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Editorial
Many control systems encountered in physical, automobile

engineering, economic phenomena and biomedical engineering fields
are nonlinear and nonstationary to some extent. In general, nonlinear
processes can be adequately characterized by a nonlinear model.
Recently, a system can be obtained directly from experimental input/
output data by determining the system structure and the numerical
values of the unknown parameters, this process is known as system
identification. System identification techniques for linear and
nonlinear systems have received such attention and have been widely
applied to reveal fundamental properties of the system which are not
apparent. Billings [1] surveyed the available approaches of non-linear
system identification by considering the functional series of Volterra
and Wiener, and the identification algorithms developed by Ku and
Wolf [2]. Narendra and Parthasarathy [3] considered the orthogonal
expansion methods and the kernel identification algorithms. All these
methods discussed above were considered numerous alternatives and
related topics which have been developed over the last decade or so.

Time-varying non-linear system identification has been the subject
of intensive research for many years, and fruitful results have been
reported. Billings et al. provided an overview of a nonlinear system
identification methodology based on the NARMAX (Nonlinear
Autoregressive Moving Average with exogenous inputs) model [4,5],
which is a general representation of a nonlinear dynamical system by
taking the form of a nonlinear difference equation. The NARMAX
methodology can provide a unified solution to this equation only using
experimental data recorded from the system of interest. The process of
identifying a NARMAX model usually includes determining the
structure of the unknown nonlinear equation, estimating the
coefficients or parameters associated with the particular form or
structure and finally validating the identifying model in order to
ensure that it can describe the real life system accurately. These time-
variant parameters in NARMAX model are further estimated to unveil
the fundamental dynamical properties of the model based on Kalman
Filter, Least Mean Squares and Recursive Least Squares approaches.

The NARMAX methodology are increasingly used tools for
exploring causal interactions by combining modern causality theory
with multivariate time-series analysis, and has been derived from
methodological and application-related research objectives at the
frontier of computational and clinical neurosciences. Some authors
have used the classical time-invariant NARMAX approaches to derive
directed measures of interaction to fit multivariate autoregressive

model. For high-dimensional data, spurious interaction between
different components may appear because of the influence of other
common source. Therefore, it is significant to differentiate between
causal and non-causal or indirect interactions. Different methods have
been developed that search for the interaction between different
components, while excluding the influence of other components.
NARMAX models have been verified an appropriate analysis tools for
practical applications. Additionally, compared with other non-linear
models, NARMAX models are more easily interpretable and tractable.
Therefore, the NARMAX model methods have been widely discussed
by Billings [6] and are very suitable as a methodological basis for the
interaction analysis of physiological sequences provided by the
underlying clinical and experimental studies to compute dynamic
interaction profiles. Bootstrap methods can then be used for statistical
testing. Additionally, the methodological approaches can be used in
other research areas which deal with interaction analysis (e.g. machine
diagnosis, seismology, automobile engineering, and analysis of
biological interactions).

We hope this editorial will provide a useful reference for researchers
working in the system identification, brain connectivity analysis and
related application areas, and help academics, neuroscientists, and
engineers explore new methodologies in both theory investigation and
practical applications.

In particular, we would like to thank all the colleagues of the journal
for their excellent work and timely support to give us the opportunity
to write this editorial.
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