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INTRODUCTION

Gene expression profiles from tissue samples can now be generated 
at a reasonable cost because of recent improvements in DNA gene 
expression technologies. Gene expression analysis assists scientists 
and medics in better understanding disease causes and developing 
platforms that aid in the diagnosis, prognosis, and treatment [1]. 
Breast cancer is the most common cancer in women around the 
world. There are several significant risk factors for breast cancer, 
including older age, null parity, obesity, smoking, and estrogen 
exposure. In almost 10% of cases of breast cancer, the patients’ 
have a strong genetic predisposition [2]. Based on the stage of 
cancer and the presence of lymph nodes, the initial treatment 
of breast cancer usually involves surgical resection of the tumor 
[3]. Early detection with appropriate treatment could reduce 
death rates significantly in the long term, according to previous 
studies [4]. In addition to mammography and magnetic resonance 
imaging, ultrasounds, positron emission tomography, and 
biopsy, researchers have examined several other breast diagnostic 

methods [5]. The traditional methods have some limitations; 
these limitations are, less effective for subjects under 40 years 
of age and with dense breasts, less sensitive to small tumors, not 
providing an indication of the potential outcome of disease [6,7]. 
And expensive and involving high levels of radiation [8].

Some researchers they used pathway enrichment analysis 
approaches include the work of Reimand et al. that conducted 
analysis of raw RNA-seq data from ovarian cancer samples to 
define a ranked gene list [9]. moreover the work of Yang et al. 
analysis using GO and the KEGG pathways enrichment using 
the Database for Annotation, Visualization and Integrated 
Discovery(DAVID) software on the gene expression profile dataset 
GSE26440, In addition, they used the Gene Set Enrichment 
Analysis approach for enrichment analysis of the DEGs. Their 
results indicated, the top 10 hub genes, which are all up regulated 
in septic shock children [10]. Li et al. conducted GO and KEGG 
enrichment analyses by DAVID and KOBAS database. Their 
results identified, a total of 134 DEGs by differential expression 
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analysis, consisting of 88 up- and 46 down-regulated genes. GO 
and KEGG analyses showed enriched terms and pathways related 
to cell adhesion, tumorigenesis, and cellular immunity. The PPI 
network identified six hub genes containing CD3D, CD3E, 
CD3G, FYN, GRAP2, and ITK [11]. 

Wei et al. performed GO and KEGG enrichment analysis on 
GSE86374 micro-expression matrix chip data that consist of 159 
samples (124 normal samples and 35 breast cancer samples), they 
obtained 173 up-regulated genes and 143 down-regulated genes 
for GO and KEGG enrichment analysis. They noted these genes 
are also significantly enriched in the KEGG pathway, including 
phenylalanine metabolism, staphylococcus aureus infection, and 
the PPAR signaling pathway [12]. Chen et al. were performed GO 
analysis and KEGG pathway enrichment analyses of DEGs by the 
DAVID on The gene expression profiling (GSE86945, GSE86946 
and GSE102088) data, their result identified a total of 2998 
DEGs between TNBC and health breast tissue, including 411 up-
regulated DEGs and 2587 down-regulated DEGs , GO analysis 
results showed that down-regulated DEGs were enriched in gene 
expression (BP), extracellular exosome (CC), and nucleic acid 
binding, and up-regulated were enriched in chromatin assembly 
(BP), nucleosome (CC), and DNA binding (MF), KEGG pathway 
results showed that DEGs were mainly enriched in Pathways in 
cancer and Systemic lupus erythematosus and so on [13]. Deng et 
al. were conducted the GO and KEGG analysis on four datasets 
(GSE21422, GSE29431, GSE42568, and GSE61304) from Gene 
Expression Omnibus (GEO) through FunRich, and their results 
recognized, 203 up-regulated and 118 down-regulated DEGs and 
remain Mitotic cell cycle and epithelial-to-mesenchymal transition 
pathway as major enriched pathways for the up-regulated and 
down-regulated genes, respectively [14]. Lv et al. were conducted 
GO and KEGG enrichment analyses on four datasets GSE5847, 
GSE22597, GSE23720, and GSE45581 downloaded from the 
Gene Expression Omnibus (GEO) to understand the potential 
bio-functions of the DEGs. Their results indicated a total of 
114 DEGs were identified from the GEO datasets GO and 
KEGG analyses showed that the DEGs were mainly enriched 
in oncogenesis and cell adhesion [15]. Hu et al. performed an 
extreme case-control study including 208 breast cancer patients 
with poor invasive disease-free survival (iDFS) and 208 patients 
with favorable iDFS were individually matched on molecular 
subtype from the Breast Cancer Cohort at West China Hospital 
(WCH; N=192) and The Cancer Genome Atlas, their result 
revealed differential expression of genes in the glucocorticoid 
pathway in tumor tissue (P=0.028), but not normal tissue 
(P=0.701), was associated with poor iDFS, Somatic mutation 
of the adrenergic and cholinergic pathways was significantly 
associated with iDFS in WCH, but not in TCGA. And also were 
discovered the glucocorticoid pathway may play a role in breast 
cancer prognosis through differential mutations and expression. 
[16].

From the previous study, however, how these pathways interact 
between genes remains unclear. In the present study, the gene 
expression data were downloaded from the Pan-Cancer-Atlas 
using “Illumina HiSeq” platform on R software. Preprocessing 
steps were performed on the downloaded data. These steps 
are as follows: First, the outlier samples were removed second, 

a normalization process was applied to the data, and third 
a filtering process is applied to the data. We conducted a 
differential expression analysis using R DESeq2 program to 
create a list of efficient genes prioritized by DEGs scores, also we 
used the pathfindR tool, to construct Protein-Protein Interaction 
that contains interaction information between the genes and 
finds active subnetworks to complete the enrichment analysis 
with GO and KEGG Pathways Beyond differential expression 
analysis of breast cancer gene expression data for discover top 
pathways and genes associated with DEGs that affected Breast 
Cancer (BRCA). Our result identify 73and 63 as top pathways 
and sub sequentially the top genes in each on GO and KEEG 
pathways enrichment analysis respectively.

MATERIALS AND METHODS

Dataset 

Gene expression data sets of breast-cancer (BRCA) were 
downloaded from Pan-Cancer Atlas [17] using the R studio 
program. The Genomic Data Commons (GDC) is an acronym 
for the National Cancer Institute’s Genomic Data Commons, 
which offers the research group with an integrated data store 
that allows data sharing through cancer genomic investigations. 
The GDCquery function requires input of several parameters. 
The project case denotes that the project has to be selected from 
the Pan-Cancer Atlas’s list of legal projects. The value of this 
case in terms of breast cancer will be “TCGA-BRCA [18]. The 
legacy option can be set to true or false; we chose true, indicating 
that the query should be included in the inheritance database 
when we appeal the data. The inheritance repository shall create 
an unchanged copy of data that was previously available for 
download on the TCGA Data Portal. Every project has its own 
data category; therefore data.category refers to the type of data 
in the project. We need to change the data category to “Gene 
expression” in our case. The data Type option defines the type of 
data that will be used to filter the files that will be downloaded. 
We set the data type to “Gene expression quantification” in our 
example. Genes can be calculated using RNA-Seq to determine 
the number of reads that map to each gene [19,20]. In terms of 
the plan, we have options of selecting one of several platforms, 
so we have chosen “Illumina HiSeq” platform. The “file.ty pe” 
argument specifies the type of file that can be utilized in a legacy 
database. There are a variety of experimental methodologies to 
choose from, such as RNA-Seq, miRNA-Seq, and Genotyping 
Array. In our case, RNA-Seq was used to build our expression 
profile [21,22], for example. Finally, the sample type specifies the 
kind of sample that can be used to filter the data that will be 
downloaded. In our situation, the sample type can be set to “c 
(“Primary solid Tumor’ ‘Solid Tissue Normal”),” which means 
that the gene expression of ordinary cases and cases with a tumor 
compared .The downloaded BRCA data is transformed into a 
matrix formula. The columns in this matrix indicate the samples 
or instances, whereas the rows reflect the genetic ranges of interest 
[23,24]. There are 1208 clinical samples in the BRCA database, 
with a total of 19948 genes. Because of the enormous number 
of genes, the data will be sensitive to noise as a consequence of 
the big number of genes, and the analysis’ performance may be 
affected. As a result, preprocessing procedures are used to the 
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BRCA data in order to reduce the number of genes and then 
choose those that contribute significantly in discovering breast 
cancer genes.

Data preprocessing 

To detect problematic arrays, the preprocessing stage was 
created in this research by building a symmetric square matrix 
of Spearman correlation across data. Samples that are regarded 
as outliers are deleted based on this symmetric matrix. Outliers 
are defined using a correlation threshold of 0.6, and then the 
BRCA gene expression data is normalized to appropriately 
estimate expression levels from the BRCA gene expression data, 
confirming that expression measurement bias can be avoided [25-
28]. The normalizing step is carried out using the TCG Analysis 
Normalization function from the TCGA biolinks package. GC 
content is the mechanism used in this role; this is the number of 
nucleotides in a nucleic acid chain that inhibits either guanine 
(G) or cytosine (C) in the nucleic acid chain (C). Consequently, 
the normalization procedure eliminates the reliance on the 
GCricher gene being accurately DE, as well as the substantial C 
Content bias [25]. We have completed preprocessing of the data 
by filtering the gene expression dataset with a threshold of 0.25. 
H. To select the average value for all samples greater than 0.25. 

Differentially expressed genes (Degs)

The R DESeq2 package was used to do a differential expression 
analysis. Using a significance level of 0.01 in this phase. 
A generalized linear model (GLM) is used by the DESeq2 
differential expression analysis program. The form generalized 
linear model (GLM) is: 

( )~ ,ij ij ig NB µ α

 ij j ijµ s q=

( )2  .ij j ilog q x β=

Here g
ij
 denotes the amount of Gene i in sample j. These numbers 

are computed using a Negative Binomial Distribution with an 
adaptive mean µij and a gene-specific variance factor α

i
. The 

adjusted average is translated to a factor q
ij
, which is proportional 

to the sample-specific size factor c and the estimated true attention 
of sample j fragment. For each column of the model or design 
matrix X, the factor β

i

The sample and gene-dependent normalization factor sij can be 
used to generalize the model. The diffusion parameter αi defines 
the connection between the variance of the observed counts and 
their mean. In other words, the size factor sj and the covariate 
dependent component qij, both stated above, decide how far you 
may extrapolate the observed number from the average value. As 
a result, the variance function is as follows: 

( ) 2 ij ij ij ij i ijvar g g µ µ µα = − = + 

The steps achieved by the DESeq function in the DESeq2 
package are the approximation of s

j
 and α

i
, and the adaptation 

of the negative binomial GLM to β
i
 and Wald statistics using 

nbinomWaldTest. Since then, we have calculated the Count Per 
Million as

6*10igCPM
N

=

gi Denotes the count observed from the gene i of interest and N 
is the number of sequenced fragments [29].

Enrichment analysis

We used PathfindR tool to conduct an enrichment analysis with 
KEGG and GO-ALL Pathways (the representation of the analysis 
is shown in Figure 1. PathfindR( is a biological grouping function 
that utilizes a list of genes and related p-values as input values to 
discover active Subnetworks within a Protein-Protein Interaction 
Network ), PathfindR also has the ability to group the enriched 
terms into clusters and select illustrative terms within each cluster 
[30].In our work we used the gene name and p_value that resulted 
from differential expression analysis on gene expression data as 
input to PathfindR. In a Protein-Protein Interaction Network 
(PPIN), active subnetworks are detected using a list of genes and 
their associated p values. After that, we performed enrichment 
analysis on the identified active-subnetworks in order to find 
enriched terms which might explain the attention phenomenon. 
The active subnetworks are those within PPIN (by default, 
BioGRID) that have the highest score (based on the significant 
difference value specified). These subnetworks are distinct sets 
of interacting genes that are related to a certain disease and were 
discovered either during the investigation or as a result of strong 
gene interaction. PathfindR maps each input gene against a PIN 
after passing out input (a p-value threshold of 0.01 was used to 
exclude differential expression data) (Figure 2) [31]. The mapped 
genes are used to conduct an active subnetwork search (by default, 
using the greedy method). The active subnetworks that arise are 
filtered according to the marks, and as a result, the set of relevant 
genes they cover. The enrichment analysis (hypergeometric 
distribution test overrepresentation analysis) is then performed 
on the filtered list of active subnetworks. That is, each gene in the 
active subnetworks is used to identify highly enriched pathways.

Figure 1: Flow-chart of enrichment analysis with KEGG and GO-ALL 
Pathways.

Figure 2: It is showing flow-chart of the path find R method steps in 
detailed manner. 

 represents a log2 fold change in Gene i.
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RESULTS

Identification of differentially expressed genes 

We used RNA-Seq gene expression profile to find the top pathways 
and genes of breast cancer. In our study, first; we downloaded 
RNA-Seq gene expression profiles of breast-cancer using The 
Cancer Genome Atlas (TCGA) database, which contains 1208 
clinical samples with 19948 genes. And preprocessed it, after 
preprocessing, we got 1208 clinical samples with 14477 genes, 
including 113 negative samples and 1095 positive samples. 
Second, we used R software to do a differential expression 
analysis on these datasets, and we found 3,676 DEGs in the gene 
expression data using the 0.01 significant threshold levels, as 
shown in Table 1 as sample from a differentially expressed genes 
results, the complete results is in APPNDEX1.

KEGG and GO pathway enrichment analysis

We used PathfindR program to complete Enrichment analysis 
with KEGG and GO-ALL Pathways. a list of genes and related 
p-values that outperformed from differential expression analysis 
on gene expression data of breast cancer was utilized as input 
value to PathfindR to discover active Subnetworks within a 
Protein-Protein Interaction Network and then KEGG and GO-
ALL pathway enrichment analyses were performed on these 
active Subnetworks. Enrichment analysis is performed using 
the genes in each of the active subnetworks, the lowest adjusted 
p-value for each term (entire active subnetworks) is reserved, and 
enriched pathways with adjusted p-values more than the certain 
threshold (0.02) are excluded, this process is known as “Active 
Subnetwork Search Enrichment Analysis” and it is frequently 
carried out in parallel for a set number of repetitions (default is 
10). For each considerably enriched pathway, the total number of 
events is also given, with a p-value that is always low and therefore 

optimally tuned across all iterations. We obtained 63 and 73 as 
top pathways and subsequently the top genes in each on KEEG 
and GO pathways enrichment analysis respectively. Samples of 
the results are displayed in Table 2 and Table 3 for KEEG and GO 
respectively because the results were featured in form of HTML 
files and too many to be shown the full results of the pathways are 
presented in APPNDEX2 for KEEG and APPNDEX3 for GO. 
Each pathway contains “Term_Description” (represent enriched 
term explanation), “Fold_Enrichment” (represent Enriched term 
value), “lowest p-value” (adjusted minimum p-value for the term 
specified with all rounds), the “highest p-value “for all iterations 
(adjusted maximum p-value for the term specified with all 
rounds), “Up-regulated” (upregulated genes for inputs separated 
by commas in the gene set for the specified term) and “Down-
regulated” (downregulated genes for inputs separated by commas 
in the gene set for the specified term). The first KEGG pathway 
from the top ten pathways includes (NUP214, NUP62, NUP93, 
SUMO3, EIF2B1, EIF4A3, RNPS1, and SRRM1) and the first 
GO from the top ten pathways includes (BUD31, LSM3, SF3B6 
HNRNPD, HNRNPH1, PCBP1, PTBP1, SRSF5, EIF4A3, 
HNRNPR, SRRM1, RNPS1, SF3B2, U2AF2, PUF60). The 
above-mentioned genes and the remains genes of pathways have 
a significant effect on breast cancer. Table 4 contains converted 
gene symbol (the gene symbols that are found in the input but 
not found in the PIN is converted to an alias symbol found in the 
PIN) and Table 5 contains genes without Interactions (genes that 
are not found in the PIN) APPNDEX6 contains the full results 
of genes without Interactions. Sample of visualization of resulted 
pathways presented in Figure 3 for KEEG pathways, the overall 
graphs that explain the pathways at 10 iterations are presented in 
APPENDEX4 and Figure 4 display sample of the protein-protein 
interaction on GO-ALL pathways, while APPNDEX5 contains 
all protein-protein interaction of the network. 

Table 1: Sample from Results of DEGs.

Gene name logFC logCPM PValue FDR

HAS1 -2.782362 0.89763 5.29E-218 2.50E-216

NMU 5.790262 0.979308 1.53E-217 7.20E-216

GATA4 5.897582 0.616554 7.91E-217 3.72E-215

HLF -2.761301 3.774738 8.34E-217 3.91E-215

CCDC3 -2.758493 4.817181 1.69E-216 7.88E-215

KLHL29 -2.760565 2.68592 3.45E-216 1.61E-214

C7orf58 -2.752138 4.019433 3.66E-215 1.70E-213

SLC22A3 -2.755464 1.81441 1.73E-214 7.98E-213

Table 2: Top ten KEGG pathway based on the p-value.

ID Top-Pathway Fold-Enrichment Lowest-p Highest-p Up-regulated Down-regulated

hsa03013 RNA transport 3.182691 1.90E-05 9.40E-04 NUP214
NUP62, NUP93, SUMO3, 

EIF2B1, EIF4A3, RNPS1, SRRM1

hsa04966
Collecting duct 
acid secretion

5.355489 2.70E-05 2.70E-05
ATP6V1D, 
ATP6V0E1

 

hsa05166
Human T-cell 

leukemia virus 1 
infection

3.179058 3.80E-05 3.80E-05  
TRRAP, NFATC3, IL2RB, JAK1, 
VDAC1, SLC25A5, ZFP36, SRF, 

ETS1, CREB1
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hsa03040 Spliceosome 4.321326 4.20E-05 4.20E-05
SF3B6, LSM3, 

BUD31
SF3B2, U2AF2, PUF60, EIF4A3, 

PCBP1, SRSF5

hsa00410
beta-Alanine 
metabolism

4.641424 4.20E-05 4.20E-05  CNDP2, ALDH9A1

hsa00020
Citrate cycle 
(TCA cycle)

6.962136 4.20E-05 1.20E-04  MDH2, PDHA1, PDHB

hsa04921
Oxytocin 

signaling pathway
3.248997 4.80E-05 4.80E-05 MYL6B, MYL6

EEF2K, EEF2, CALM3, NFATC3, 
ACTG1

hsa05203
Vira 

carcinogenesis
2.953633 7.00E-05 7.00E-05 GTF2B

CREB1, JAK1, RBL2, HDAC1, 
DNAJA3, SRF

hsa04210 Apoptosis 1.547141 9.30E-05 9.30E-05 DDIT3 ACTG1, PARP1

hsa00620
Pyruvate 

metabolism
7.140652 9.40E-05 9.40E-05  

PDHA1, PDHB, ALDH9A1, 
MDH2

Table 3: Top six GO pathways based on the p-value.

ID Top-Pathway Fold-Enrichment Lowest-p Highest-p Up-regulated Down-regulated

GO:0000398
mRNA splicing, 

5.069516 2.60E-09 5.80E-09
BUD31, 

LSM3, SF3B6

HNRNPD, HNRNPH1, PCBP1, PTBP1, 
SRSF5, EIF4A3, HNRNPR, SRRM1, RNPS1, 

SF3B2, U2AF2, PUF60

GO:0016070
RNA metabolic 

process
9.945908 4.90E-07 1.60E-04

HNRNPD, HNRNPH1, PCBP1, PTBP1, 
HNRNPR, DDX54

GO:0006406
mRNA export 
from nucleus

6.459714 3.10E-06 8.10E-05 NUP214
SRSF5, SLBP, NUP93, EIF4A3, SRRM1, 

RNPS1, U2AF2, NUP62

GO:0008134
transcription 
factor binding

3.238203 3.30E-06 3.30E-06
DDIT3, 
GTF2B, 
HMGB2

PARP1, GATA2, HDAC1, SMARCA4, SRF, 
BRD7, MDFIC

GO:0043968
histone H2A 
acetylation

10.710978 2.50E-05 2.50E-05 TRRAP, EP400

GO:0006974
cellular response 
to DNA damage 

stimulus
3.010653 2.80E-05 2.80E-05

DDIT3, 
TRIP12, 
CBX3

ABL1, PARP1, RAD17, RPA1, HELB

Table 4: Table of converted gene symbols.

 Old Symbol Converted Symbol Change p-value

d131 BICDL1 CCDC64 -0.65054 0.0058223

206 NRDC NRD1 0.4313611 0.0094019

306 ADGRG5 GPR114 -0.487876 0.0183865

Table 5: Table of Genes without Interactions (not found in the PIN).

Gene No. GeneSymbol Logfc adj.p-val

29 MFNG -0.3848755 0.0009377

95 LOC101929243 0.3482631 0.0039567

265 S100A12 0.8084613 0.014864

273 SLC11A1 0.5612296 0.0154375

314 USP11 -0.2560524 0.0202169

315 MTMR12 -0.269036 0.0202169

316 CRLF3 -0.3244654 0.0202744

317 SYPL1 -0.2851805 0.0210506

318 JMJD8 -0.3762269 0.0212812

319 CRELD2 -0.3054072 0.0212812

320 DDOST -0.3388948 0.0213069

321 UBE2G1 -0.3992315 0.0213069

322 XYLT2 -0.3123587 0.0218339

323 WDR33 -0.3197996 0.0218339

via spliceosome
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Figure 3: Explains the visualization of enriched terms of KEEG pathway enrichment analysis.

Figure 4: It shows the protein _protein interaction network, the green nodes indicate the up regulated genes, while the red nodes indicate 
the down regulated genes. Note: ( ) Upregulated input genes, ( ) Downregulated input genes, ( ) Other.
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DISCUSSION 

PathfindeR was used to completing the enrichment analysis by 
using gene names and their p-values(which outperformed from 
a differential expression analysis on gene expression data of 
1208 clinical samples of 19948 genes of breast cancer (BRCA) 
downloaded from Pan-Cancer Atlas by R studio software, 
we achieved 3,676 DEGs) as input value to identify active 
Subnetwork in Protein-Protein Interaction Networks to perform 
the enrichment analysis for these active networks (which contains 
a list of important genes) with the GO-ALL and KEGG pathways. 
From the results of the analysis, we achieved the top pathways 
and consequently top genes that affect breast cancer disease. In 
a comparison of the results of our study with others for example 
the study of Li et al. performed GO and KEGG enrichment 
analysis to discover Hub Genes and Pathways associated with 
Triple Negative Breast Cancer (TNBC) Based on Expression 
Profiles Analysis using DAVID and KOBAS. Built on differential 
expression analysis of four TNBC datasets, a total of 134 DEGs 
were achieved. The enriched terms and pathways were related 
primarily to cell adhesion, cancer, and cellular immunity, 
according to GO and KEGG analysis. Then they build a PPI 
network, the PPI network discovered six hub genes, counting 
CD3D, CD3E, CD3G, FYN, GRAP2, and ITK [12]. But, in 
order to identify enriched terms, our study first detects active 
sub networks in a protein-protein interaction network and then 
performs enrichment analysis on the recognized sub-networks. 
Our result of analysis shows (63 and 73 as top pathways and sub 
sequentially the top genes found in each pathway on KEEG and 
GO-ALL enrichment analysis respectively), compared to their 
study we found the results of our analysis show more information 
about the interaction between the genes mentioned in Figure 4.

CONCLUSION

We identify the top pathways and genes that affect breast cancer 
using RNA-Seq gene expression profiles. Using R studio, we 
downloaded gene expression profiles from Pan Cancer Dataset. 
The data is downloaded using “Illumina HiSeq”. Outlier samples 
are removed by preprocessing the downloaded data, as defined 
by AAIC, which is the matrix of Spearman coefficients between 
samples. We appropriately calculated the expression level and 
avoided biases in the expression measurements by adding a 
normalization method to the data. The data is then filtered. 
DEGs were identified in breast cancer Gene Expression Data; 
our findings indicate that DEGs can be used to identify the 
top pathways of breast cancer. Using the differential expression 
analysis result (gene names and p-values), we used PathfindeR 
for identifying active Sub network in protein-protein interaction 
networks and complete enrichment analysis for these active 
networks with the GO-ALL and KEGG pathways. Several useful 
top pathways and top genes that are effective in breast cancer 
disease have been identified. We recommend in the future; 
further experiments will need to be done to determine if DEGs 
affect one or more DEG signaling pathways depending on their 
expression level, function, and effect.
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