

Identification of Antagonists Selective for Sigma Receptor Subtypes that are Active *In vivo*

Takato Hiranita^{*}

Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), USA

*Corresponding author: Takato Hiranita, Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR 72079-9501, USA, E-mail: takato.hiranita@fda.hhs.gov

Received date: July 07, 2016; Accepted date: July 08, 2016; Published date: July 11, 2016

Copyright: © 2016 Hiranita T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editorial

Two antagonists that are active *in vivo* and selective for the sigma receptor (σ R) subtypes, σ_1 and σ_2 , have very recently been described [1]. It is anticipated that these antagonists will contribute to the development of σ R pharmacology and medication discovery for stimulant abuse [1].

 σ Rs have been mischaracterized [2-4] and were initially thought to be opioid receptor subtypes [5]. They have been classified into two subtypes based on specific radioligand binding assays using [³H](+)pentazocine for σ₁Rs and [³H]1,3-di-*o*-tolylguanidine ([³H]DTG), in the presence of (+)-pentazocine to mask the σ₁R, for σ₂Rs [6-11] (Table 1). The σ₁R has already been cloned and is a 25-29 kDa intracellular chaperone protein composed of 223 amino acids [12-14]. In contrast, the [³H](+)-pentazocine-inaccessible σR, the σ₂R, is an 18–21 kDa protein that has not yet been cloned. Until recently, there have been no reports of antagonists that are selective for either receptor subtype or that are active *in vivo*, probably because of the lack of reliable *in vivo* assays for σR subtypes. The paper by Katz et al. [1] finally identifies antagonists selective for σR subtypes [1] that are active *in vivo*.

In this report [1] that utilized radioligand binding and drug selfadministration procedures, σR ligands that were self-administered by cocaine-experienced subjects were classified as σR agonists whereas compounds that failed to maintain self-administration responding above vehicle levels in cocaine-experienced subjects and blocked the self-administration of σR agonists were classified as antagonists. Radioligand binding assays demonstrated that 3-(2-(azepan-1yl)ethyl)-6-(3-fluoropropyl)benzo[*d*]thiazol-2(3H)-one hydrochloride (CM 304) is 567-fold more selective for σ_1 than for σ_2 receptors (Table 1). In contrast, 1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one hydrochloride (CM 398) is 331-fold more selective for σ_2 than σ 1 receptors (Table 1). Behavioral studies in rats trained to self-administer cocaine (0.32-1.0 mg/kg/injection, i.v.) were used to assess whether these two ligands could antagonize self-administration of σR agonists [1].

For example, pretreatment with the selective $\sigma_1 R$ ligand CM 304 (0.32-3.2 mg/kg, i.p.) dose-dependently decreased the maximal rate of self-administration responding and the highest dose of CM 304 flattened the inverted U-shaped dose-effect curves for selfadministration of the selective $\sigma_1 R$ agonist 2-(4-morpholinethyl)1phenylcyclohexanecarboxylate hydrochloride (PRE-084, 0.032-1.0 mg/kg/injection, i.v.). In addition, the same range of CM 304 doses also produced dose-dependent insurmountable antagonism of the selfadministration of the σ 1R agonist (+)-pentazocine (0.032-1.0 mg/kg/ injection, i.v.) as well as the non-selective $\sigma_{1/2}R$ agonist DTG (0.1-3.2 mg/kg/injection, i.v.). In contrast, pre-treatment with the selective $\sigma_2 R$ ligand CM 398 (up to 3.2 mg/kg, i.p.) was without effects on selfadministration of PRE-084 or (+)-pentazocine. However, CM 304 (0.1-1.0 mg/kg, i.p.) dose-dependently produced insurmountable antagonism of DTG self-administration. Thus, the σ_1 R-selective CM 304 blocked self-administration of all three σR agonists. However, selfadministration of the non-selective $\sigma_{1/2}R$ agonist DTG only was sensitive to the σ_2 R-selective CM 398.

In summary, antagonists selective for σR subtypes have been identified. These antagonists will be useful as experimental tools for studies of σR pharmacology. For example, using CM 304 as a selective $\sigma 1R$ antagonist, it has been demonstrated that $\sigma 1Rs$ are potential treatment targets for stimulant abuse [1]. Further, reports have implicated $\sigma 1Rs$ in various biological functions and drugs acting at these receptors have been studied for their therapeutic effects in cancer, HIV infection, psychiatric disorders, and substance abuse [2-4,15]. Thus, the use of these newly-identified, selective and biologically active ligands will contribute to the understanding of σR -related disorders.

Compound	σ ₁ R ([³ H](+)-pentazocine)	$\sigma_2 R$ ([3H]DTG in the presence of (+)-pentazocine)	σ ₂ / σ ₁
CM 304 [1]	0.684 (0.552-0.847)	388 (215-702)	567
CM 398 [1]	1,490 (1,200-1,860)	4.50 (2.78-7.27)	0.00302
DTG [11]	57.4 (49.3-66.7)	21.9* (14.8-32.4)	0.382
(+)-Pentazocine [9]	4.59* (4.26-4.97)	224 (195-257)	48.8
PRE-084 [11]	53.2 (44.8-63.2)	32,100 (23,100-44,700)	603

Table 1: Affinities of various compounds for binding to σ_1 or σ_2 receptors, as well as subtype selectivity (ratio of σ_2/σ_1 binding). The values listed are Ki values (nM) with 95% confidence limits in parentheses.

Acknowledgment

The present work was supported by the Division of Neurotoxicology/NCTR/U.S. FDA. The information in the present article is not a formal dissemination of information by the FDA and does not represent agency position or policy. The author thanks Dr. Merle G. Paule for comments on the preparation of the manuscript.

References

- Katz JL, Hiranita T, Kopajtic TA, Rice KC, Mesangeau C, et al. (2016) Blockade of Cocaine or Sigma Receptor Agonist Self-Administration by Subtype- Selective Sigma Receptor Antagonists. J Pharmacol Exp Ther 358: 109-124.
- Katz JL, Su TP, Hiranita T, Hayashi T, Tanda G, et al. (2011) A Role for Sigma Receptors in Stimulant Self Administration and Addiction. Pharmaceuticals (Basel) 4: 880-914.
- Katz JL, Hong WC, Hiranita T, Su TP (2016) A role for sigma receptors in stimulant self-administration and addiction. Behav Pharmacol 27: 100-115.
- Hiranita T (2016) Identification of the Sigma-2 Receptor: Distinct from the Progesterone Receptor Membrane Component 1 (PGRMC1). J Alcohol Drug Depend 4: e130.
- Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197: 517-532.
- Hellewell SB, Bruce A, Feinstein G, Orringer J, Williams W, et al. (1994) Rat liver and kidney contain high densities of sigma 1 and sigma 2 receptors: characterization by ligand binding and photoaffinity labeling. Eur J Pharmacol 268: 9-18.

- 7. Hiranita T, Soto PL, Kohut SJ, Kopajtic T, Cao J, et al. (2011) Decreases in cocaine self-administration with dual inhibition of the dopamine transporter and sigma receptors. J Pharmacol Exp Ther 339: 662-677.
- Hiranita T, Mereu M, Soto PL, Tanda G, Katz JL, et al. (2013) Selfadministration of cocaine induces dopamine-independent selfadministration of sigma agonists. Neuropsychopharmacology 38: 605-615.
- 9. Hiranita T, Soto PL, Tanda G, Kopajtic TA, Katz JL (2013) Stimulants as specific inducers of dopamine-independent sigma agonist self-administration in rats. J Pharmacol Exp Ther 347: 20-29.
- Hiranita T, Wilkinson DS, Hong WC, Zou MF, Kopajtic TA, et al. (2014) 2isoxazol-3-phenyltropane derivatives of cocaine: molecular and atypical system effects at the dopamine transporter. J Pharmacol Exp Ther 349: 297-309.
- Garcés-Ramírez L, Green JL, Hiranita T, Kopajtic TA, Mereu M, et al. (2011) Sigma receptor agonists: Receptor binding and effects on mesolimbic dopamine neurotransmission assessed by microdialysis in rats. Biol Psychiatry 69: 208-217.
- Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, et al. (1996) Purification, molecular cloning, and expression of the mammalian sigmalbinding site. Proc Natl Acad Sci USA 93: 8072-8077.
- Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ERmitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131: 596-610.
- 14. Chu UB, Mavlyutov TA, Chu ML, Yang H, Schulman A, et al. (2015) The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes. EBioMedicine 2: 1806-1813.
- 15. Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124: 195-206.

Page 2 of 2