. Differential methylation 
of tumor suppressor genes has resulted in the development of cancer, 
as tumor suppressor genes are often silenced due to hypermethylation. 
However, genomes of cancer cells have been shown to be overall 
hypomethylated, with exceptions of hypermethylation at genes 
involved in cell cycle regulation, tumor cell regulation, and DNA 
repair. Studying DNA methylation in the context of cancer is important 
because abnormal methylation events, including hypomethylation and 
hypermethylation, can serve as biomarkers indicating susceptibility to 
the development of cancer in a patient [6,18,19]. 

In order to accurately identify DNA methylation biomarkers, it is 
crucial to obtain methylation signals at the single CG site level in an 
entire human genome. During the last several years, the next generation 
sequencing technologies make this important task of methylation 
sequencing possible. The methylation data utilized in our project have 
been sequenced using the reduced representative bisulfite sequencing 
(RRBS) protocol [20], which is a cost and time efficient technique for 
analyzing genome-wide methylation profiles on a single nucleotide 
level. After conducting quality assessment and preprocessing steps 
using available software packages MethyQA [21] and BRAT [22], we 
obtain methylation levels and sequencing coverage at each CG site. In 
particular, we use methylation sequencing data for eight breast cancer 
cell lines (BT20, BT474, MCF10A, MCF7, MDAMB231, MDAMB468, 
T47D, and ZR751) [23] and seven normal samples from the ENCODE 
project (encodeproject.org) [24]. We then use statistical methods to 
study the methylation variation patterns in these normal and cancer 
epigenomic data and then identify potential DNA methylation 
biomarkers. In this paper, we focus on studying methylation variation 
rather than the average methylation level because methylation levels 
across different cancer samples are often heterogeneous (or have a large 
amount of variation). The average-based statistical analysis may not 
identify the genes with strong heterogeneous methylation patterns. 

In identifying potential DNA methylation biomarkers for breast 
cancer and their relationships to known breast cancer oncogenes, our 
research allows for more thorough determination of breast cancer 
susceptibility based on the methylation patterns and functions of 
certain genes. Novel cancer treatments can be pioneered based on these 
specific biomarkers and how they interact with known oncogenes, and 
these new potential biomarkers can be added to the breast cancer gene 

database, further contributing to fully understanding the complex gene 
interactions that lead to breast cancer tumorigenesis and to one day 
eradicating it. 

Methods
The preprocessing step of both the breast cancer cell line and 

normal sample sequencing data begin with the quality assessment step 
using the software package MethyQA [21]. In particular, MethyQA 
generates basic and informative diagnostic plots for the FASTQ format 
raw sequencing reads. The quality assessment plots include figures for 
sequencing quality scores, per sequencing GC content, and so on. We 
then use the method mentioned in the MethyQA to check the bisulfite 
conversion rate by examining the methylation levels of the cytosine 
sites that are not paired with a guanine site (i.e., non-CG cytosine sites). 
The checking results show that the bisulfite conversion rate is very high, 
so the bisulfite-treatment has been done properly. After the quality 
assessment step, we use the trim function provided in the software 
package BRAT [22] to remove the bases with a quality score less 
than 20. Trimmed reads are aligned to the human reference genome 
version 19 (hg19). Aligned reads are then processed using the acgt-
count function of BRAT to generate methylation levels. The acgt-count 
function can generate the counts of “A”, “C”, “G”, and “T” at each base, 
and then produce a methylation level that is the ratio of the count of “C” 
(or the number of methylated reads) to the count of “C” and “T” (or the 
total number of reads covering a cytosine site). The methylation level at 
each CG site ranges from 0 to 1. We then use R, a statistical computing 
and graphics programming language [25], to analyze the methylation 
levels of breast cancer cell lines and normal samples. 

Data I: Breast cancer cell lines

The methylation sequencing data for both the breast cancer cell 
lines and normal individuals are sorted and selected by choosing CG 
sites that have at most two missing values across the cell lines. To 
pinpoint the methylation variation patterns of breast cancer cell lines, 
we compute the standard deviation and mean of the methylation levels 
at the CG site level across all cell lines. It is evident that most CG sites 
are either fully methylated or unmethylated, and some CG sites contain 
much more methylation variation than others (Figure 1).

Comparing the standard deviation and mean of the methylation 
level for all CG sites, we find that partially methylated sites tend to 
have a relatively higher standard deviation. This finding indicates 
that differential or heterogeneous methylation patterns exist at those 
partially methylated CG sites. We study partially methylated CG 
sites represented above as points with 0.4 ≤ mean ≤ 0.6 and standard 
deviation ≥ 0.3 (Figures 2 and 3).

 

Figure 1: Histograms for mean and standard deviation of the methylation levels. 
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With the selected CG sites, we generate groups by placing any CG 
sites that are within 20 base pairs of another one in the same group. 
Then, we focus on groups with more than 10 CG sites as they are 
indicative of genes of interest due to their high methylation variation 
within a small portion of a chromosome. We plot chromosome location 
and methylation level for each selected group (Figure 3). This allows us 
to identify specific CpG islands with high methylation variation across 
cell lines; these CpG islands may influence breast cancer tumorigenesis.

By plotting the CG sites and methylation levels for all groups across 
the eight breast cancer cell lines, we can visualize groups with higher 
variance based on differences in methylation patterns between cell lines. 
In Figure 4, the BT20 cell line is almost fully methylated on all of the CG 
sites within the interval (1704535 to 1704735 base) on chromosome 19, 
while the ZR751 cell line is unmethylated on nearly all CG sites. This 
variation in methylation across the breast cancer cell lines is indicative 
of many differential methylation sites within a concentrated region of a 
chromosome, and is thus a possible gene or promoter of interest.

Data II: Normal data from the ENCODE

We obtain RRBS data of seven non-tumorigenic cells from the 
Encyclopedia of DNA Elements Projects (ENCODE): 0203015, 
h12529n, h12803n, kidney0111002, n00204, n30, and n41 [24]. These 
datasets provide information about methylation signals of non-
tumorigenic human cells and serve as a standard of comparison for the 
eight breast cancer cell lines in our analysis. We compute the standard 
deviation and mean of the methylation levels at particular CG sites 
across all seven samples (Figure 5). 

Studying the standard deviation and mean of the methylation 
levels for all normal samples, we find that most CG sites have either 
no methylation or full methylation, and their standard deviations are 
much smaller (e.g., less than 0.1) than the standard deviations of cancer 
cell lines (Figure 5 for normal data and Figure 2 for cancerous data). 
Therefore, we choose to study the CG sites whose standard deviations 
are ≤ 0.1 (Figure 5).

Statistical analysis: Chi-square test

We use chi-square tests [26] to compare variation levels of the 
normal data with the cancer cell line data. This allows us to select 
significant CG sites to map to genes that are potential methylation 
biomarkers for breast cancer prediction. For chi-square analysis, we 
have disregarded the MCF10A cell line because MCF10A is not as 
tumorigenic as the other cell lines. Based on the hypothesis that the 
seven normal cells display less methylation variation than cancer cells, 
we compare the methylation-level variation of breast cancer cell lines 
with the normal cells using a chi-square statistical test. Finally, we select 
the CG sites that are shown to have significantly large variation, i.e., the 
CG sites with p-values less than a significance level. 

First, we find each CG site at which there are at most two missing 
methylation values in both the cancer cell lines and normal individual 
data. At each CG site, we test the following hypotheses: 2

0 0H : σ = σ

Figure 2: Standard deviation vs. mean methylation level of selected CG sites 
(orange).

Figure 3: Methylation level plot for MDAMB468 chromosome 12. Green 
triangles indicate CG sites; black circles represent the methylation levels at 
each of these CG sites.

Figure 4: Methylation level of selected CG sites on chromosome 19 for BT20 
and ZR751. Blue triangles indicate grouped CG sites; green triangles are CG 
sites; black circles represent methylation levels.

Figure 5: Standard deviation vs. mean methylation of select normal CG sites.
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versus 2
0H :  > σ σa , for an upper one-tailed test. In these hypotheses, 

2
0σ  is the population variance of the non-tumorigenic samples, and 

σ2 is the population variance of all samples including both tumorigenic 
cell lines and non-tumorigenic samples. 

We assume that at each CG site the normal samples have more 
stable or similar methylation levels. Therefore, they have a smaller 
population variance than the cancer cell lines. We compare the variance 
of both the normal cell data and the cancer cell line data to find CG sites 
where this is true: if the breast cancer cell lines have higher variance 
than the normal cells at a certain CG site, it indicates that there are 
more methylation events occurring at this site, which may be either 
directly or indirectly related to breast cancer tumorigenesis.

Our null and alternative hypotheses are defined in terms of the 
population variance (or population standard deviation), and our chi-

square test statistic is: ( ) 2
2

2
0

1
χ

−
=

σ
n s , where n in this case is fourteen from 

our seven breast cancer cell lines and seven normal cell data, s2 is the 
sample variance of all the data, and 2

0σ  is the population variance 
of normal samples. The ratio s2/ 2

0σ compares the sample standard 
deviation to the target standard deviation. The more this ratio deviates 
from 1, the more likely we are to reject the null hypothesis H0. If our test 
statistic falls within the critical region of the chi-square distribution, we 
reject our null hypothesis, H0, that the variance is equal to a specified 
value, 2

0σ . That is, we reject H0 if χ
2>χ2 

1-α, n-1 for our upper one-tailed 
chi-square test. χ2 

1-α, n-1 is the critical value of the chi-square distribution 
with n - 1 degrees of freedom [26]. Small p-values indicate that 
cancer methylation-level variation is significantly larger than normal 
methylation variation. We select a significance level, α, of 0.01 to ensure 
a more conservative selection of significant CG sites.

Because statistical tests are conducted for a large number of CG 
sites, there is a high probability of type I error. Performing more than 
one chi-square test means the probability of making one mistake must 
be raised to the mth power to find the true probability of error where 
m is the number of chi-square tests performed. This type of error 
requires that we correct for multiple testing. In this situation, we have 
used the Bonferroni approach to correct for multiple testing [27]. The 

Bonferroni approach is a single-step conservative approach in which 
equivalent adjustments are made to each p-value. The numbers of 
CG sites selected to do the chi-square test and the CG sites that are 
selected after the multiple testing corrections are given in Table 1. After 
performing the Bonferroni correction, we are able to accurately identify 
the genes and promoter regions that are significant within our dataset.

Results
We map the CG sites selected from our chi-square analysis to the 

corresponding genes and promoters. Using the genetic annotation code 
written by Dr. Sun’s lab, we have generated a list of significant genes and 
promoter regions related to breast cancer. We then use these genes to 
conduct genetic pathway analysis. We use the list of genes that have at 
least one significant CG site to do genetic pathway analysis, which is 
used to pinpoint well-known cancer-associated genes. 

Genetic pathway analysis

 A genetic pathway is a collection of genes with direct and indirect 
interactions, including RNA and protein product interactions. We 
visualize genetic pathway (or network) with the ConsensusPathDB 
(CPDB) software [28-31]. The genetic pathway allows us to understand 
gene interactions and the impact of methylation errors on directly and 
indirectly related genes. The large number of interactions between 
protein products and genes indicates the significance of these genes and 
their influence on tumorigenesis. These genetic pathways also indicate 
important biological functions in cancer cells. Our pathway analysis 
results include the tumor suppressor genetic pathway that involves 
TP53, TP63, and TNF genes (Figure 6), as well as the breast cancer and 
estrogen reception pathway that involves ESR1 and GREB1, BCAR3, 
and TAF1 genes (Figure 7). Because the genes that are associated with 
tumorigenesis have been found in our dataset, the viability of our 
selection methods is confirmed.

TP53 in particular is known to be a major tumor suppressor 
gene, and this map (Figure 6) clearly shows the influence it has, along 
with other tumor suppressor genes such as TP63 and TP73, in tumor 

Chromosome Number of CG sites input 
into statistical analysis 

Number of CG sites selected 
after multiple testing 

correction 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
X

60705 
101491
30219
26076
29345 
26751
36989 
28083 
32794 
31829 
36581 
29895 
14811 
21360 
20613 
37291 
42875 
14016 
50023 
23110 
11004 
21307 
16010

14025 
41630 
7723 
6490 
8301 
6716 
8613 
7325 
6997 
8913 
7840 
7370 
3831 
5314 
5627 
6065 
9430 
4316
7777
5814 
1856 
4444 
1514

Table 1: The numbers of CG sites selected to do the chi-square test and the CG 
sites that are selected after the multiple testing corrections.

Figure 6: Tumor suppressor genetic pathways. This genetic pathway contains 
proteins and genes already known to be significant to cancer or tumorigenesis, 
including important tumor suppressors p53, p63 and various TNFs. 



Citation: Xu L, Mitra-Behura S, Alston B, Zong Z, Sun S (2015) Identifying DNA Methylation Variation Patterns to Obtain Potential Breast Cancer 
Biomarker Genes. Biomedical Data Mining 4: 115. doi:10.4172/2090-4924.1000115

Page 5 of 8

Volume 4 • Issue 1 • 1000115Biomedical Data Mining
ISSN: 2090-4924 JBDM, an open access journal

suppression, as nearly every other gene on the map is connected to it. 
Several tumor necrosis factors, such as TNFs, can also be seen in the 
gene linkage; it would make sense that these are related to the tumor 
suppressor genes as these factors are also involved in cell cycle regulation. 
Here we can see how methylation of genes that are in the same genetic 
pathway as major tumor suppressor genes can also contribute to breast 
cancer tumorigenesis. These genes include the FAS gene, encoding a cell 
surface death receptor acting as an apoptosis antigen, as well as CSE1, 
encoding the chromosome segregation 1-like protein and playing a role 
in cell proliferation and apoptosis. The information of these genes can 

be found from the GeneCards web (http://www.genecards.org/).

This genetic pathway network contains many genes linked 
directly to important breast cancer genes, particularly the ESR1 and 
GREB1 genes (Figure 7). ESR1 functions as an estrogen receptor and 
transcription factor. It is linked to nearly all of the genes in this genetic 
pathway network. As a transcription factor, ESR1 is likely influential in 
the expression of the other genes as shown in Figure 7. The GREB1 gene 
(growth regulation by estrogen in breast cancer) is a protein-coding 
gene, which may play a role in estrogen-stimulated cell proliferation. 
It is an early response gene in the estrogen receptor-regulated pathway 
and is already proven to be strongly linked to breast cancer. 

We have found that ESR1 and GREB1 have large methylation 
variation, and they are important in breast cancer studies. The 
genes linked both directly and indirectly to these two genes, such as 
MTA1 (metastasis associated gene 1) and E2F5 (transcription factor 
crucial to the control of cell cycle and action of tumor suppressor 
proteins), may also be used as potential biomarkers for breast cancer 
tumorigenesis [6]. The relation of the other genes in this diagram to 
breast cancer development may be less evident. MPG (encoding DNA-
3-methyladenine glycosylase) and ATF2 (encoding a cAMP-responsive 
element binding protein activating transcription factor) are both 
related to ESR1 and ESR2. MECP2 (encoding the methyl CpG binding 
protein 2) is capable of binding specifically to methylated DNA and 
repressing transcription from methylated gene promoters. However, 
some genes that are less obviously related to breast cancer genes have 
been overlooked in many databases [32], though they are indirectly 
or directly related to significant genes associated with breast cancer. 
Visualizing these genetic pathways provides a biological context for the 
list of potential biomarker genes that we have generated. 

The genetic pathway network in Figure 8 shows genes that are 
more indirectly linked to known tumorigenic genes. The BCAR3 gene 
is a breast-cancer related gene, which is also influenced by the TAF1 
promoter-binding protein. The TAF1 gene is also controlled by many 
other genes as shown in the diagram, which may then indirectly affect 
the BCAR3 gene. Furthermore, the BCAR3 protein product is also 
influenced by the VAV3 oncogene. This pathway shows us that even 
errors in gene expression seemingly unrelated to cancer can create 
enough of an effect on genes directly related to cancer genesis to 
eventually cause cancer in what is essentially a chain reaction.

Database contributions

We compare our list of selected genes with genes that are related 
to breast cancer as reported at the PubMeth [32] and GeneCards 
databases (genecards.org). The genes we found that are not previously 
contained in the databases can be researched further for possible 
linkage to breast cancer tumorigenesis. We have selected these genes 
based on the number of CG sites at which methylation variation is 
found to be significant with the chi-square testing. To be very selective, 
we choose genes that have at least one hundred significant CG sites 
from our chi-square tests. These 88 genes, we believe, are likely to be 
linked to breast cancer tumorigenesis, and uncharacteristic methylation 
patterns for these specific genes can be used as potential biomarkers 
in diagnosing breast cancer susceptibility. We have generated a genetic 
pathway diagram of these 88 genes (Figure 9) using the CPDB software 
to compare biological relationships between our selected genes and 
genes known to be linked to breast cancer. We use the 100 genes most 
strongly associated with breast cancer genesis from the PubMeth and 
GeneCards databases for our genetic pathway comparison (Figure 9).

Figure 7: Genetic pathway contains estrogen reception genes. This genetic 
pathway contains proteins known to be significant in breast cancer expression 
and estrogen reception, particularly GREB1 and ESR1. 

 

Figure 8:  Genetic pathway linked to other genes. This genetic pathway 
indicates the link between seemingly non-cancer related genes and genes 
that are strongly linked to breast cancer tumorigenesis. Indirect linkages that 
may be overlooked in clinical trials can be seen clearly in genetic pathways 
such as the one shown above. 

http://www.genecards.org/
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In Figure 9, we can see several genes selected by our analysis (boxed 
in red) connected to the genes from the PubMeth and GeneCards 
databases. From the list of 88 genes selected based on significant 
methylation variation, we find 26 genes to be connected in genetic 
pathways to genes already linked to breast cancer, listed in Table 2.

 These 26 genes, which are our pinpointed potential biomarkers for 
breast cancer, are biologically related to known breast cancer-related 
genes through genetic pathways. Several of these genes are linked to cell 
cycle regulation and tumor suppression, and others are directly linked 
to genes (such as BRCA1) that are the most strongly linked to breast 
cancer. These genes may be added to many prominent breast cancer 
gene databases, such as GeneCards (genecards.org) and PubMeth [32]. 
Furthermore, in studying their cellular functions and the genes that 
they are linked to, future research may be conducted to investigate the 
effect of these biomarkers on breast cancer tumorigenesis. The results 
of our research may also be used for epigenetic screening of patients by 
studying the methylation patterns of these biomarker genes. 

Conclusion and Discussion
There is a significant need for easily implemented early detection 

and screening methods for cancer, as the five-year survival rate drops 
drastically in late-stage breast cancers [3-5]. We uncover a number 
of genes that can be used to determine a patient's breast cancer 
susceptibility by comparing methylation variation patterns of breast 
cancer data with normal cell data. We are able to pinpoint these genes 

by comparing methylation sequencing (RRBS) data from breast cancer 
cell lines with normal sample data from the ENCODE database. First, 
we compare the standard deviation of methylation levels of cancer 
and normal CG sites; if the cancer methylation standard deviation 
for each CG site is within a certain range, that CG site is mapped to 
a gene of interest. Then, we perform upper one-tailed chi-square tests 
to determine whether the variance of the normal cell methylation data 
and the variance of both normal and cancer cell methylation data are 
significantly different. We select only the genes with a large number of 
CG sites of significance. 

Because our goal is to identify genes with large methylation 
variation patterns, variance and chi-square tests are obvious and 
convenient methods for us to use. It is not proper to use an F-test to 
compare the variances of the cancerous and normal samples because 
the F-test will fail to identify those important CG sites whose mean 
methylation jumps from ~0 to ~1 or ~1 to ~0 between normal and 
cancerous samples and the variability remains low in both normal and 
tumor cells. Besides the parametric method we used, non-parametric 
methods may also be suitable to analyze our data. The chi-square test 
can help us identify CG sites and genes with large methylation variation. 
However, the methylation variation patterns of CG sites within a long 
gene may be very different and it is important to investigate these 
variation differences within a long gene. We are working on studying 
the DNA methylation variation and heterogeneity patterns within 
genes in detail in another project.

 
Figure 9: Genetic pathway related to 88 selected genes. The genes (boxed in red) that are significant in over 100 CG sites from the chi-square analysis are linked to 
genes associated with breast cancer. These are considered novel potential biomarkers.
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By selecting abnormal standard deviations to isolate significant 
genes within the cancer cell lines, we find that some of the genes we 
have selected include the most prevalent genes seen specifically in breast 
cancer such as: TP53, TP63, TNFs, ESR1, GREB1, and BCAR3. From 
these similarities, we know that the methods we have used to compare 
the methylation levels of the CG sites are meaningful and produce 
valid results. Then, chi-square tests allow us to more accurately identify 
potential biomarker genes in breast cancer. For further isolation, after 

comparing our set of genes with genes linked to breast cancer from the 
ENCODE and GeneCards databases, we have obtained a set of genes 
that are candidates for biomarkers of breast cancer. Using the CPDB 
software, we have generated genetic pathways linking our candidate 
genes to the 100 genes that are most strongly linked to breast cancer 
tumorigenesis to explore biological mechanisms. From this analysis, we 
have pinpointed 26 genes that may be used as potential biomarkers for 
breast cancer susceptibility.

Selected gene Related breast cancer-linked gene Description of selected gene function

 AGRN
 (375790)  PPM1D Iaminin G, Kazal type serine protease inhibitor, epidermal growth factor domains, modulates calcium 

homeostasis
AJAP1
 (55966)  ARID4B Adherens junction associated protein, playing a role in cell adhesion and migration

 CAMTA1
 (23261)  NCOA3 Calmodulin binding transcription activator 1, acts as a transcriptional activator and possible tumor 

suppressor
 PRDM16
 (63976)  CTCF PR-domain zinc finger 16, binds DNA and acts as transcriptional regulator, with CEBPB regulates 

differentiation of my- oblastic precursors into adipose cells
 RUNX3
 (864)  BCAR1 Runt-related transcription factor 3, transcription factor to activate or suppress transcription, tumor 

suppressant (can be deleted or silenced in cancer)
 WNT3A
 (89780)  ESR1 (indirect link) Wingless-type MMTV integration site family member 3A, regulate cell patterns in embryogenesis, 

implicated in oncogenesis
 BCL11A
 (53335)  ARID4B B-cell CLL/Lymphoma 11A zinc finger protein, important in leukemogenesis and hematopoiesis, B-cell 

proto-oncogene

 BRE
 (9577)  BRCA1

Brain  and  reproductive  organ-expressed  tumor  necrosis  factor modulator, homeostasis and cellular 
differentiation, death receptor-associated anti-apoptotic protein, regulate TNF- alpha signaling with 
interaction with TNFRSF1A

 COMMD1
 (150684)  BRCA1 Copper  metabolism  domain  containing  1,  regulate  copper homeostasis, sodium intake and NF-

kappa-B degradation
 HDAC4
 (9759 )  ESR1 (indirect link) Histone deacetylase 4, critical in transcriptional regulation and cell cycle progression, represses 

transcription
 LRPPRC
 (10128)  ERBB3 Leucine-rich pentatricopeptide repeat containing, transcriptional regulation of nuclear and mitochondrial 

genes, role in cytoskeleton organization and vesicular transport
 MSH2
 (4436)

 GREB1, ERBB2,
 TSG101, PSMD6

MutS homolog 2, component of post-replication DNA mismatch repair system, associated with hereditary 
nonpolyposis colon cancer

 MTA3
 (57504)  CTCF, TRERF1 Metastasis-associated 1 family member 3, maintain epithelial architecture and transcriptional repression

 PEX13
 (5194)  BCAR3 (indirect) Peroxisomal biogenesis factor 13, peroxisomal membrane protein, deficiency leads to peroxisome 

biogenesis disorders
 PRKCE
 (5581)  ERBB3, RPS6KA3 Protein kinase C epsilon, major receptors for phorbol esters (tumor promoters), regulate cell adhesion, 

motility, migration and cell cycle
 USP34
 (736)  BAP1, CDH1 Ubiquitin specific peptidase 34, regulate WNT pathway and processing of ubiquitinated proteins

 XPO1
 (7514)  BRCA2, CDH1,CTSD Exportin  1,  mediates  nuclear  export  of  cellular  proteins, viruses (influenza A, HIV) use it to export 

spliced RNAs from the nucleus, causing further mutation
 PTPRN2
 (5799)  DUSP3 Protein tyrosine phosphatase receptor type N polypeptide 2, regulate cell cycle and oncogenic 

transformation
 KCNT1
 (57582)  ALK (indirect) Potassium channel subfamily T member 1, sodium-activated potassium channel regulating homeostasis 

and developmental signaling pathways
 MACROD1
 (28992)  ESR1, CTSD MACRO domain containing 1, plays a role in estrogen signaling by binding androgen receptors to amplify 

response,  im- portant in carcinogenesis by activating ESR1 transcription
 CACNA1C
 (775)  BCAR1 (indirect) Calcium channel voltage-dependent L-type alpha 1C subunit, mediate calcium ion entry and calcium-

dependent processes such as cell motility, gene expression and apoptosis
 NCOR2
 (9612  )  ESR1 Nuclear receptor co-repressor, mediates transcriptional silencing, prevents basal transcription, cancer-

associated
 CACNA1H
 (8912)  BCAR1 (indirect) Calcium channel voltage-dependent T-type alpha 1H subunit, mediate calcium ion entry and calcium-

dependent processes such as cell motility, gene expression and apoptosis
 ABR
 (29)  NCOA3 (indirect) Active BCR-related gene, contains GTP-ase activating domain, plays a role in morphogenesis

 SEPT9
 (10801)  BCAS2, PPM1D Septin 9, septin family involved in cytokinesis and cell cycle control, possible ovarian tumor suppressant

 APC2
 (10297)  AXIN2, CDH1 Adenomatosis polyposis coli 2, promotes rapid degeneration of CTNNB1 and may act as a tumor 

suppressor, WNT signaling

Table 2: 26 Novel biomarkers for breast cancer susceptibility. In the first column, the number below each gene symbol is the Entrez gene ID (a series of gene ID numbers). 
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Ultimately, our results have many implications for the future 
research of breast cancer detection and treatment. In identifying 
several biomarkers for breast cancer tumorigenesis susceptibility, a 
patient's likelihood of developing tumors may be determined by high-
throughput sequencing. The epigenome sequencing is a viable method 
of detection as RRBS (reduced representative bisulfite sequencing) is 
a cost-efficient method for profiling sequences of the genome with 
high GC contents. Furthermore, the 26 genes we identified as potential 
biomarkers, in contributing to the PubMeth and GeneCards breast 
cancer-related gene databases, may also be the basis for novel breast 
cancer prevention and treatment research.

Our results are useful for further breast cancer research. Researchers 
and medical doctors can perform DNA methylation analyses on their 
patients' epigenomic data and identify genes prevalent in the data. If 
these genes overlap with the genes we have discovered to be highly 
associated with cancer, that patient may be more likely to develop 
breast cancer. Further research can also be done on the relationships 
between these new potential biomarkers and other genes that allow 
further understandings of the genetic pathways involved in breast 
tumorigenesis. In the future, we plan to connect our identified DNA 
methylation variation patterns to specific cancer gene expression 
patterns. By understanding methylation variation patterns, we can 
predict regions of the human genome that are more likely linked to 
breast cancer. Using more selective or advanced statistical methods, we 
plan to show more linkages between different genes involved in cancer 
and find which genes are the main causal factors in cancer genesis.

Acknowledgements

This research was conducted during and after the students’ participation in 
the 2014 Mathworks Honors Summer Math Camp at Texas State University. We 
give our special thanks to the Mathworks Honors Summer Math Camp program for 
giving us this opportunity to conduct research together. This work was supported 
by Dr. Shuying Sun’s start-up funds and the Research Enhancement Program 
provided by Texas State University. We appreciate three anonymous reviewers’ 
thoughtful comments and questions, which help us improve this manuscript greatly. 

References

1. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, et al. (2012) Global
burden of cancers attributable to infections in 2008: a review and synthetic
analysis. The Lancet Oncology 13: 607-615.

2. Stewart BW, Wild CP (2014) World Cancer Report. IARC.

3. Houssami N, Given-Wilson R, Ciatto S (2009) Early detection of breast cancer: 
overview of the evidence on computer-aided detection in mammography
screening. Journal of medical imaging and radiation oncology 53:171-176.

4. Domingo L, Jacobsen KK, Euler-Chelpin MV, Vejborg I, Schwartz W, et
al. (2013) Seventeen-years overview of breast cancer inside and outside
screening in Denmark. Acta Oncol 52:48-56.

5. Shetty MK (2010) Screening for breast cancer with mammography: current
status and an overview. Indian journal of surgical oncology 1: 218-223.

6. Yang X, Yan L, Davidson NE (2001) DNA methylation in breast cancer. Endocr 
Relat Cancer 8: 115-127.

7. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev
Genomics Hum Genet 9: 387-402.

8. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev
Genet 11: 31-46.

9. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription.
Genes & development 25: 1010-1022.

10. Feinberg AP, Cui H, Ohlsson R (2002) DNA methylation and genomic imprinting:
insights from cancer into epigenetic mechanisms. Semin Cancer Biol 12: 389-398.

11. Plass C, Soloway PD (2002) DNA methylation, imprinting and cancer. European 
journal of human genetics 10: 6-16.

12. Sharp AJ, Stathaki E, Migliavacca E, Brahmachary M, Montgomery SB, et al.

(2011) DNA methylation profiles of human active and inactive X chromosomes. 
Genome Res 21: 1592-1600.

13. Cao Y, Li Y, Zhang N, Hu J, Yin L, et al. (2015) Quantitative DNA hypomethylation 
of ligand Jagged1 and receptor Notch1 signifies occurrence and progression of 
breast carcinoma. American journal of cancer research 5: 1621-1634.

14. Cho YH, McCullough LE, Gammon MD, Wu HC, Zhang YJ, et al. (2015)
Promoter Hypermethylation in White Blood Cell DNA and Breast Cancer Risk.
Journal of Cancer 6: 819-824.

15. Perez-Janices N, Blanco-Luquin I, Torrea N, Liechtenstein T, Escors D, et al.
(2015) Differential involvement of RASSF2 hypermethylation in breast cancer
subtypes and their prognosis. Oncotarget 

16. Pouliot MC, Labrie Y, Diorio C, Durocher F (2015) The Role of Methylation in
Breast Cancer Susceptibility and Treatment. Anticancer Res 35: 4569-4574.

17. Ullah F, Khan T, Ali N, Malik FA, Kayani MA, et al. (2015) Promoter Methylation 
Status Modulate the Expression of Tumor Suppressor (RbL2/p130) Gene in
Breast Cancer. PLoS One 10: e0134687.

18. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128: 683-692.

19. Jones PA, Buckley JD (1990) The role of DNA methylation in cancer. Adv
Cancer Res 54: 1-23.

20. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, et al. (2011) Preparation of reduced 
representation bisulfite sequencing libraries for genome-scale DNA methylation 
profiling. Nat Protoc 6: 468-481.

21. Sun S, Noviski A, Yu X (2013) MethyQA: a pipeline for bisulfite-treated 
methylation sequencing quality assessment. BMC Bioinformatics 14:259.

22. Harris EY, Ponts N, Levchuk A, Roch KL, Lonardi S (2010) BRAT: bisulfite-
treated reads analysis tool. Bioinformatics 26: 572-573.

23. Sun Z, Asmann YW, Kalari KR, Bot B, Eckel-Passow JE, et al. (2011) Integrated 
analysis of gene expression, CpG island methylation, and gene copy number in 
breast cancer cells by deep sequencing. PLoS One 6: e17490.

24. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA
elements in the human genome. Nature 489: 57-74.

25. R Development Core Team (2014) R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria.

26. Cochran WG (1952) The X2 test of goodness fit. Annals of Mathematical 
Statistics 25: 315-345.

27. Shaffer JP (1995) Multiple Hypothesis-Testing. Annu Rev Psychol 46:561-584.

28. Kamburov A, Stelzl U, Lehrach H, Herwig R (2013) The ConsensusPathDB
interaction database: 2013 update. Nucleic acids research, 41(Database
issue): D793-800.

29. Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, et al. (2011)
ConsensusPathDB: toward a more complete picture of cell biology. Nucleic
acids research 39(Database issue): D712-717.

30. Pentchev K, Ono K, Herwig R, Ideker T, Kamburov A (2010) Evidence mining and 
novelty assessment of protein-protein interactions with the ConsensusPathDB
plugin for Cytoscape. Bioinformatics 26: 2796-2797.

31. Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB--a
database for integrating human functional interaction networks. Nucleic acids
research 37(Database issue):D623-628.

32. Ongenaert M, Van Neste L, De Meyer T, Menschaert G, Bekaert S, et al. (2008) 
PubMeth: a cancer methylation database combining text-mining and expert
annotation. Nucleic acids research 36(Database issue):D842-846.

http://www.thelancet.com/journals/lanonc/article/PIIS1470-2045%2812%2970137-7/abstract
http://www.thelancet.com/journals/lanonc/article/PIIS1470-2045%2812%2970137-7/abstract
http://www.thelancet.com/journals/lanonc/article/PIIS1470-2045%2812%2970137-7/abstract
http://www.iarc.fr/en/publications/books/wcr/
http://www.ncbi.nlm.nih.gov/pubmed/19527363
http://www.ncbi.nlm.nih.gov/pubmed/19527363
http://www.ncbi.nlm.nih.gov/pubmed/19527363
http://www.ncbi.nlm.nih.gov/pubmed/22943386
http://www.ncbi.nlm.nih.gov/pubmed/22943386
http://www.ncbi.nlm.nih.gov/pubmed/22943386
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244246/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244246/
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAAahUKEwjUisCu_9fHAhVBGo4KHfA9DjM&url=http%3A%2F%2Ferc.endocrinology-journals.org%2Fcontent%2F8%2F2%2F115.full.pdf&usg=AFQjCNFIBvlxS5IQ3L35Sy1MsVJoscmFLQ&cad=rja
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAAahUKEwjUisCu_9fHAhVBGo4KHfA9DjM&url=http%3A%2F%2Ferc.endocrinology-journals.org%2Fcontent%2F8%2F2%2F115.full.pdf&usg=AFQjCNFIBvlxS5IQ3L35Sy1MsVJoscmFLQ&cad=rja
http://www.ncbi.nlm.nih.gov/pubmed/18576944
http://www.ncbi.nlm.nih.gov/pubmed/18576944
http://www.nature.com/nrg/journal/v11/n1/full/nrg2626.html
http://www.nature.com/nrg/journal/v11/n1/full/nrg2626.html
http://genesdev.cshlp.org/content/25/10/1010.abstract
http://genesdev.cshlp.org/content/25/10/1010.abstract
http://www.ncbi.nlm.nih.gov/pubmed/12191638
http://www.ncbi.nlm.nih.gov/pubmed/12191638
http://www.nature.com/ejhg/journal/v10/n1/abs/5200768a.html
http://www.nature.com/ejhg/journal/v10/n1/abs/5200768a.html
http://www.ncbi.nlm.nih.gov/pubmed/21862626
http://www.ncbi.nlm.nih.gov/pubmed/21862626
http://www.ncbi.nlm.nih.gov/pubmed/21862626
http://www.ncbi.nlm.nih.gov/pubmed/26175933
http://www.ncbi.nlm.nih.gov/pubmed/26175933
http://www.ncbi.nlm.nih.gov/pubmed/26175933
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532978/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532978/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532978/
http://www.ncbi.nlm.nih.gov/pubmed/26284587
http://www.ncbi.nlm.nih.gov/pubmed/26284587
http://www.ncbi.nlm.nih.gov/pubmed/26284587
http://www.ncbi.nlm.nih.gov/pubmed/26254344
http://www.ncbi.nlm.nih.gov/pubmed/26254344
http://www.ncbi.nlm.nih.gov/pubmed/26271034
http://www.ncbi.nlm.nih.gov/pubmed/26271034
http://www.ncbi.nlm.nih.gov/pubmed/26271034
http://www.ncbi.nlm.nih.gov/pubmed/17320506
http://www.ncbi.nlm.nih.gov/pubmed/2404377
http://www.ncbi.nlm.nih.gov/pubmed/2404377
http://www.nature.com/nprot/journal/v6/n4/full/nprot.2010.190.html
http://www.nature.com/nprot/journal/v6/n4/full/nprot.2010.190.html
http://www.nature.com/nprot/journal/v6/n4/full/nprot.2010.190.html
http://www.biomedcentral.com/1471-2105/14/259
http://www.biomedcentral.com/1471-2105/14/259
http://bioinformatics.oxfordjournals.org/content/26/19/2499.full
http://bioinformatics.oxfordjournals.org/content/26/19/2499.full
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017490
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017490
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017490
http://www.nature.com/nature/journal/v489/n7414/full/nature11247.html
http://www.nature.com/nature/journal/v489/n7414/full/nature11247.html
http://www.gbif.org/resource/81287
http://www.gbif.org/resource/81287
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB0QFjAAahUKEwieiLj-hdjHAhUSCI4KHWBzCAo&url=http%3A%2F%2Fwww.stat.ucla.edu%2F~nchristo%2Fstatistics100B%2Fgoodness_of_fit_test.pdf&usg=AFQjCNFSx4Qze8tvSF7JDYbZ17szz76Heg&bvm=bv.101800829,d.c2E&cad=rja
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB0QFjAAahUKEwieiLj-hdjHAhUSCI4KHWBzCAo&url=http%3A%2F%2Fwww.stat.ucla.edu%2F~nchristo%2Fstatistics100B%2Fgoodness_of_fit_test.pdf&usg=AFQjCNFSx4Qze8tvSF7JDYbZ17szz76Heg&bvm=bv.101800829,d.c2E&cad=rja
http://www.ncbi.nlm.nih.gov/pubmed/23143270
http://www.ncbi.nlm.nih.gov/pubmed/23143270
http://www.ncbi.nlm.nih.gov/pubmed/23143270
http://nar.oxfordjournals.org/content/39/suppl_1/D712.long
http://nar.oxfordjournals.org/content/39/suppl_1/D712.long
http://nar.oxfordjournals.org/content/39/suppl_1/D712.long
http://www.ncbi.nlm.nih.gov/pubmed/20847220
http://www.ncbi.nlm.nih.gov/pubmed/20847220
http://www.ncbi.nlm.nih.gov/pubmed/20847220
http://www.ncbi.nlm.nih.gov/pubmed/18940869
http://www.ncbi.nlm.nih.gov/pubmed/18940869
http://www.ncbi.nlm.nih.gov/pubmed/18940869
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238841/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238841/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238841/

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	Methods
	Data I: Breast cancer cell lines
	Data II: Normal data from the ENCODE
	Statistical analysis: Chi-square test

	Results
	Genetic pathway analysis
	Database contributions

	Conclusion and Discussion
	Acknowledgements
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Table 1
	Table 2
	References



