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Abstract
Flax (Linum usitatissimum L.) is an important crop with many characteristic features such as its abundant essential 

ω-3 fatty acids for human nutrition. Fatty acid (FA) biosynthesis in plants, including flax, involves several consecutive 
steps governed by different gene families. Using in silico gene mining and comparative analysis, genome-wide gene 
identification and characterization were performed for six gene families related to FA biosynthesis, including KAS, 
SAD, FAD, KCS and FAT. We identified 91 FA-related genes from flax cv. CDC Bethune genome, from which seven 
previously cloned genes were validated. The newly identified 84 FA-related genes include 14 novel genes from 
the KAS family, two from the SAD family, 13 from the FAD2 family, three from the FAD3 family, 38 from the KCS 
family and 14 from the FAT family. Out of the 91 genes identified, 88 were duplicated as a consequence of recent 
whole genome duplication events, in which 13 FAD2 genes were hypothesized to have evolved from tandem gene 
duplication events followed by a whole genome duplication event and, more recently, by a single gene deletion. The 
six gene families described here are highly conserved in plants and have diverged anciently. These newly identified 
flax genes will be a useful resource for further research on FA gene cloning and expression, QTL identification, 
marker development and marker-assisted selection.
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Introduction
Flax (Linum usitatissimum L.) is a self-pollinated diploid 

(2n=2x=30) crop from the Linaceae family. Its use by humans 
dates back to the Paleolithic era, nearly 30,000 years ago, but it was 
domesticated for its stem fibers and seed oil only ~7,000 years ago [1]. 
The oilseed morphotype is referred to as linseed or flaxseed and the 
currently grown varieties have oil contents up to 50% [2] with unique 
fatty acid (FA) compositions. The eighteen carbon FAs constitute the 
major FAs of linseed with stearic (STE; C18:0, where the Cx:y denotes 
a FA with x carbons and y double bonds), oleic (OLE; C18:1cis∆9), 
linoleic (LIO; C18:2cis∆9,12) and linolenic (LIN; C18:3 cis∆9,12,15) acid 
contents of approximately 4.4%, 24.2%, 15.3% and 50.1%, respectively 
[3]. LIN is also referred to as α-linolenic acid (ALA), an omega-3 FA. 
LIO and LIN are essential fatty acids (EFAs), precursors of the omega 
(ω)-6 and ω-3 families, respectively [4]. The majority of the oilseed 
crops contain LIO but LIN is present only in oils from certain fish, 
microalgae and crops such as canola (rapeseed or oilseed rape) and 

linseed [4]. The ALA content in linseed can be as high as 60 to 73% 
in high-linolenic acid varieties making this crop the richest source 
of plant based omega-3 FAs [5]. LIO and LIN, collectively called 
polyunsaturated FAs (PUFAs), regulate plant metabolism, hormone 
signaling and contribute to membrane integrity in addition to their 
role as an energy reservoir in the form of triacylglycerols (TAGs) [6]. 
The nutraceutical industry promotes linseed as a rich source of ALA 
and lignan, improving cardiovascular and brain health [7-9]. In animal 
husbandry and in the food industry, animal feed is fortified with 
linseed or linseed meal to enrich the ALA content in products such as 
meat, milk and eggs [10]. 

The FA biosynthesis pathway in plants involves the sequential 
elongation and desaturation of FA precursors (Figure 1). The 
monofunctional FA synthases use acetyl-CoA as the starting substrate 
and malonyl-acyl-carrier-protein (ACP) as the elongator. This initial 
reaction is catalyzed by 3-ketoacyl-ACP synthase type III (KAS III). The 
malonyl-thioester undergoes recurring condensation with acetyl-CoA 
up to C16:0-ACP which is catalyzed by KAS I/KAS B isoforms. The 
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KAS II/KAS A isoforms finally elongate 16:0-ACP to C18:0-ACP [11]. 
The step-by-step desaturation of C18:0 FA determines the saturated to 
unsaturated FA ratio which, in turn, influences the end use of the oil in 
food source and industrial applications [12,13]. 

The desaturation of FAs is carried out by desaturases which insert 
double bonds in the linear hydrocarbon chain of FAs [14,15]. Many 
of the genes encoding for these and other enzymes involved in FA 
biosynthesis in flax have been identified and characterized [16-22]. 

The enzyme stearoyl-ACP desaturase (SAD) introduces a double 
bond at the ∆9 position of stearoyl-ACP to convert it to oleoyl-ACP 
and thereby increases the unsaturated FA content of plants [23]. Two 
paralogous SAD loci, SAD1 and SAD2, have been previously identified 
in flax [24]. The cDNA sequences encoding the SAD proteins were 
isolated and characterized from flax cultivars Glenelg [25] and AC 
McDuff [18]. SAD1 and SAD2, cloned and characterized from various 
plant species such as soybean and Arabidopsis, show highly conserved 
exon structure; however, they are structurally unrelated to their animal 
and fungal homologues [26].

FA desaturase (FAD) enzymes introduce additional double bonds 
into the mono-unsaturated OLE [15]. FAD2 desaturates OLE into 
LIO by adding a double bond at the ∆12 position. Two closely related 
FAD2 genes, FAD2-2 and FAD2, were cloned and characterized from 
flax genotypes NL97 and Nike [19,20]. The FAD3 enzymes add an 
additional double bond at the ∆15 position in LIO to produce LIN. 
Three FAD3 genes previously identified in the flax genome include 
FAD3a and FAD3b from cultivar Normandy [22] and FAD3c from 
flax cultivars AC McDuff and breeding lines UGG5-5 and SP2047 [16]. 
FAD3a and FAD3b are the major enzymes controlling the LIN portion 
of the storage lipids in flax seeds [22]. Both FAD2 and FAD3 are 
membrane-bound proteins containing three highly conserved histidine 
(HIS)-box motifs essential for enzyme activity [15,27]. The exact 
function of FAD3c is yet to be established but a gene expression study 
indicated that it likely did not play a major role in LIN accumulation 
in seeds [16]. 

A recent study on 120 flax accessions representing a broad range 
of germplasm including some ethyl methane sulfonate (EMS) mutant 

lines identified a total of six alleles for SAD1 and SAD2, 21 for FAD2a, 
5 for FAD2b, 15 for FAD3a and 18 for FAD3b corresponding to 4, 2, 3, 
4, 6 and 7 isoforms, respectively [28]. The study also found significant 
correlation between SAD and FAD isoforms and both FA composition 
and oil content [28]. Genes encoding desaturases involved in FA 
biosynthesis have also been cloned and characterized from other plant 
species such as Arabidopsis [29], oilseed rape [30], soybean [31], peanut 
[32] as well as cyanobacteria [33] and algae [34]. These desaturases 
exhibit conservation across species in both sequence and domain 
architecture [28]. 

Very-long-chain fatty acids (VLCFAs) are FAs longer than 18 
carbons (C18) in length. VLCFAs are required in all plant cells for 
the production of sphingolipids and phospholipids, and in specific 
cell types for the synthesis of other VLCFA derivatives such as 
cuticular waxes, pollen coats and suberin [35]. FA elongation to 
VLCFAs initiates from C18 FA and requires four successive reactions 
catalyzed by four different enzymes coordinated in an endoplasmic 
reticulum (ER)-associated complex. The first FA elongation reaction 
is the condensation of a long chain acyl-CoA with a malonyl-CoA by 
3-ketoacyl-CoA synthase (KCS). The resulting 3-ketoacyl-CoA is then 
reduced by 3-ketoacyl-CoA reductase (KCR) to 3-hydroxyacyl-CoA 
which is then dehydrated by 3-hydroxacyl-CoA dehydratase (HCD) to 
form trans-2,3-enoyl-CoA. The last elongation reaction is the reduction 
of trans-2,3-enoyl-CoA by trans-2,3-enoyl-CoA reductase (ECR) to 
form a two-carbon elongated acyl-CoA [35]. The KCS enzyme has 
been hypothesized to play a role in determining the substrate and tissue 
specificities of FA elongation whereas the three other enzymes are 
thought to have broad substrate specificities [36,37]. Some KCS genes 
coding KCS enzymes have been identified in Arabidopsis. An FAE1, 
isolated from the Arabidopsis thaliana mutant fae1 [38,39], was the first 
seed-specific KCS gene characterized for the extension of C18 to C20 
or C22 in storage lipids [40]. Subsequently twenty-one further FAE1-
like KCS genes have been identified and characterized in Arabidopsis 
[41,42]. The FAE1-like KCS genes have also been recently identified 
in many other plant species such as Gossypium raimondii [43] and 
soybean [31].

The acyl-ACP thioesterases (TEs) differ from KASs and KCSs 
by their role in the termination of fatty acyl group extension by 
hydrolyzing the acyl moiety from the anabolically active acyl-ACP at 
an appropriate chain length and, eventually, releasing the free FAs 
[44-46]. TEs are nuclear encoded enzymes that mature in the plastid 
by N-terminal transit peptide hydrolysis [47]. A comparison of more 
than 30 plant TE sequences revealed that they can be grouped into two 
distinct classes of fatty acyl-ACP thioesterases: FatA and FatB [47]. The 
FatA class is specific for unsaturated 18:1-ACP substrates with minor 
activities on 18:0- and 16:0-ACPs, whereas FatB shows marked activity 
on the saturated acyl-ACPs with chain length varying between 8 and 
16 carbons [47-49]. The conserved and ubiquitous FatA or FatB genes 
have been identified and characterized in many plants [49] including 
Arabidopsis [50-52], brassica [53], Cuphea [47] and maize [54].

With the rapid advance of next generation sequencing 
technologies, whole genome sequences are becoming publicly available 
for an increasing number of plant genomes (http://www.phytozome.
net/). In silico gene mining approaches using genome-wide gene 
annotations, expressed sequence tags (ESTs) and RNA-Seq data have 
been successfully applied to identify and characterize plant gene 
families [55,56]. The availability of the whole genome shotgun (WGS) 
sequence of flax [57] provides an opportunity to systematically analyze 
the gene families controlling FA biosynthesis in this species. Here, 

Stearic acid (STE)
C18:0

Oleic  acid (OLE) 
C18:1 ∆9

Linoleic  acid (LIO)
C18:2 ∆9,12

α-Linolenic acid (ALA)
C18:3 ∆9,12,15

ω-6 FAs ω-3 FA

SAD

FAD2 

KAS: β-ketoacyl CoA synthases
SAD: stearoyl-acyl carrier protein desaturase or ∆9 desaturase
FAD2: ∆12 fatty acid desaturase
FAD3: ∆15 fatty acid desaturase

FAD3

Palmitic acid (PAL)
C16:0

KASII 

C4:0 ACP

Acety-CoA + 
Malonyl-CoA

KASI 

KASIII

Elongation and 
condensation

Desaturation

Figure 1: Biosynthetic pathway of FAs towards the formation of α-linolenic 
acid in flax. 

l 
http://www.phytozome.net/
http://www.phytozome.net/


Citation: You FM, Li P, Kumar S, Ragupathy R, Li Z, et al. (2014) Genome-wide Identification and Characterization of the Gene Families Controlling 
Fatty Acid Biosynthesis in Flax (Linum usitatissimum L). J Proteomics Bioinform 7: 310-326. doi:10.4172/jpb.1000334

Volume 7(10) 310-326 (2014) - 312 
J Proteomics Bioinform
ISSN: 0974-276X JPB, an open access journal 

we report on genome-wide in silico and comparative analyses of the 
first iteration of the flax genome sequence to identify and characterize 
several important gene families controlling FA biosynthesis, including 
KAS, SAD, FAD2, FAD3, KCS and FAT. Complete information on FA 
biosynthesis related gene families is essential for a better understanding 
of the FA biosynthesis pathway and for effective genetic improvement 
of flax seed oil profiles.

Materials and Methods
Flax genome sequences

The draft flax scaffold sequences and their gene annotations were 
downloaded from the Phytozome (v 9.0) database (ftp://ftp.jgi-psf.org/
pub/compgen/phytozome/v9.0/Lusitatissimum/). A total of 88,420 
unsorted nucleotide scaffold sequences and their predicted 43,484 
annotated genes were analyzed.

In silico identification of FA gene families

A comparative gene analysis approach was used to identify gene 
families controlling FA biosynthesis in linseed cv. CDC Bethune. Six 
major classes of FA biosynthesis related genes, KAS, SAD, FAD2, 
FAD3, KCS and FAT, were investigated. Some previously identified 
flax FA genes and their conserved orthologs in other plant species were 
downloaded from the NCBI nucleotide and protein databases. These 
genes are KAS from flax (KAS I, CD760578.1; KAS II, CD760581.1), 
Arabidopsis (AtKAS, AT2G04540.1; AtKAS I, AT5G46290.3; AtKAS 
II, AT1G74960.1; AtKAS III, AT1G62640.1), soybean (GmKAS I, 
Glyma08g08910, Glyma05g36690, Glyma08g02850, Glyma18g10220, 
Glyma05g25970; GmKAS II, Glyma17g05200; GmKAS II, 
Glyma13g17290) and castor bean (RcKAS III, A6N6J4); SAD from 
flax (SAD, X70962; SAD1, AJ006957; SAD2, JN653452, AJ006958); 
FAD2 from flax (EU660502), Ethiopian mustard (Brassica carinata, 
AF124360.2), Arabidopsis (NP187819.1) and field pepperwort 
(Lepidium campestre) (FJ907546.1) and FAD3 from flax (ABA02172, 
ADV92268 and ADV92272). For KCS and FAT, twenty-one KCS genes 
from Arabidopsis, ten KCS genes from soybean, and twenty-five FAT 
genes from twenty-one different plant species (Arabidopsis thaliana, 
Bradyrhizobium japonicum, Brassica napus, Cinnamonum camphorum, 
Capsicum chinense, Cuphea hookeriana, Cuphea lanceolata, Cuphea 
palustris, Coriandrum sativum, Carthamus tinctorius, Cuphea 
wrightii, Elaeis guineensis, Gossypium hirsutum, Garcinia mangostana, 
Helianthus annuus, Iris germanica, Iris tectorum, Myristica fragrans, 
Triticum aestivum, Ulmus Americana and Umbellularia californica) 
were downloaded from GenBank and used for comparative analyses.

cDNA and protein sequences of known flax FA genes and their 
orthologs were aligned against the flax genome using BLASTN and 
BLASTP with an E-value of 1e-30 and 1e-10, respectively. Flax genes 
with hits in both BLASTN and BLASTP were aligned using CLC 
Sequence Viewer v6.8.1 (CLC Bio, Aarhus, Denmark) for both cDNA 
and protein sequences, and, phylogenetic analyses were carried out 
using the Neighbor-Joining (NJ) algorithm implemented in MEGA 
6.0 [58]. Gene structures were compared to existing FA genes and 
orthologs. Finally, genes with significant FA gene features (such as 
HIS-box, dilysine motif, etc) and that clustered with the known FA 
genes and orthologs in phylogenetic trees, were considered.

Digital differential transcription of identified FA genes

Flax ESTs have been generated from cv. CDC Bethune [59], the 
same cultivar used for WGS sequencing [57]. A total of 261,272 ESTs 
from 13 libraries including many stages of developing embryos, seed 

coat, endosperm, flowers, etiolated seedlings, leaves, and stem tissue 
(LIBEST_026995 - LIBEST_027011) were downloaded from GenBank 
(www.ncbi.nlm.nih.gov). Additionally, 11,640 ESTs from bolls 12 days 
after flowering in flax cv. AC McDuff and from outer fiber-bearing 
tissues at mid-flowering stage in flax cv. Hermes were also downloaded 
from GenBank. BLASTN searches of the coding sequences of the 
identified FA genes were performed against the ESTs at an E-value 
threshold of 1e-30. The best EST hits were counted for each FA gene. 
For ESTs that hit multiple FA genes, only the one with the largest bit 
score or the smallest E-value was assigned to the FA gene. The total 
numbers of EST hits per FA gene were used to characterize digital 
expression levels of FA transcripts.

Gene duplication

Gene duplication analysis of identified FA genes was performed. 
The cDNA sequences of the FA genes were searched against themselves 
(self-BLASTN) using a threshold E-value of 1e-30. Pairs of FA genes 
returning reciprocal top hits of each other and having identical or 
fairly similar gene structures were considered to be duplicate copies. 
Duplication time was calculated using the molecular clock proposed 
for evolution of duplicate genes [60]. The cDNA sequences of two 
duplicate genes were aligned and synonymous substitution (Ks) was 
calculated with the MEGA software (v6.0) [58]. The evolutionary 
distance between two duplicate genes was calculated based on the Ks 
corrected with the Nei-Gojobori model of nucleotide evolution which 
accounts for multiple substitutions per site [58]. The divergence (k) 
of a pair of duplicated genes can be converted into duplication or 
divergence time (t) in million years (MY) using t=k/(2r)/106, where r 
is the substitution rate of 6.5×10-9 substitutions per synonymous site 
per year [61].

Identity of pairs of duplicate genes was calculated by alignment 
with ClustalW (http://www.genome.jp/tools/clustalw/) followed by 
identity calculation with the SIAS server (http://imed.med.ucm.es/
Tools/sias.html). Identity was defined as the number of identical 
positions divided by the length of the alignment. Gaps in alignments 
were taken into account.

Chromosome location of FA gene families

The draft WGS sequence of flax was reported [57] but it was not 
sorted based on chromosomes or linkage groups. In order to align these 
scaffolds, the flax physical map, the bacterial artificial chromosome 
(BAC) end sequences (BESs) [62] and the consensus SSR map with 15 
linkage groups [63] were used. The physical map consists of 416 contigs 
spanning ~368 Mb, representing approximately 98.7% of the haploid 
genome (373 Mb) [57]. A total of 43,776 BACs from the CDC Bethune 
BAC library were end sequenced to generate 87,552 BESs which 
covered all physical map contigs and almost all BACs [62]. This end 
sequencing enabled the anchoring of scaffold sequences to all contigs 
through the mapping of the BESs to the scaffold sequences and the 
subsequent mapping of the physical map contigs to the linkage groups 
using the consensus SSR map which included SSR markers developed 
from scaffold sequences. In order to locate the identified genes in 
linkage groups, we adopted the following procedure: (1) anchoring the 
flax draft WGS sequence, i.e., scaffolds onto the flax fingerprint contig 
(FPC) map [62] by mapping BESs using BLASTN; (2) anchoring FPCs 
onto the fifteen flax linkage groups using the consensus SSR map [63]; 
(3) locating the identified FA genes on scaffolds and corresponding 
linkage groups. A detailed methodology to order the flax genome 
sequences will be published separately.

ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/Lusitatissimum/
ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/Lusitatissimum/
http://www.ncbi.nlm.nih.gov
http://www.genome.jp/tools/clustalw/
http://imed.med.ucm.es/Tools/sias.html
http://imed.med.ucm.es/Tools/sias.html
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S1). Although the structure comparison of KAS I, KAS II and mtKAS 
could not reveal the basis of chain length specificity [71], the protein 
sequences of the three gene families had their own conserved regions 
(Figure S1). KAS III genes showed conservation in two protein domain 
families, PF08541 and FP08545 which are both 3-Oxoacyl-[ACP] 
synthase III (Figure 3), and  in a conserved active site triad Cys-His-
Asn (e.g., Cys182-His334-Asn364 of KAS IIIa-Lu10024608 or Cys220-
His360-Asn364 of KAS Ia-Lu10025390) (Table 1 and Figure S1). 
Arg339 of KAS IIIa-Lu10024608 (or Arg399 of KASIa-Lu10025390) 
is another conserved residue critical in the interaction between KAS 
III and ACP [72], In addition, KAS III proteins possess the highly 
conserved motif GNTSAAS in flax and other plant species (Figure 
S1) [70]. The motif GNTSAAS was proposed to be responsible for the 
binding of acyl-ACPs. Absence of the tetrapeptide GNTS changes the 
secondary structure and results in complete loss of condensing activity 
of KAS III [73]. 

SAD gene family

Stearoyl-ACP Δ9-desaturase (SAD) is the only known soluble 
desaturase present in the chloroplast stroma [25] involved in the 
synthesis of ALA. It can convert the stearate into ACP-bound oleic 
acid (18:1) by introducing the first double bond at the 9th position from 
the carboxylic end (α-end). SAD genes have been identified in several 
plants [15,26,74] including seven DES-like SAD genes in Arabidopsis 
(At1g43800, At2g43710, At3g02610, At3g02620, At3g02630, 
At5g16230, At5g16240). 

In flax, three SAD genes have been reported. The first flax SAD 
(X70962) [25] was isolated from cv. Glenelg by hybridization with 
the cDNA-derived castor SAD probe [25]. Two isoforms each from 
SAD1 (AJ006957) and SAD2 (AJ006958) were deduced from flax cv. 
McGregor by promoter cloning [24]. SAD2 (JN653452) was also cloned 
from Turkish flax germplasm Uw15 [75]. In addition, one EST of 
linSAD1 (CD760586) [18], as well as a truncated linSAD2 (CD760587) 
[18] corresponding to SAD1 and SAD2 were reported (Figure S3).

In the multiple protein sequence alignments of SAD genes, four 
(X70962, AJ006957, AJ006958 and JN653452) shared high similarity 
with Lus10027486 and Lus10039241, indicating that all six genes 
belonged to the same family (Figure 4A, Figure S2). The DNA sequence 
alignment showed a deletion of the dinucleotide GA starting at position 

Results and Discussion
KAS gene family

The KAS gene family includes KAS I, KAS II and KAS III. The 
first two are involved in the synthesis of palmitic acid (PAL) and STE, 
respectively, whereas KAS III enzymes control the initial reaction to 
form C4:0 ACP (Figure 1). Three pairs of KAS I, one pair of KAS II 
and two pairs of KAS III genes were identified in flax. Each member of 
the KAS gene family was observed in two copies as a consequence of a 
recent genome duplication event that occurred 4.4-16.6 MYA (Table 1). 
Each pair of KAS genes had identical or similar numbers of introns and 
exons (Figure 2A). Also, a pair of mitochondrial KAS genes (mtKAS-1 
and mtKAS-2) located on LG3 and LG15 was identified. They had 13 
and 14 exons, respectively, and they displayed high similarity at the 
protein level to soybean mitochondrial orthologs (Glyma13g19010, 
Glyma10g04680) and to an Arabidopsis mtKAS (AT2G04540) (Figure 
3). Plant FAs are biosynthesized in plastids and further modified in the 
ER. However, other cellular compartments, like mitochondria, also 
have the ability to de novo biosynthesize FAs. This pathway is assumed 
to be conserved in species such as Neurospora, the species from which 
the de novo FA synthesis in mitochondria was originally elucidated 
[64]. Other species including pea and Arabidopsis are also reported to 
harbor FA synthesis components like mtKAS and ACP [64-69].

All KAS I, KAS II and mtKAS genes shared high sequence similarity 
in the conserved region of the proteins (Figure S1). Also all KAS 
genes differed at the N-terminus (Figure S1). Phylogenetic analysis 
showed that KAS I, KAS II, KAS III and mtKAS genes clustered with 
their orthologs in Arabidopsis, Glycine max, Jatropha curcas, Populus 
trichocarpa or Ricinus communis as an individual branch, suggesting 
function conservation of each class of KAS genes (Figure 3). KAS III 
diverged from KAS I, KASII and mtKAS approximately 91.9 -106.9 
million years ago (MYA), substantially earlier than the divergence 
among KAS I, KAS II and mtKAS which was estimated at 36.7-58.1 
MYA (Table S1). 

KAS I, KAS II and mtKAS in flax and other plant species share 
two protein domain families, PF02801 (β-ketoacyl-ACP synthase, 
C-terminal domain) and PF00108 (thiolase, N-terminal domain) 
(Figure 3). They had a strictly conserved active site triad, Cys-His-His 
[70,71] such as Cys220-His360-His396 of KAS Ia-Lu10025390 (Figure 
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time (MYA)

Ks Catalytic site
C220 H360 H396 N413 R399

1 KAS Ia-1 Lus10025390 scaffold46 (LG12) 408940 2,695 1,410 469 7 91.7 94.9 9.5 0.123 + + + G K
2 KAS Ia-2 Lus10015267 scaffold924 (LG12) 234076 2,638† 1,425 470 6 + + + G K
3 KAS Ib-1 Lus10040883 scaffold156 (LG3) 2043083 3,012 1,425 474 7 68.4 67.3 16.8 0.219 + + + G K
4 KAS Ib-2 Lus10004935 scaffold858 (LG8) 182334 1,923 1,092 363 7 + + + G K
5 KAS Ic-1 Lus10001814 scaffold3494 (LG7) 17887 2,893 1,719 582 8 75.7 77.7 15.0 0.195 + + + G K
6 KAS Ic-2 Lus10003195 scaffold1056 (LG9) 24875 2,847 1,455 484 6 + + + G K
7 KAS II-1 Lus10034886 scaffold66 (LG5) 1423486 4,672 1,692 563 13 77.5 76.6 4.4 0.057 + + + G H
8 KAS II-2 Lus10033422 scaffold488 (LG3) 1269585 4,837 1,401 466 12 + + + G H
9 KAS IIIa-1 Lus10024608 scaffold349 (LG8) 281086 2,572 1,227 408 8 96.6 97.1 6.2 0.081 + + N + +
10 KAS IIIa-2 Lus10032246 scaffold291 (LG5) 266433 2,572 1,227 408 8 + + N + +
11 KAS IIIb-1 Lus10004342 scaffold1134 (LG9) 133755 2,362 1,212 403 8 94.7 93.1 7.5 0.098 + + N + +
12 KAS IIIb-2 Lus10028925 scaffold540 (LG7) 890572 2,453 1,209 402 8 + + N + +
13 mtKAS-1 Lus10014622 scaffold398 (LG3) 39249 2,888 1,428 475 13 86.8 86.4 5.5 0.071 + + + G T
14 mtKAS-2 Lus10033810 scaffold222 (LG15) 385235 3,987 1,584 527 14 + + + G T

†Corrected length. Catalytic site: +indicates the presence of the residues of the putative catalytic sites. The residue position is based on the sequence of KAS Ia-1.
Table 1: KAS gene family involved in fatty acid elongation and condensation identified in flax cv. CDC Bethune.
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Figure 2: Gene structure of the KAS, SAD, FAD3, KCS, FAT (A) and FAD2 (B) gene families identified from flax cv. CDC Bethune. Green boxes represent exons. 
Solid black lines between green boxes represent introns and dashed blue lines represent intergenic regions in the case of the intronless FAD2 gene family except 
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132 bp of X70962 (Figure S3). This two base pair deletion resulted in a 
frame shift mutation between the 45th and 82nd amino acid residues of 
X70962 (Figure S2).

Phylogenetic analysis using cDNA and protein sequences (Figures 
4A and 5), as well as multiple sequence alignments (Figures S2 and 
S3), showed that both AJ006957 and X70962, derived from different 
varieties, corresponded to Lus10027486 (LG10) and, JN653452 and 
AJ006958 corresponded to Lus10039241 (LG 11), whereas Lus10027486 
and Lus10039241 formed a pair of duplicated genes. Based on our 
analysis, we concluded that the SAD1 and SAD2 identified from cv. 
McGregor and Uw15 were duplicate copies of the same gene, which 
are designated SAD2 in order to remain consistent with previous gene 
nomenclature. 

We identified two new SAD genes Lus10018926 and Lus10028627. 
These SAD genes share more than 95% DNA and protein sequence 
similarity suggesting their duplicate nature (Table 2 and Figure S3). 
Based on the phylogenetic analysis (Figure 4A), Lus10018926 and 

Lus10028627 belonged to a separate cluster. The SAD2 genes and their 
new paralogs shared similar intron/exon structure and length (Figure 
2A). In addition, two genes grouped with the SAD6 gene (At1g43800) 
from Arabidopsis (Figure 4A). We designated them SAD3-1 and SAD3-
2, respectively. The multiple protein sequence alignment between SAD2 
and SAD3 suggests that the two SAD3 genes varied at the N-terminus 
compared to SAD2-1 and SAD2-2 (Figure S2). SAD3-2 (SAD3-
Lus10028627) lacked 34 and 26 amino acids from the N-terminal region 
compared with SAD2 and SAD3-1 (Figure S2). We further searched the 
flax EST database and found that the coding sequence (CDS) of SAD3-
Lus10028627 (SAD3-2) was 100% similar to EST JG184015 which 
had the complete N-terminal fragment absent in SAD3-Lus10028627. 
Re-annotation of the genomic sequence of this gene confirmed that 
improper determination of the starting codon caused exclusion of the 
N-terminal fragment in SAD3-2. The corrected SAD3-Lus10028627 
had 95% CDS similarity with SAD3-1 (SAD3-Lus10018926) (Table 
2). To determine whether the SAD genes were targeted to the plastid 
where FAs are synthesized, we used ChloroP1.1, an online chloroplast 
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Figure 3: Phylogenetic tree of the KAS gene family from flax cv. CDC Bethune. Multiple sequence alignments were generated using the predicted amino acid 
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targeting protein prediction tool [76]. Chloroplast targeting sequences 
were identified in both flax SAD2 genes and Arabidopsis SAD6 but not 
in the SAD3 genes. We noticed that FAD3 genes lacked a fragment 
in the N-terminus existing in the SAD2 and SAD6 genes where the 
chloroplast targeting sequence is located (Figure S2). It is hypothesized 
that the function of the SAD3 genes might have evolved or have been 
lost during evolution.

FAD2 gene family

FA desaturase (FAD) is a membrane-bound protein generally 
targeted to the ER. FAD2 enzymes can utilize OLE as a substrate to 
synthesize LIO by adding the 2nd double bond at position ∆12 towards 
the synthesis of ALA/LIN [13]. Two closely related FAD2 genes, 
FAD2a and FAD2b, were cloned and characterized from flax genotypes 
Nike and NL97 [19,20]. In addition, FAD2 genes have been identified 
in many other plant species such as Arabidopsis [77], rice [78], Brassica 
napus [79], grape [80] and safflower [81]. Thus, an attempt was made 
to identify the full complement of FAD2 genes in flax. Multiple 
homologs of FAD2 from other plant species were employed to query 
for a homology search against the flax WGS reference sequence. A total 
of 15 FAD2 genes were identified including seven pairs (FAD2a-g) of 
duplicate genes (distinguished by the suffix after the gene name, see 
Table 2 for more details) and one single gene, FAD2h. Except for the 
duplicated FAD2a, located on LG1, the remaining thirteen FAD2 family 
genes were present in two clusters of tandem repeats on LG6 (scaffold 

155) and LG8 (scaffold 2404), respectively (Figure 2B and Table 2). Of 
these 13 FAD2 genes, 12 are actually six pairs of syntenic duplicate genes 
as suggested by the highly conserved DNA/protein sequence similarity 
(Figures S4 and S5) and the phylogenetic analysis (Figure 4B) in which 
two copies of each designated FAD2 gene pair grouped together. The 
previously identified FAD2 genes from various plant species clustered 
with the two flax FAD2a duplicate genes, implying high conservation 
of FAD2a in plant species.

We calculated the duplication time for each pair of FAD2 genes and 
between FAD2 gene pairs (Table 3). FAD2a diverged from FAD2b-h 
approximately 93 MYA, indicating that FAD2a and the ancestor of 
FAD2b-h were the two most ancient copies of FAD2 genes. The seven 
genes of FAD2b-h resulted from a tandem repeat duplication event 
in scaffold 155 (LG8) because duplication times between all pairwise 
FAD2b-h genes were similar (the only exception was between FAD2f 
and FAD2g), averaging 33 MYA. FAD2b might be the ancestral copy 
of the tandemly duplicated genes (FAD2b-h) based on the closer 
evolutionary relationship between FAD2a and FAD2b as compared 
to others (Figure 4B). Another tandem duplication copy of FAD2b-g 
was generated in scaffold 2404 (LG6) between 3.7 and 17.8 MYA 
with an average of 9.1 MYA to form six duplicated gene pairs but no 
corresponding duplicate member for FAD2h was found.  This structure 
suggests that a tandem duplication of seven FAD2 genes (FAD2b-h) 
in scaffold 155 (LG8) was followed by a genome duplication event to 
create another tandem duplication copy of seven genes further followed 

No Gene Gene ID Chromosome 
location

Start 
position in 

scaffold

Genomics 
sequence 
length (bp)

CDS 
sequence 
length (bp)

Amino acid  
sequence 
length (aa)

No of 
exons

CDS 
identity (%)

Amino acid 
identity (%)

Duplication 
time (MYA)

Ks

SAD family
1* SAD2-1 Lus10027486 scaffold96 (LG10) 605098 2,515 1,191 396 3 97.1 99.5 7.4 0.096
2* SAD2-2 Lus10039241 scaffold33 (LG11) 150467 2,519 1,191 396 3
3 SAD3-1 Lus10018926 scaffold103 (LG1) 558807 2,096 1,185 394 3 95.3 96.4 12.5 0.163
4 SAD3-2 Lus10028627 scaffold346 (LG14) 461462 1,894† 1,107 368 3
FAD2 family
1* FAD2a-1 Lus10012007+ 

Lus10012008
scaffold931 (LG1) 161638 1,137† 1,137† 378 1 99.8 100 0.6 0.008

2* FAD2a-2 Lus10029283+
Lus10029284

scaffold360 (LG1) 463408 1,137† 1,137† 378 1

3 FAD2b-1 Lus10021051 scaffold155 (LG8) 296486 1,149 1,149 382 1 95.7 99.5 3.8 0.050
4 FAD2b-2 Lus10004175 scaffold2404 (LG6) 134640 1,149 1,149 382 1
5 FAD2c-1 Lus10021050 scaffold155 (LG8) 286964 1,143 1,143 380 1 89.7 91.1 17.8 0.232
6 FAD2c-2 Lus10004176 scaffold2404 (LG6) 141984 1,119 1,119 372 1
7 FAD2d-1 Lus10021049 scaffold155 (LG8) 283912 1,155 1,155 384 1 91.1 92.7 12.2 0.159
8 FAD2d-2 Lus10004177 scaffold2404 (LG6) 144905 1,125 1,125 374 1
9 FAD2e-1 Lus10021048 scaffold155 (LG8) 278212 516 516 171 1 40.3 42.1 9.4 0.122
10 FAD2e-2 Lus10004178 scaffold2404 (LG6) 150204 1,864 1,864 392 3
11 FAD2f-1 Lus10021047 scaffold155 (LG8) 272730 1,146 1,146 381 1 92.7 95.8 7.7 0.100
12 FAD2f-2 Lus10004180 scaffold2404 (LG6) 158962 1,146 1,146 381 1
13 FAD2g-1 Lus10021046 scaffold155 (LG8) 270018 1,125 1,125 374 1 90.5 91.9 3.7 0.048
14 FAD2g-2 Lus10004181 scaffold2404 (LG6) 161731 1,146 1,146 381 1
15 FAD2h Lus10021045 scaffold155 (LG8) 265986 1,110 1,110 369 1
FAD3 family
1* FAD3a Lus10038321 scaffold28 (LG7) 701556 3,208 1,179 392 6 94.8 93.9 8.6 0.112
2* FAD3b Lus10036184 scaffold27 (LG12) 60680 2,989 1,176 391 6
3* FAD3c-1 Lus10040660 scaffold 156 (LG3) 906049 2,080 1,179 392 7 95.4 97.2 7.7 0.100
4 FAD3c-2 Lus10018245 scaffold183 (LG12) 202288 2,039 1,161 386 7
5 FAD3d-1 Lus10027809 scaffold1143 (LG1) 472802 2,106 1,359 452 8 80.4 81.4 6.2 0.081
6 FAD3d-2 Lus10005039 scaffold1982 44775 1,851 1,122 373 8

*Previously identified genes. †Corrected length. 
Table 2: Genes related to the fatty acid desaturation including SAD, FAD2 and FAD3 gene families identified in flax cv. CDC Bethune.
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by a deletion of FAD2h in scaffold 2404 (LG6). Thus, it can be inferred 
that the FAD2 genes in scaffold155 (LG8) should be the ancient copy 
paralogous to the derived copy in scaffold 2404 (LG6), supporting the 
two genome duplication events hypothesized to have occurred during 
the flax genome evolution [57,82]. 

The FAD2a genes on LG1 were incorrectly annotated into two 
separate genes (Lus10012007 and Lus10012008 for FAD2a-1 and 
Lus10029283 and Lus10029284 for FAD2a-2) in the original WGS 
genome annotation [57]. The intact FAD2a-1 should be represented 
by merging Lus10012007 and Lus10012008 and FAD2a-2 by merging 
Lus10029283 and Lus10029284. To verify this correction, we compared 
the gene sequence from BAC clone LuBAC346C18 containing the 
FAD2a-2 locus with Lus10029283 and Lus10029284 in scaffold 360. 
FAD2a-2 had a fragment length of 1,137 bp in the BAC. The multiple 
sequence alignment of this sequence fragment, FAD2-2 derived from 
flax NL97 (EU660502) and the sequences of FAD2a in both scaffolds, 
indicated that one insertion, possibly caused by mis-assembly, was 
observed in scaffold 360 between base pair 441 and 477 (Figure S6), 
whereas a sequence fragment between 440 and 616 bp in scaffold 
931 was missing (Figure S6). We speculated that the missing region 
in scaffold 931 was incorrectly removed during the assembly process. 
Thus the insertion and deletion in both scaffolds most likely caused 
mis-annotation of the FAD2a genes in the original report [57]. 

The plant FAD2 genes have no introns as reported in flax [19,20], 
Arabidopsis [77], Brassica rapa [83] and Brassica napus [84]; however, 
a unique intron existing in the 5’UTR was  reported in Arabidopsis 
FAD2-At3G12120 [77], sesame SeFAD2 [85], cotton FAD2-4 [86], 
camelina CsFAD2 [87], grape VlFAD2 [80] and safflower FAD2 [81]. 
A recent comprehensive study indicated that these highly conserved 
introns in multicellular plants, preferentially located within the 5’UTR, 
can function via the intron-mediated enhancement (IME) mechanism 
to enhance gene expression level in Arabidopsis [88] and other plants 
[89-92]. This unique feature of the gene has been widely utilized in wet 
lab gene reconstruction for transformation, and an IME prediction tool 
specifically designed for rice and Arabidopsis named IMEter [92] was 
developed. We verified the presence of 5’UTR in FAD2 genes by using 
the public flax EST data set from GenBank [59] for alignment with 
flax FAD2 genes. The alignments confirm that FAD2a-1, FAD2a-2 and 
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Figure 4: Phylogenetic analysis of the FA desaturase gene families identified 
from flax cv. CDC Bethune: SAD (A), FAD2 and FAD3 (B). Deduced 
amino acid sequences were used and bootstrap support is shown at each 
branch as the percentage of 1,000 bootstrap replicates. The asterix (*) 
beside the FAD2a genes denotes that the deduced amino acid sequences 
were corrected based on the de novo BAC sequencing. The previously 
identified orthologous gene sequences were included and highlighted 
in red. At: Arabidopsis; Bc: Brassica carinata (Ethiopian mustard); Bna: 
Brassica napus; Gm: Glycine max (soybean); Lc: Lepidium campestre (field 
pepperwort).

FAD2a FAD2b FAD2c FAD2d FAD2e FAD2f FAD2g
FAD2a 0.6
FAD2b 86.4 3.8
FAD2c 108.0 34.4 17.8
FAD2d 73.8 30.2 35.9 12.2
FAD2e 120.5 29.0 31.4 32.3 9.4
FAD2f 76.6 36.1 37.5 32.0 44.9 7.7
FAD2g 100.3 38.5 38.1 32.6 42.9 8.8 3.7
FAD2h 86.2 25.2 31.5 25.3 30.4 37.0 39.4

The diagonal elements represent duplication time between pairs of FA duplicate 
genes whereas the others show the average duplication time between any two 
pairs of genes. 

Table 3: Duplication time (MYA) of FAD2 genes.

Gene Scaffold LG TSS 5’UTR intron Start codon 
position

Strand

FAD2a-1 Scaffold931 1 163503 162667-163412 162634 Minus
FAD2a-2 Scaffold360 1 465421 464614-465329 464581 Minus
FAD2b-2 Scaffold2404 6 137814 135809-137697 135788 Minus

LG: linkage group;TSS: transcription start site 
Table 4: 5’UTR introns of FAD2 genes determined by alignment with flax ESTs.
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FAD2b-2 carry a 5’UTR intron and a transcription start site (Table 4). 
The remaining FAD2 genes had no EST hits matching upstream of their 
5’ CDS, possibly as a result of the developmental stage specific FAD2 
gene expression, the relatively low EST sequencing coverage or simply 
because they are not expressed. Thus the flax FAD2 genes expressed in 
developing seeds have the specific intron at their 5’UTR, which may 
regulate their tissue specificity and temporal expression patterns. 

As the most important component of the catalytic center [27], three 
conserved HIS-boxes were observed within the 15 FAD2 sequences 
(Figure S5). The amino acid alignment of the FAD2 genes revealed 
that two genes, FAD2d (Lus10021049) and FAD2g (Lus10004181), 
have a single mutation causing a histidine to glutamine or asparagine 
mutation, respectively, and where both were in the first HIS-box. 
Mutations of histidine residues within the conserved motifs alter the 
desaturase functionality [93], hence, FAD2d and FAD2g may not be 
functional desaturases. 

FAD3 gene family

FAD3 is the third desaturase gene, which inserts the double bond 
at the ∆15 position resulting in the synthesis of ALA/LIN [94]. To date, 
three microsomal linseed FAD3 genes namely FAD3a, FAD3b and 
FAD3c have been reported [16,22]. FAD3a and FAD3b were identified 
from flax cv. Normandy [22] and FAD3c was recently identified from 
flax cultivars AC McDuff, UGG5-5 and SP2047 [16]. Each of these 
FAD3 genes carried three conserved HIS-boxes that are required for 
the activity of FAD3 [95], as well as the conserved dilysine sequence 
(-KKXX- or -KXKXX-) at the C-terminal end that is involved in the 
subcellular localization [96]. Specific mutations in HIS-boxes were 
shown to cause loss of catalytic activity of FAD3b [97]. 

Our informatics analysis indicated that FAD3a, FAD3b and FAD3c 
are identical to three annotated genes Lus10038321, Lus10036184 and 
Lus10040660 in the flax WGS reference genome (Table 2, Figures 4B, S7 
and S8). FAD3a and FAD3b turned out to be a pair of duplicated genes. 
Thus it is not surprising that FAD3a and FAD3b were simultaneously 
observed as the dominant contributors of accumulation of ALA during 
seed development among the three FAD3 genes [16]. Also, FAD3a 
and FAD3b had the highest numbers of mutations (SNPs and indels) 
compared to SAD and FAD2 genes as previously surveyed in 120 flax 
accessions [28]. 

In addition to the three previously identified FAD3 genes, we found 
three more, including one duplicated copy of FAD3c. To avoid confusion 
with previous nomenclature, we re-designated the previously identified 
FAD3c as FAD3c-1, and the newly identified paralog as FAD3c-2. The 
remaining two FAD3 genes were also duplicated genes that we denoted 
as FAD3d-1 and FAD3d-2 (Table 2, Figure 4B). Although six of the 

FAD3 genes harbored the conserved HIS-boxes (Figure S8), protein 
similarity indicated that both FAD3d genes diverge substantially from 
FAD3a, b and c, especially at the N-terminus (Figure S8). As a result, 
they clustered into a distinct clade from the FAD3a-c sub-clades (Figure 
4B). On the other hand, the conserved dilysine motif at the C-terminus 
of FAD3d seems to have been lost during evolution. No report has been 
found regarding FAD3d, but extra amino acid insertions were detected 
in the N-terminus compared to FAD3a-c (Figure S8). Our analysis 
also indicated that there was a PEST-like motif in the N-terminus of 
the FAD3 gene family that was identified by employing the Emboss 
tool ePESTfind (http://emboss.bioinformatics.nl/cgi-bin/emboss/
epestfind). The PEST enriched motif, functioning as a cis-acting signal 
of protein degradation, was largely responsible for protein turn-over 
[98]. A potential PEST-like motif in the N-terminus of FAD3c as well 
as a poorer candidate motif in the N-terminus of FAD3a and FAD3b 
were identified (Figure S8). O’Quin et al. [99] found that the cis-acting 
degradation signal associated ubiquitin-proteasomal pathway could 
result in the increased half-life of Brassica napus FAD3 protein at cooler 
temperatures, indicating that this N-terminal motif may contribute to 
improved adaptive capability to abiotic stresses.

Although SAD, FAD2 and FAD3 belong to the same class of the FA 
desaturases, they differed in substrate specificity, gene structure (Figure 
2 and Table 2) and functional motifs. Their divergence is ancient, 
approximately 124-128 MYA (Table S2). 

KCS gene family

To date, no intact KCS gene has been successfully cloned from 
flax but two ESTs (CD760578 and CD760581) were reported to be 
partial transcripts of a KCS [18]. Based on the sequence similarity 
to the previously identified FAE1-like KCS genes from Arabidopsis 
and soybean [38-40,100], 38 flax KCS genes were identified (Table 
5). Thirteen genes appeared as paired paralogs evolved from recent 
genome or segmental duplication events (Table 2). Four genes KCS3, 
KCS11, KCS12, and KCS13 had three paralogous members according 
to their divergence time and duplication events. For example, the 
three members of KCS13 (KCS13-1, KCS13-2 and KCS13-3) were 
hypothesized to be the result of a tandem duplication event whereas 
KCS3 likely encountered two separate duplication events: a tandem 
duplication and a genome or fragmental duplication. Only two genes, 
KCS10 and KCS15, had only one member. All gene pairs or triplets 
were attributed to recent duplication events (Table 5). These KCS genes 
were scattered on 11 different linkage groups or chromosomes (LG1, 3, 
4, 5, 6, 7, 8, 10, 11, 12 and 15) and several unanchored scaffolds (Table 
5).

Phylogenetic analysis showed that the 38 KCS genes clustered into 
seven groups (I-VII) (Figure 6). Flax KCS genes of six of the groups 
clustered with at least one orthologous KCS gene from Arabidopsis 
or soybean. Group I included six pairs of genes and one triplet with 
one to three exons. Group II contained three genes of a triplet and one 
single gene with three or four exons. This group corresponds to the ε 
subclass of the KCS genes in Arabidopsis that also have three exons 
[42]. Group III, IV and VI, corresponding to the α, γ, and θ subclass 
of the Arabidopsis KCS genes, included four (two pairs), two (one pair) 
and three (one triplet) genes, respectively, none of which had introns. 
Group III clustered with AtFAE1/AtKCS18 which was the first KCS 
gene identified in Arabidopsis [38,39]. Group V had three genes (a 
triplet) that did not cluster with any other orthologous genes. Group 
VII consisted of eight genes (two pairs, one triplet and one single) with 
1-4 exons that clustered with the θ subclass of the Arabidopsis KCS 
genes which was divided into two subgroups in flax (VI and VII). To 
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Figure 5: Phylogenetic analysis of SAD1 and SAD2 genes. Nucleotide 
sequences were compared. Bootstrap values are shown at each branch as 
the percentages of 1,000 bootstrap replicates. Previously identified genes 
are included and highlighted in red. 
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compare the relationship of the seven groups of genes, we calculated 
the divergence time of genes among and within the groups (Table 
S3). We found that the KCS gene pairs were duplicated most recently 
(1.7-23.4 MYA) and hypothesized this to be to the result of a recent 
whole genome duplication event (Table 5).  The between group gene 
duplications appeared to be more ancient, i.e., more than 100 MYA, 
which precedes the divergence time between SAD, FAD2 and FAD3, 
between FAD2a and FAD2b, and between KAS I, KAS II and KAS III 
(Tables S1, S2 and S3). The amino sequence alignment of the predicted 
KCS enzymes demonstrated that most of regions of the KCS proteins 
were highly conserved (Figure S9).

All KCS genes displayed two common domains, PF08392 (FAE1/
Type III polyketide synthase-like protein) and PF08541 (3-Oxoacyl-
[acyl-carrier-protein (ACP)] synthase III C terminal) with the 
exception of KCS12-Lus10029880, KCS17-Lus10040873, and KCS17-

10004818) which had a PF08541 domain and an alternative domain 
PF02797 (chalcone and stilbene synthases, C-terminal domain) (Figure 
6). KCS13-Lus10033625 had an additional domain PF00782 (protein 
tyrosine phosphatase). In addition, all KCS genes maintained a putative 
catalytic triad (Cys248-His416-Asn449 based on the sequence of KCS1-
1) that plays a critical role in KCS catalysis [101-104] (Table 5, Figure 
S9). An additional putative active site (Ser307 of KCS1-1) has been 
demonstrated to be essential for the activity of the FAE1 enzyme in 
Brassica napus [105]. This residue was also conserved for all the KCS 
genes except two KCS9 genes, all 12 genes in Group VI and VII, and 
all 3 KCS genes in the θ subclass of Arabidopsis which had a threonine 
instead of a serine at the same position (Table 5).

KCSs show homology with the known KAS III that can catalyze 
the reaction between malonyl-ACP and acyl-ACP to synthesize the C4 
3-ketoacyl-ACP in E. coli, spinach and Brassica napus [106,107]. We 

No Clade Gene Gene ID Chromosome 
location

Start 
position 

in scaffold

Genomic 
sequence 

length 
(bp)

CDS 
sequence 

length 
(bp)

Amino 
acid  

sequence 
length aa)

No of 
exons

CDS 
identity 

(%)

Amino 
acid 

identity 
(%)

Duplication 
time (MYA)

Ks Catalytic site
C248 H416 N449 S307

1

I

KCS1-1 Lus10006637 Scaffold244 (LG8) 250465 2,499 1,623 540 2 76.95 72.4 13.7 0.178 + + + +
2 KCS1-2 Lus10039401 Scaffold33 (LG10) 1236391 2,321 1,308 435 3 + + + +
3 KCS2-1 Lus10021895 Scaffold164 (LG3) 494574 3,092 1,425 474 2 85.57 85.79 7.1 0.092 + + + +
4 KCS2-2 Lus10041177 Scaffold280 (LG15) 1287373 3,083 1,584 527 2 + + + +
5 KCS3-1 Lus10019446 Scaffold906 (LG6) 285487 1,551 1,551 516 1 97.73 98.44 1.9 0.024 + + + +
6 KCS3-2 Lus10043300 Scaffold25 (LG12) 2296451 1,551 1,551 516 1 + + + +
7 KCS3-3 Lus10019448 Scaffold906 (LG6) 290816 1,343 1,281 426 2 89.87 83.13 1.7 0.022 + + +
8 KCS4-1 Lus10002691 Scaffold1347 (LG15) 106658 1,748 1,572 523 2 92.93 95.21 14.1 0.183 + + + +
9 KCS4-2 Lus10030209 Scaffold217 (LG4) 231412 1,893 1,572 523 2 + + + +

10 KCS5-1 Lus10010108 Scaffold722 (LG1) 258593 1,575 1,575 524 1 96.06 98.28 4.9 0.063 + + + +
11 KCS5-2 Lus10012611 Scaffold101 (LG15) 126220 1,575 1,575 524 1 + + + +
12 KCS9-1 Lus10006636 Scaffold244 (LG8) 241675 1,974 1,482 493 2 81.37 77.51 23.3 0.302 + + + T
13 KCS9-2 Lus10039399 Scaffold33 (LG10) 1219216 1,811 1,524 507 2 + + + T
14

II (ε)

KCS10 Lus10028105 scaffold132 (LG5) 1068330 1,678 1,518 505 3 88.50 90 + L + +
15 KCS11-1 Lus10016528 scaffold279 (LG12) 371666 2,781 1,587 529 3 96.84 97.73 6.0 0.078 + + + +
16 KCS11-2 Lus10040796 scaffold156 (LG3) 1494523 3,052 1,587 528 3 + + + +
17 KCS11-3 Lus10009799 scaffold1 186142 2,565 1,527 508 4 88.50 90 22.6 0.293 + + +
18

III (α)

KCS6-1 Lus10001657 scaffold227 (LG8) 14836 1,512 1,512 503 1 96.75 97.21 4.2 0.055 + + + +
19 KCS6-2 Lus10002533 scaffold81 (LG6) 60705 1,512 1,512 503 1 + + + +
20 KCS7-1 Lus10026345 scaffold898 (LG11) 718114 1,551 1,551 516 1 95.35 98.64 5.2 0.067 + + + +
21 KCS7-2 Lus10042318 scaffold123 (LG1) 1671369 1,548 1,548 515 1 + + + +
22

IV (γ)
KCS8-1 Lus10034319 scaffold310 (LG1) 596075 1,491 1,491 496 1 95.7 98.79 6.3 0.082 + + + +

23 KCS8-2 Lus10041452 scaffold272 (LG4) 142994 1,491 1,491 496 1 + + + +
24

V
KCS12-1 Lus10020662 scaffold303 (LG4) 74137 1,350 1,350 449 1 65.72 62.3 36.0 0.469 + + + +

25 KCS12-2 Lus10031486 scaffold863 523726 1,248 1,248 415 1 + + + +
26 KCS12-3 Lus10029880 scaffold416 487616 1,362 1,362 453 1 65.72 52.35 23.4 0.304 R + + +
27

VI (θ)

KCS16-1 Lus10005434 scaffold847 (LG7) 119164 1,464 1,464 487 1 91.49 92.9 8.9 0.116 + + + T
28 KCS16-2 Lus10015222 scaffold924 (LG12) 18075 1,479 1,479 492 1 + + + T
29 KCS17-1 Lus10004918 scaffold858 (LG8) 122399 1,239 1,239 412 1 63.45 62.83 6.3 0.082 + + + T
30 KCS17-2 Lus10040873 scaffold156 1981104 1,188 1,188 395 1 + + + T
31

VII (θ)

KCS13-1 Lus10033626 scaffold701 (LG12) 874027 2,211 1,455 484 4 68.71 65.36 14.9 0.194 + + + T
32 KCS13-2 Lus10033627 scaffold701 (LG12) 878209 1,722 1,122 373 3 + + + T
33 KCS13-3 Lus10033625 scaffold701 (LG12) 867459 5,336 2,271 756 4 49.28 44.28 12.0 0.156 + + + T
30 KCS14-1 Lus10002191 scaffold1010 67381 1,401 1,401 466 1 76.57 76.48 11.0 0.144 + + + T
31 KCS14-2 Lus10039906 scaffold15 (LG4) 2153982 3,627 1,725 574 2 + + + T
32 KCS15 Lus10002192 scaffold1010 69983 1,254 1,254 417 1 + + Y T
37 KCS18-1 Lus10023458 scaffold1216 (LG7) 288113 1,575 1,437 478 2 93.73 96.02 14.0 0.183 + + + T
38 KCS18-2 Lus10040333 scaffold86 1404742 1,560 1,437 478 2 + + + T

For genes with three duplicate members, the estimates of sequence identity, duplication time and Ks of the third member were calculated as the average of the first two 
members vs. the third one.  Clade: the clades are determined according to the phylogenetic analysis of KCS genes (Figure 6). The clades in parentheses correspond 
to classification of KCS genes in Arabidopsis [42]. Catalytic site: +represents the presence of the residues of putative catalytic sites. The positions of residues, Cys248, 
His416, Asn449 and Ser307, are based on the sequence of KCS1-1.

 Table 5: KCS gene family related to the fatty acid elongation to VLCFA identified in flax cv. CDC Bethune.
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Figure 6: Phylogenetic analysis of the KCS gene family in flax. Deduced amino acid sequences were used. Bootstrap values are shown as the percentages of 
1,000 bootstrap replicates. Orthologous genes previously identified in other species are included and highlighted in red. The clades in parentheses correspond to 
the classification of KCS genes in Arabidopsis [42]. Pfam domains are illustrated by various shapes and colors as indicated in the figure legend. At: Arabidopsis; Bj: 
Brassica juncea (oilseed mustard); Gm: Glycine max (soybean).
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also observed amino acid sequence similarity between KCS and KAS 
III families in flax and other plant species (Figure S9). KCS and KAS 
III families are thought to have similar catalytic mechanisms [35], but 
their substrate specificity differs substantially. KCSs use malonyl-CoA 
as a substrate for decarboxylation in lieu of malonyl-ACP for KAS III. 
KCS and KAS genes clustered into two distinct groups (Figure S10) and 
KAS III was evolutionally much closer to KAS I and KAS II than KCS 
in term of their p-distances (the number of amino acid differences per 
site) (Table S4). 

FAT gene family

Two classes of FAT genes coding TEs, FatA and FatB, control 
the termination of FA chain extension in plants. Facciotti and Yuan 
[108] summarized features of FatA and FatB. Both classes share a 
conserved core region of ~210 amino acids featuring the protein family 
of TEs (Pfam: PF01643) and an ~60 amino acid transit peptide in the 
N-terminus. Two unique and short regions surrounding the catalytic 
sites differentiate FatA and FatB. Also, FatB genes have an additional 
conserved hydrophobic region [108].

We identified 14 flax FAT genes (Table 6). The similarity analysis 
based on the protein domain family database (Pfam 27.0) revealed 
that all 14 FAT genes shared a conserved region (Pfam: PF01643) 
characteristic of the TE family (Figure 7). The phylogenetic analysis 
grouped the 14 flax genes into four distinct clusters. Two pairs of 
duplicated genes (Lus10038190 vs. Lus10025912, and Lus10022772 
vs. Lus10011839) formed the FatA group based on their evolutionary 
distance associated with the previously identified FatA genes [109] 
whereas another pair of flax duplicated genes (Lus10017751 vs. 
Lus10033072) constituted the FatB group. The Pfam analysis showed 
that the FatB proteins shared a similar region (Pfam: PF12590, Acyl-
ATP thioesterase) in the N-terminus which is supposed to overlap 
with the conserved FatB hydrophobic region. However, four pairs 
of flax FAT-like genes (Lus10013480 vs. Lus10007942, Lus10034617 
vs Lus10000365, Lus10035901 vs. Lus10025762, and Lus10035900 
vs. Lus10025763) (Table 6), did not properly group into either FatA 
or FatB because of insufficient biochemical enzyme activity assay 
evidence (Figure 7). The amino acid sequence alignment (Figure S11) 
indicated that the two pairs of flax duplicated genes (Lus10013480 vs. 
Lus10007942 and Lus10034617 vs. Lus10000365) were closer to the 

FatA class in the phylogenetic tree (Figure 7); however, two typically 
conserved regions (labeled A and B in Figure S11) featured in FatA 
were totally different from either FatA or FatB. An additional extended 
C-terminal tail featured in FatB was present in the four genes. They also 
lacked the  PF12590 domain family of a typical FatA gene (Figure 7). 
Thus, we temporarily named these two flax gene pairs Fat1 and Fat2 
and grouped them into FAT I (Table 6 and Figure 7).

The other two gene pairs (Lus10035901 vs. Lus10025762, and 
Lus10035900 vs. Lus10025763) had a less conserved hydrophobic 
region than other plant FatB proteins. In addition, they had two gaps 
in the N-terminal transit peptide. One pair of genes (Lus10035900 and 
Lus10025763) lacked the extended C-terminal tail. These two pairs 
of genes on LG 1 and LG 11 appeared to have arisen from a tandem 
duplication event and a whole genome/fragmental duplication event at 
around the same time (5.2-6.6 MYA), evolutionary speaking (Table 6 
and Table S5). Thus we named these two flax gene pairs Fat3 and Fat4, 
respectively, grouping them into Fat II (Table 6 and Figure 7). 

All seven pairs of FAT genes were the result of more recent gene 
duplications (Table 6); however, four groups of genes appeared to 
be highly conserved in flax and other plant species. Flax FatA and 
FatB genes clustered with corresponding FatA or FatB genes from 
other species (Figure 7), indicative of their somewhat more ancient 
divergence approximately 40 MYA (Table S5). The genes in the Fat I 
and Fat II groups might be specific in flax because no orthologous FAT 
genes clustered into these two groups. Furthermore, they all maintained 
the two conserved catalytic sites of Cys275 and His310 (based on the 
sequence of FatA1-1) (Table 6 and Figure S11), indicating that they 
all may have the biological function to terminate the synthesis of FAs. 

Differential transcription of the identified FA genes

The overall impact of a gene family is a combination of the size of the 
gene family, individual structural differences among family members 
and differential transcription within individual members [56]. Digital 
expression analysis (Figure 8) shows the number of ESTs assigned 
to all identified FA genes; however, because of the high similarity of 
the paired genes it was not always possible to unequivocally assign a 
specific EST to one member of a gene pair. Thus, except for FAD3a and 
FAD3b, ESTs were assigned to pairs of duplicated genes. We observed 

No Clade Gene Locus Chromosome 
location

Start 
position in 
scaffold

Genomic 
sequence 
length (bp)

CDS 
sequence 
length (bp)

Amino 
sequence 
length (aa)

No. of 
exons

CDS 
identity 

(%)

Amino acid 
identity 

(%)

Duplication 
time (MYA)

Ks Catalytic 
site

H275 C310
1

FatA

FatA1-1 Lus10038190 scaffold28 (LG11) 210541 2,873 1,125 370 8 84.71 79.94 6.2 0.08 + +
2 FatA1-2 Lus10025912 scaffold605 (LG1) 914799 2,259 1,113 374 7 + +
3 FatA2-1 Lus10022772 scaffold8 (LG10) 41937 2,422 1,131 376 7 96.64 95.74 2.7 0.035 + +
4 FatA2-2 Lus10011839 scaffold754 (LG9) 29342 2,395 1,131 376 7 + +
5

FatB
FatB1-1 Lus10017751 scaffold212 (LG6) 296331 2,015 1,257 418 6 97.93 98.80 0.5 0.006 + +

6 FatB1-2 Lus10033072 scaffold306 (LG12) 739174 2,024 1,257 418 6 + +
7

Fat I

Fat1-1 Lus10013480 scaffold230 (LG3) 386737 2,394 1,257 418 6 92.91 93.54 3.4 0.044 + +
8 Fat1-2 Lus10007942 scaffold281 (LG3) 75576 2,338 1,251 416 6 + +
9 Fat2-1 Lus10034617 scaffold9 (LG13) 987681 1,889 1,230 409 6 94.89 93.41 2.2 0.029 + +

10 Fat2-2 Lus10000365 scaffold2160 5905 1,888 1,233 410 6 + +
11

Fat II

Fat3-1 Lus10035901 scaffold76 (LG11) 200209 1,547 1,161 383 5 89.49 87.82 5.2 0.067 + +
12 Fat3-2 Lus10025762 scaffold605 (LG1) 301503 1,444 1,152 386 4 + +
13 Fat4-1 Lus10025763 scaffold605 (LG1) 304576 1,350 1,077 363 4 90.29 85.95 5.5 0.071 + +
14 Fat4-2 Lus10035900 scaffold76 (LG11) 197570 1,357 1,092 358 4 + +

Clade: the clades are determined according to the phylogenetic analysis of FAT genes (Figure 7). Catalytic site: + represents the presence of the residues of putative 
catalytic sites. The positions of residues, His275 and Cys310, are based on the sequence of FatA1-1. 

Table 6: FAT gene family involved in the fatty acid chain termination identified in flax cv. CDC Bethune.



Citation: You FM, Li P, Kumar S, Ragupathy R, Li Z, et al. (2014) Genome-wide Identification and Characterization of the Gene Families Controlling 
Fatty Acid Biosynthesis in Flax (Linum usitatissimum L). J Proteomics Bioinform 7: 310-326. doi:10.4172/jpb.1000334

Volume 7(10) 310-326 (2014) - 322 
J Proteomics Bioinform
ISSN: 0974-276X JPB, an open access journal 

I

II

FatA1-Lus10038190

FatA1-Lus10025912

FatA2-Lus10022772

FatA2-Lus10011839

Fat1-Lus10013480

Fat1-Lus10007942

Fat2-Lus10034617

Fat2-Lus10000365

Fat3-Lus10035901

Fat3-Lus10025762

Fat4-Lus10035900

Fat4-Lus10025763

FatB1-Lus10017751

FatB1-Lus10033072

ChFatA1-AAC72883.1

CtFatA-AAA33020.1

CsFatA-Q42712.1

GmFatA1-AAB51523.1

CchFatA-AAG35064.1

TaFatA-CAD32683.1

IgFatA-AAG43859.1

ItFatA-AAL77443.1

AtFatA-AT3G25110.1

BrFatA1-AAC49002.1

BnFatA-Q43745

BjFatA-CAC39106.1

CpFatB1-AAC49179.1

CwFatB1-AAC49783.1

CIFatB1-CAC19933.1

HaFatB1-T12583

UaFatB1-AAB71731.1

IgFatB1-AAG43857.1

ItFatB1-AAG43860.1

EgFatB1-AAD42220.2

MfFatB2-AAB71729.1

GhFatB-AAD01982.1

GmFatB-AAB51525.1

AtFatB-AT1G08510.1

BjFatB-ACR56792.1

100

88

46
99

26

13
62

25
32

100 69
100

99

71

100

99

100

100

100

97

83

99
97

30

55

38 27

98
100

25

60
100

60

57

100

97

0.1

FatB

Fat II

FatA

PF12590                    PF01643           PF02519
1                   200                  400                 600   aa

Fat I

Figure 7: Phylogenetic analysis of the FAT gene family in flax. Deduced amino acid sequences were used. Bootstrap values are shown as the percentages of 
1,000 bootstrap replicates. Orthologous genes previously identified in other species are included and highlighted in red. At: Arabidopsis thaliana; Bj: Bradyrhizobium 
japonicum; Bn: Brassica napus; Cc: Cinnamonum camphorum; Cch: Capsicum chinense; Ch: Cuphea hookeriana; Cl: Cuphea lanceolata; Cp: Cuphea palustris; 
Cs: Coriandrum sativum; Ct: Carthamus tinctorius; Cw: Cuphea wrightii; Eg: Elaeis guineensis; Gh: Gossypium hirsutum; Gm: Garcinia mangostana; Ha: Helianthus 
annuus; Ig: Iris germanica; It: Iris tectorum; Mf: Myristica fragrans; Ta: Triticum aestivum; Ua: Ulmus americana; Uc: Umbellularia californica.
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large differences in the number of ESTs in different gene pairs in the 
KAS families (condensing genes) as well as in the SAD/FAD2/FAD3 
families (desaturation genes) (Figure 8A). Independent Chi-square 
tests to assess the statistical significance of distribution of EST counts 
corresponding to condensing genes and desaturation genes, and, 
their comparison between the two separate categories of genes, were 
performed. The results showed that differences between EST hits within 
desaturation genes and within condensing genes as well as between 
these two categories were not derived by chance (p<0.01). Desaturation 
genes had ten-fold more ESTs than condensing genes, suggesting that 
the higher expression level of desaturation genes play a major role with 
the respect to the biosynthesis of unsaturated FAs in flax.

In terms of condensing genes, the KAS Ia and KAS II gene pairs 
had more EST hits than other genes which came mostly from torpedo 
embryo, endosperm and torpedo stage seed coat tissues (Figure 8A). 
We failed to identify any known EST associated with the mtKAS and 
KAS IIIa gene pairs. Within desaturation genes, the FAD2 gene pairs 
had the most abundant EST hits followed by FAD3 and SAD (Figure 
8). The ESTs associated with these genes were mostly derived from 
the mature embryo where OLE, LIO and LIN are synthesized (Figure 
8A). Within the FAD2 gene family, FAD2b showed more EST hits than 
FAD2a while other gene pairs (FAD2c-h) had few ESTs associated 
with them. Within the FAD3 gene family, the FAD3a/b pair had more 
EST hits than other members (Figure 8A), consistent with previous 
reports [16,97]. Using real time (RT) PCR, Banik et al. [16] quantified 
the expression levels of the FAD3a, b and c genes and reported that 

the expression of FAD3a and FAD3b transcripts was modulated 
during seed development, however FAD3c expression remained 
low throughout these stages. Radovanovic et al. [97] measured the 
conversion rate of OLE into LIO and LIO into LIN by heterologous 
expression of FAD2 and FAD3 isoforms in yeast and showed that the 
conversion rate of FAD2 exceeded that of FAD3 and, that FAD2b had 
a 10% higher conversion rate than FAD2a. 

FAD2c-h and FAD3d genes were only slightly expressed as quantified 
by their EST hits (Figure 6). It is presumed that, during evolution, these 
genes have lost their functions or have acquired neofunctionalization 
through their gene structure change after duplication. For instance, 
among FAD2c-h gene members, no 5’ UTR intron was present whereas 
the more recently formed genes had the feature, which may help plants 
cope with climate change associated stress [88]. FAD3d also lost its 
conserved dilysine motif at the C-terminus (Figure S8). Similarly, 
several condensing genes (KAS Ib, and KAS IIIa ) with very few EST 
hits are relatively older duplicated copies (10.8-16.3 MYA) than KAS 
Ia and KAS II which were more highly expressed and were also more 
recently duplicated (1.5-9.2 MYA) (Table 1 and Figure 6).

Our results and previous studies [16,97] confirmed that the three 
pairs of duplicated genes FAD2a-1/FAD2a-2, FAD2b-1/FAD2b-2 and 
FAD3a/FAD3b are highly expressed and play key roles in the FA profile 
of flax, indicating that these most recently duplicated copies may co-
express and have additive effects to improve phenotypic performance 
as reported in soybean [110].

KCS is the largest gene family identified in this research with 
38 genes. We observed that 13 pairs of KCS displayed EST hits; 
however, only KCS11 showed significant higher digital expression 
level than other KCS genes and FAT genes (Figure 8B). The hit ESTs 
were mostly derived from seed coat (GC), bolls (P12), and fiber-
bearing tissues (FI). KCS11 clustered with AtKCS10 in Arabidopsis 
which is required for normal development of the epidermis [111] 
and, is expressed in all tissues except for root, with the highest 
expression level in stems and siliques [42]. For FAT genes, no 
significant expression from EST hits was observed (Figure 8B). 

Concluding Remarks
Through in silico gene mining of the WGS reference sequence of 

cv. CDC Bethune, we identified 84 new and validated seven previously 
cloned flax genes hypothesized to be involved in FA elongation, 
desaturation and the termination of FA chain elongation in flax and 
belonging to the following gene families: KAS, SAD, FAD2, FAD3, KCS 
and FAT. Fourteen β-ketoacyl-ACP synthases reported here include 
one pair of mitochondria targeting mtKAS, two pairs of KAS I, one 
pair of KAS II and three pairs of KAS III. These synthase enzymes 
are involved in the stepwise elongation of FAs to form 18-carbon 
polyunsaturated FAs. SAD, FAD2 and FAD3 are three gene families 
encoding desaturases responsible for insertion of double bonds at the 
∆9, ∆12 and ∆15, respectively, to ultimately enrich flax seeds in LIO and 
LIN. Apart from seven genes cloned previously, eighteen desaturase 
genes were newly identified in the form of gene pairs with the exception 
of FAD2h which had no duplicated copy. As the largest gene family 
in this study, the 38 KCS genes identified here represented one of the 
elongase enzymes involved in the extension of FA chains from C18 to 
VLCFA. Furthermore 14 FAT genes, another important class of FA 
genes responsible for the termination of the FA chain elongation were 
also described. The majority of the identified FA synthesis genes are 
duplicated gene pairs caused by recent whole genome or fragmental 
duplication events [82], but the six gene families are highly conserved 
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Figure 8: Differential expression of the KAS, SAD, FAD2 and FAD3 gene 
families (A) and KCS and FAT gene families (B) as estimated by the number 
of EST hits in 15 libraries: globular embryo (GE), heart embryo (HE), torpedo 
embryo (TE), cotyledon embryo (CE), mature embryo (ME), globular stage seed 
coat (GC), torpedo stage seed coat (TC), pooled endosperm (EN), etiolated 
seedlings (ES), stem (ST), stem peel (PS), leaf (LE), mature flower (FL), outer 
fiber-bearing tissues at mid-flowing stage (FI), and bolls 12 days after flowing 
(P12).
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in flax and other plants. They were hypothesised to have diverged 
anciently.

The new flax FA genes were identified from a single flax cultivar 
(CDC Bethune), and more FA related genes may be discovered upon 
investigation of a diverse flax germplasm [75]. Such investigation 
is practically feasible given the recent advances in next generation 
sequencing. Although digital prediction of expression patterns for 
the identified genes were made based on the flax ESTs developed 
from thirteen libraries [59], gene expression analysis by the RT-PCR 
method is expected to enhance the validation of our findings regarding 
the contribution of gene families to FA biosynthesis [16]. Together, 
these efforts will generate essential knowledge and provide useful 
genomic resources for further gene cloning, characterization, marker 
development and marker assisted selection in flax breeding. The CDS 
and amino acid sequences of FA related genes identified in this research 
are available as supplementary files (Supplementary file 2 and 3).
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