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Abstract

Background: One of the major challenges in the field of vaccine design is to predict conformational B-cell
epitopes in an antigen. In the past, several methods have been developed for predicting conformational B-cell
epitopes in an antigen from its tertiary structure. This is the first attempt in this area to predict conformational
B-cell epitope in an antigen from its amino acid sequence.

Results: All Support vector machine (SVM) models were trained and tested on 187 non-redundant protein chains
consisting of 2261 antibody interacting residues of B-cell epitopes. Models have been developed using binary
profile of pattern (BPP) and physiochemical profile of patterns (PPP) and achieved a maximum MCC of 0.22 and
0.17 respectively. In this study, for the first time SVM model has been developed using composition profile of
patterns (CPP) and achieved a maximum MCC of 0.73 with accuracy 86.59%. We compare our CPP based model
with existing structure based methods and observed that our sequence based model is as good as structure based
methods.

Conclusion: This study demonstrates that prediction of conformational B-cell epitope in an antigen is possible
from is primary sequence. This study will be very useful in predicting conformational B-cell epitopes in antigens
whose tertiary structures are not available. A web server CBTOPE has been developed for predicting B-cell epitope
http://www.imtech.res.in/raghava/cbtope/.

Background
A region or segment of an antigen, recognized by a speci-
fic antibody or B-cell is called antigenic region or B-cell
epitope. These B-cell epitopes can be categorized into two
classes, continuous and discontinuous. A continuous/lin-
ear epitope is a segment of consecutive residues in the pri-
mary sequence while a discontinuous/conformational
epitope is a bunch of residues of an antigen that are far
away from each other in the primary sequence but are
brought to spatial proximity as a result of polypeptide
folding. It is also known that most of the B-cell epitope
(~90%) are conformational epitope. Both types of epitopes
play an important role in the peptide-based vaccines and
disease diagnosis [1,2]. One of the beauties of immune sys-
tem is that it recognizes the foreign proteins/antigens and
generate specific antibody against these antigens. This
potential of immune system has been exploited by
researchers for designing subunit vaccines [3,4].

In the post genomic era where a large number of
pathogens have been completely sequenced, it is crucial
to identify B-cell epitope or here after called antibody
interacting residues in an antigen for the design of subu-
nit vaccines against these pathogens. In the past several
experimental techniques have been developed for map-
ping antibody interacting residues on an antigen that
includes identification of interacting residues from
structure of antibody-antigen complexes [5]. One of the
popular approaches is overlapping peptide synthesis cov-
ering the entire antigen sequence, which identifies
mainly sequential epitopes [6]. Mapping of antibody
interacting residues has been severely hampered by the
costly and time taking process of 3D structure determi-
nation. Many tools, covering compilation, visualization
and prediction of B and T cell epitopes have been devel-
oped [7]. Despite of majority of epitopes being confor-
mational, most of the computational methods and
databases centered at the sequential epitopes [8-10].
Linear epitope prediction methods can be categorized
into physico-chemical property [11], HMM [12] and
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ANN based [13]. Many methods are available for anti-
body interacting residues identification if antigen’s or its
homolog’s tertiary structure is known which in itself is a
big limitation. These are based on features like flexibil-
ity, solvent accessibility [14,15] and amino acid propen-
sity scales [16]. Earlier researchers created a benchmark
dataset from the 3D PDB structures and evaluated sev-
eral structure-based protein-protein binding site predic-
tion methods which included popular CEP [15] and
DiscoTope [16] for predicting immunogenic regions
[17]. They opted the definition, that epitope consist of
antigen residues in which any atom of the antigen resi-
due is separated from any antibody atom by a distance
of ≤ 4Å. They found that the performance of all meth-
ods were mediocre and no method could achieve Area
under curve (AUC) greater than 0.7. In addition to
these a bunch of improved methods have been devel-
oped for the prediction of antibody interacting residues
if tertiary structure of antigen is known [18-23]. In sum-
mary, one needs to determine structure of antigen using
crystallography in order to identify antibody interacting
residues in antigen. The experimental techniques like
crystallography are expensive and time consuming
where as functional assays are not reliable enough [5].
Thus there is need to develop alternate technique for
predicting antibody interacting residues in a protein.
In this study attempt has been made to predict anti-

body interacting residues in an antigen from its primary
sequence. First we created the patterns of different win-
dow lengths from the corresponding amino acid
sequences then used the standard binary and physico-
chemical profiles of patterns. We have introduced for
the first time the concept of composition profile of pat-
tern (CPP) generated through sliding window where the
central residue is antibody interacting. These features
were used to develop SVM based models to predict
antibody interacting residues with high accuracy.

Methods
Definition of antibody interacting residues or epitope
There are many levels of antigen-antibody interactions
one can obtain from PDB structures. Among these
interactions we defined antibody interacting residue as a
residue of antigen which is at least one atom separated
from an antibody atom by 4Å distance. We borrowed
this definition from benchmark paper [17] in order to
compare our models with existing methods.

Datasets
Main dataset
We obtained 526 antigenic sequences combined from
IEDB database and benchmark dataset [9,17]. Sequence
redundancy was removed using program CDHIT [24] at
40% cutoff. Finally we got 187 antigens where no two

sequences have more than 40% sequence identity. These
antigens have 2261 antibody interacting or 2261 residues
are part of conformational B-cell epitope and 107414
amino acid residues were non-antibody interacting from
the same antigen sequences.
Benchmark Dataset
In addition to main dataset, we also evaluate our models
on benchmark dataset [17] which contains 161 protein
chains from 144 antigen-antibody complex structures.
Finally we got non-redundant set of 52 antigen chains
where no two sequences have more than 40% sequence
identity. This benchmark dataset of 52 antigens contains
858 antibody interacting and 9366 non-antibody inter-
acting residues.

Creation of patterns
It is known that the function of a residue is not solely
determined by itself but influenced by its neighboring
residues [25-27]. Thus we generated overlapping patterns
of different window sizes from 5 to 21 amino acids for
each antigen in the datasets. A pattern is assigned as
positive if its central residue interacts with the antibody;
else it is assigned as negative (Figure 1). This is the stan-
dard procedure used for assigning patterns, which have
been used in number of methods like prediction of NAD
interacting residues [26], DNA, RNA binding sites in pro-
teins [27], cleavage sites [28] and signal peptides [29]. In
order to create a pattern for the terminal residues, we
added (L-1)/2 number of dummy residue ‘X’ on both
sides of the protein sequence (L is length of the protein
sequence) for e.g. for window size 17 we added 8 ‘X’.

Realistic and balance learning
In order to develop prediction method one needs to
generate overlapping patterns for each antigen in a data-
set; one pattern for each residue. It will produce two
types of patterns positive and negative, positive patterns
have antibody interacting central residue. These patterns
are used to train machine-learning techniques for devel-
oping models. In real life only few residues in an antigen
are recognized by antibody or B-cell receptor. This
means that the number of negative patterns will be
much higher than positive patterns in our training data-
set; for 2261 positive patterns there were 107414 nega-
tive patterns. This creates two problems; i) poor
performance of models due to imbalanced set of pat-
terns and ii) training of models is time consuming and
CPU intensive. Thus in this study we have used two pat-
tern sets for learning our models; i) realistic set of pat-
terns that includes all negative patterns and ii) balance
set of patterns having equal number of positive and
negative patterns. In case of balance set, we randomly
picked up equal number of negatives from negative
pattern set.
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Derivation of features from patterns
Binary profile of patterns (BPP)
Each pattern was converted into binary profile, where an
amino acid was represented by a vector of dimension 21
(e.g. Ala by 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). A pat-
tern of window length W was represented by a vector of
dimensions 21xW (Additional file 1, Table S1). The bin-
ary profile has been used in a number of existing meth-
ods [30,31].
Physico-chemical profile of patterns (PPP)
As amino acids’ physico-chemical properties contribute
in the determination of its structure and function, we
selected five properties tested by others [32]. These are
Grantham polarity [33], Karplus-Schulz flexibility [34],
Kolaskar antigencity [35], Parker hydrophobicity [36]
and Ponnuswami polarity index [37]. Physico-chemical
profile of patterns is similar to the BPP, the only differ-
ence lies in the properties of amino acids. Here each
amino acid is represented by a vector of 5 i.e. each pat-
tern converted into a vector size of 5xW. For example
Ala is represented as [pHydrophobicity, pFlexibility,

pPolarity_Grantham, pPolarity_Ponnuswami, pAntigene-
city] corresponding to different property values (Addi-
tional file 1, Table S2).
Composition profile of patterns (CPP)
In the past researchers have exploited amino acid com-
position of proteins for many biological problems like
sub-cellular localization and classification of proteins
[38,39]. Instead of calculating composition of antigen
sequence, we introduced concept of composition of pat-
terns. The amino acid composition of patterns was cal-
culated using the following equation.

comp i
R

N
i( ) = ×100

Where comp (i) is the percent composition of a resi-
due of type i; Ri is number of residues of type i, and N
is the total the number of residues in the pattern.

Support Vector Machines (SVM)
In the past SVM had been used in a number of biologi-
cal problems, from classification to functional prediction

Figure 1 Feature extraction for a 19 window length pattern. Antibody interacting residues are marked in red e.g. S/T, Positive pattern
shaded in green where S is at the center with 9 neighboring residues on either side, other overlapping negative patterns are shown in blue. a)
Creation of 19 window overlapping patterns from amino acid sequence, b) generation of binary profile of pattern (BPP), c) generation of
physico-chemical profile (PPP) and d) generation of composition profile of pattern (CPP).
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of proteins [40-42]. In the present study, we have devel-
oped a SVM model using a powerful package SVM_light
http://svmlight.joachims.org/, for predicting antibody
interacting residues in proteins.

Cross-validation technique
There are many techniques for evaluating the performance
of models like leave-one-out or jack-knife test, n-fold cross
validation etc [43]. Though jackknife test is the best
among cross-validation techniques [44], it is time consum-
ing and CPU intensive technique [40,45]. In order to save
time and resources we used widely acceptable 5-fold
cross-validation technique. In this technique data is ran-
domly divided into five equal sets of which four sets are
used for training and the remaining fifth set for testing.
This process is repeated five times in such a way that each
set is used once for testing. Final performance is the aver-
age of performances achieved on the five sets.

Performance Measures
The performance of various models developed in this
study was computed by using threshold- dependent as
well as threshold-independent parameters. In threshold-
dependent parameters we used sensitivity (Sen), Specifi-
city (Spe) or percent coverage of non-interacting resi-
dues, overall accuracy (Acc) and Matthew’s correlation
coefficient (MCC) using following equations.

Sensitivity
TP

TP FN
=

+
×100

Specificity
TN

TN FP
=

+
×100

Accuracy
TP TN

TP TN FP FN
= +

+ + +
×100

MCC
TP TN FP FN

TP FN TN FP TP FP TN FN
= × − ×

+ + + +
( ) ( )

[( )( )( )( )]

[TP = true positive; FN = false negative; TN = true
negative; FP = false positive]
We created ROC (receiver operating curve) for all of the

models in order to evaluate performance of models using
threshold independent parameters. ROC plots with Area
under curve (AUC) were created using SPSS statistical
package.

Results
Analysis of antibody interacting residues
In order to understand whether certain types of amino
acids are preferred in antibody interactions, we compared

the composition of antibody interacting and non-
interacting residues in antigens. As shown in Figure 2,
certain types of residues like Cystein, Aspartate, Gluta-
mate, Lysine, Asparagine, Glutamine, Arginine, Trypo-
phan and Tyrosine are preferred in antibody interactions.
Most of these are polar and charged residues. In order to
understand the preference of interaction in depth, we
created 2 Sample Logos [46] for different properties. It
was observed that charged, hydrophilic, surface exposed
and flexible residues are more abundant in conforma-
tional B-cell epitopes (Additional file 1, Figures S1, S2,
S3, S4, and S5).

SVM Models based on BPP and PPP
First, SVM based models have been developed using
binary profile of patterns where pattern is represented
by a vector of dimensions Nx21 (N is length of pattern).
In order to optimize the performance of SVM models,
we developed SVM models using patterns of window
length 5 to 21. It was observed that models perform bet-
ter for window size 13, where we got maximum MCC
0.22 with accuracy of 60.84% (Table1). We selected
models with minimum difference between sensitivity
and specificity. Varying the kernel parameters could not
enhance the performance of models and results were
just better than random. Detail performance of BPP
based SVM model for window length 13 at different
thresholds is shown in Additional file 1, Table S3.
It was observed that amino acids having certain types

of physico-chemical properties are preferred in antibody
interactions (Additional file 1, Figures S1, S2, S3, S4,
and S5). Thus we developed SVM based models using
PPP and observed best performance for pattern length
of 15 residues. As shown in Table 2, we got maximum
MCC 0.17 with accuracy 58.31%. The trend and perfor-
mance of SVM models based on BPP and PPP is similar.
Detail performance of PPP based SVM model for win-
dow length 15 at different thresholds is shown in Addi-
tional file 1, Table S4. Overall performance of PPP
based model is slightly poorer than BPP based model
(Additional file 1, Tables S3 and S4). All models were
trained and tested on main dataset using balance set of
patterns.

SVM Model using Composition Profile of Patterns (CPP)
To understand the antibody interacting patterns better,
we computed and compared amino acid composition of
positive and negative patterns. As shown in Additional
file 1, Figure S6, composition profile of positive and
negative patterns are different. This means that positive
and negative patterns can be discriminated from their
amino acid composition. Based on this observation, we
developed SVM models for predicting antibody interact-
ing residues in proteins using composition profile of
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patterns (CPP). The performance of CPP based SVM
models have been shown in Table 3. It is surprising that
simple composition based model outperforms BPP and
CPP based models. We achieved maximum MCC 0.73
with accuracy 86.59% at window length 19. Detail
performance of CPP based SVM model for window
length 19 is shown in Additional file 1, Table S5. The

performance improved significantly for almost all win-
dow sizes as compared to binary or physico-chemical
properties. As shown in Figure 3, we achieved area
under curve (AUC) 0.90 which is significantly better
than AUC achieved using BPP and PPP based models.
All models were developed from main dataset using bal-
ance set of patterns and evaluated using five-fold cross-
validation technique.

Figure 2 Comparison of amino acid composition of antibody interacting residues (B-cell epitope) and non-interacting residues (non-
epitope).

Table 1 The performance of BPP based SVM model
developed using different window lengths from 5 to 21
residues

Window size Kernel parameters Thr* Sen Spe Acc MCC

5 t 2 g 0.01 j 1 c 10 0.1 58.38 58.55 58.47 0.17

7 t 2 g 0.01 j 1 c 1 0.1 55.87 59.81 57.84 0.16

9 t 2 g 0.01 j 1 c 1 0.1 55.66 58.85 57.26 0.15

11 t 2 g 0.001 j 1 c 10 0 61.55 56.99 59.27 0.19

13 t 2 g 0.1 j 1 c 1 0 62.58 59.09 60.84 0.22

15 t 2 g 0.1 j 1 c 10 0 59.93 57.63 58.78 0.18

17 t 2 g 0.001 j 1 c 10 0 58.37 57.18 57.78 0.16

19 t 2 g 0.001 j 1 c 10 0.1 52.92 63.78 58.35 0.17

21 t 2 g 0.001 j 1 c 10 0 59.69 57.22 58.45 0.17

*(Thr- Threshold, Sen - Sensitivity, Spe - Specificity, Acc - Accuracy, MCC -
Matthew’s correlation coefficient).

Table 2 The performance of PPP based SVM model
developed different window lengths from 5 to 21
residues

W Kernel parameters Thr* Sen Spe Acc MCC

5 t 2 g 0.00001 j 1 c 10 -0.3 53.95 59.62 56.78 0.14

7 t 2 g 0.00001 j 1 c 10 0.1 55.82 58.03 56.93 0.14

9 t 2 g 0.00001 j 1 c 10 0 54.56 55.84 55.2 0.1

11 t 2 g 0.00001 j 1 c 10 0.1 52.3 62.48 57.39 0.15

13 t 2 g 0.00001 j 1 c 10 0.1 55.11 60.37 57.74 0.16

15 t 2 g 0.00001 j 1 c 10 0 56.57 60.06 58.31 0.17

17 t 2 g 0.00001 j 1 c 10 0 60.19 55.77 57.98 0.16

19 t 2 g 0.00001 j 1 c 10 0 57.82 54.15 55.98 0.12

21 t 1 d 1 0 57.31 58.32 57.81 0.16
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Comparison with existing methods
In order to validate our observations, we developed and
evaluated our models on benchmark dataset; a dataset
used in the past to benchmark earlier methods. All win-
dow size patterns were made unique and divided into
realistic and balance set of patterns. Realistic set of pat-
terns represents the real-life situation where non inter-
acting residues are much higher than interacting
residues. We trained and tested our models on bench-
mark dataset using balance set of patterns and achieved
MCC 0.13 and 0.72 for BPP and CPP respectively
(Table 4). These results demonstrates that CPP based
models are also effective on benchmark dataset. In order
to make evaluation more realistic, we also trained and
tested our models using realistic set of patterns based

on BPP and achieved MCC 0.06 and 0.44 for BPP and
CPP respectively. MCC decreases when we used realistic
set of patterns instead of balance set of patterns but
accuracy was nearly the same in both cases. In order to
compare performance of our model with existing meth-
ods we also measured performance in term of AUC.
Figure 4 shows the ROC plot of our models on bench-
mark dataset, we achieved AUC 0.56, 0.57 0.89 for mod-
els based on BPP, PPP and CPP respectively. These
results demonstrate that CPP based models are more
accurate than other models. AUC was more than 0.85
for both set of patterns, realistic and balance (Figure 4).
We compared performance of our model with existing
methods (Table 5) and observed that our model is as
good as any other method. This means our model may
complement existing methods and can be used when
structure of the antigen is not available.

Implementation
A user-friendly web server ‘CBTOPE’ was developed for
the prediction of antibody interacting residues or B-cell
conformational epitopes. The server is developed using
CGI-Perl script, HTML and installed on a Sun Server
(420E) under UNIX (Solaris 7) environment. The user
may submit the amino acid sequence(s) in ‘FASTA’ for-
mat. The server generates the 19 window patterns of all
submitted sequences, calculates amino acid composition
and predicts antibody interacting residues. The output is
the amino acid sequence mapped with a probability
scale ranging from 0 to 9 for each amino acid. 0 indi-
cates the rarest chance of being that residue in a B-cell
epitope and 9 as the most probable. We suggest that for
high specificity (high confidence) prediction, user should
select the higher threshold value but compromising the
sensitivity of prediction. However, for maximum predic-
tion of antibody interacting residues user should opt
lower threshold. There is always interplay between sen-
sitivity and specificity. The default threshold was set at
-0.3 as at this value, sensitivity and specificity was found
equal during the development. Web-server is freely
available at http://www.imtech.res.in/raghava/cbtope.

Discussion
It has been a great challenge for the academicians to
devise algorithms and methods for the identification and
mapping of potential B-cell epitopes from an antigen
sequence. Much effort has been put in trying to predict
the conformational B-cell epitope. Previous methods
predict conformational B-cell epitopes with reasonably
high accuracy, the limitation of these methods is that
they require tertiary structure of the antigen. Experi-
mental technique like X-ray crystallography used for
determining structure of a protein is costly, tedious and
time consuming. To the best of author’s knowledge

Table 3 The performance SVM models developed using
composition profile of patterns at different window
lengths

Window size Kernel parameters Thr* Sen Spe Acc MCC

5 t 2 g 0.001 j 1 c 1 0 61.75 58.11 59.93 0.2

7 t 2 g 0.001 j 1 c 10 0 68.35 62.2 65.27 0.31

9 t 2 g 0.001 j 1 c 10 0 73.45 67.21 70.33 0.41

11 t 2 g 0.01 j 1 c 1 -0.1 82.08 77.26 79.67 0.59

13 t 2 g 0.01 j 1 c 10 -0.1 82.57 84.17 83.37 0.67

15 t 2 g 0.01 j 1 c 1 -0.1 79.96 90.31 85.14 0.71

17 t 2 g 0.01 j 1 c 1 -0.1 80.69 90.1 85.4 0.71

19 t 2 g 0.01 j 1 c 1 -0.1 83.13 90.06 86.59 0.73

21 t 2 g 0.01 j 1 c 1 -0.1 83.62 88.96 86.29 0.73

Figure 3 The performance of SVM models developed using
composition, binary and physic-chemical property profile.
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there is no method which can predict conformational
B-cell epitopes in an antigen in absence of tertiary struc-
ture. There is a need to develop methods for predicting
conformational B-cell epitopes in an antigen from its
primary sequence. This study describes the method
CBTOPE developed for predicting conformational epi-
topes of antibody interacting residues in antigens. In
order to compare performance of our models we chose
a benchmark dataset, which was used to evaluate the
performance of structure based methods. In order to
increase the data we included data from IEDB database.
We presumed that the antibody interacting residues are
the conformational B-cell epitope residues. We used tra-
ditional features of binary and physico-chemical profiles
of patterns, evaluated by 5-fold cross validation while
using SVM as a classifier. Performance was very poor in
BPP models due to the fact that for 21xW vector size
only W values represent 1, the rest all are 0 so the noise
is more in BPP model. PPP model also could not per-
form well although it was earlier used for linear and
structure based conformational B-cell epitope

prediction. From the preliminary analysis of the compo-
sition and 2 sample logo plots of positive and negative
patterns, it was clear that there is significant difference
in the composition and surface propensities of certain
residues which can be exploited to discriminate the pat-
terns. Finally we used for the first time, in our study
simple amino acid composition model of patterns (CPP)
with vector size of 20 which was evaluated on two dif-
ferent datasets. The performance improved significantly
and it is interesting to note that it can be used for the
prediction of conformational B-cell epitopes despite the
fact that in CPP model we lost the amino acid order
information unlike BPP. This problem may be equated
to the sub-cellular localization of proteins wherein it
was observed that simple amino acid composition
model perform better than other features. But unlike
sub-cellular localization we exploited composition of
patterns instead of whole protein sequence. It should be
noted that despite the prediction of antibody interacting
or individual B-cell epitope residues, being a sequence
based method and the lack of 3D structural input,
CBTOPE cannot assist in determining the number and
distance needed to make an epitope segment in the anti-
gen sequence. This information can be obtained by
mapping of the predicted residues on the modeled
structure. We hope that the present model is unique in
its kind and will compliment the available structure
based methods used for the prediction of antibody inter-
acting residues or conformational B-cell epitopes.

Conclusion
We showed that simple antigen sequence can be used for
the prediction of conformational B-cell epitopes and no
structure or homology is required. We introduced for the
first time concept of local amino acid composition of anti-
gen. We showed that our CPP composition based SVM
model outperformed other structure methods with better
sensitivity and AUC on the same benchmark dataset.

Additional material

Additional file 1: Additional file for CBTOPE. Additional file 1
containing BPP and PPP matrix and detailed threshold-wise results of
selected windows and kernels.

Table 4 The performance of BPP and CPP based SVM model on Benchmark dataset, developed using balance and
realistic set of patterns

Type of Pattern set Model SVM parameters Thr* Sen Spe Acc MCC

Realistic BPP t 2 g 0.001 j 10 c 10 -0.2 50.49 60.28 59.49 0.06

CPP t 2 g 0.001 j 10 c 10 -0.3 80.41 84.64 84.30 0.44

Balance BPP t 2 g 0.01 j 1 c 10 0.1 61.31 51.22 56.27 0.13

CPP t 2 g 0.01 j 1 c 10 0 82.36 89.42 85.89 0.72

Models were developed using window size 19.

Figure 4 The performance of SVM models on Benchmark
dataset as shown by ROC plot.
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