
Review Article Open Access

Arancio et al., J Genet Syndr Gene Ther 2014, 6:1 
DOI: 10.4172/2157-7412.1000256

Volume 6 • Issue 1 • 1000256
J Genet Syndr Gene Ther
ISSN: 2157-7412 JGSGT, an open access journal 

Keywords: HGPS; Hutchinson-Gilford Progeria Syndrome;
Progeria; LMNA; Lamin-A; Progerin; CRISPR; CRISPR/Cas; CRISPR/
Cas9; Cas9; Gene therapy; Adenovirus; Adenoviral vectors

Hutchinson Gilford Progeria Syndrome
Progeroid syndromes are monogenic systemic diseases where 

affected individuals show phenotypes and clinical conditions associated 
with ageing at a younger age than expected. 

Hutchinson-Gilford Progeria Syndrome (HGPS) is a very rare 
disease, reported to occur in 1 in 8 million newborns. Less than 
150 cases have been reported in the scientific literature since the 
condition was first described [1]. At cellular and molecular level, 
HGPS is characterized by severe alterations of the nuclear architecture, 
chromatin organization, epigenetics and regulation of transcription. 
Interestingly, the changes observed in HGPS are often similar to those 
observed in the very old [1,2].

HGPS children typically look normal at birth and in early 
infancy, but then they “fail to thrive”. They develop a typical facial 
appearance with complete alopecia, aged-looking skin together with 
joint abnormalities and lipodistrophy. The intellectual and motor skill 
developments are normal.

A severe arteriosclerosis usually begins since childhood. The risk 
of having a heart attack or stroke is high and the condition usually 
worsens over time. HGPS children typically die of heart disease at an 
average age of 13 years [1,2]. 

HGPS is caused by a de novo autosomal dominant synonymous 
G608G (nucleotide C1824T) mutation within exon 11 of the LMNA 
gene. This mutation activates a cryptic splicing site that leads to the 
production of progerin protein instead of canonical lamin-A. Progerin 
differs from lamin-A because it lacks 50 aminoacids and because it 
becomes constitutively farnesylated and anchored into the inner nuclear 
membrane [3]. In detail, during the canonical maturation of pre-
lamin-A, the CaaX motif on its C-terminus is farnesylated on cysteine, 

the last 3 amino acids are lost, and pre-lamin-A is anchored into the inner 
nuclear membrane. In a second time, the metallopeptidase Zmpste24 
cleaves the last 18 amino acids to produce the mature, unfarnesylated 
lamin-A. In progerin, the Zmpste24 cleavage site is lost, so progerin tail 
cannot be removed, it remains constitutively farnesylated and anchored 
into the inner nuclear membrane, and it becomes the causative agent 
of HGPS [1-4]. In fact, a mouse model where the activity of mouse 
orthologue of Zmpste24 is impaired is currently used as model of 
HGPS and actually this mouse model recapitulates many aspects of 
human HGPS [5].

Within the nucleus, lamins can directly and indirectly bind to 
chromatin. Lamin-associated regions tend to be heterochromatic and 
transcriptionally silent [4]. In fact, HGPS causes severe global epigenetic 
alterations that resemble those that occur in elderly specimens. Histone-
covalent modifications, histone variants, DNA methylation, chromatin 
remodelers, chromatin architecture and miRNAs are all altered in 
HGPS [6-8]. Interestingly, the alteration of the nuclear architecture is so 
severe that it can be cytologically seen by the typical nuclear lobulation 
or blebbing [2,3]. Moreover, in HGPS mitochondrial dysfunction [9], 
altered cell-cycle regulation [10], impaired DNA repair mechanisms 
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Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare human genetic disease caused by mutations in the 

LMNA gene. LMNA codes for structural components of the nuclear lamina. Alterations of nuclear lamina lead to 
a very variable class of diseases known as laminopathies. In detail, HGPS manifests a severe premature ageing 
phenotype due to the accumulation of a dominant negative form of lamin-A called progerin. With current treatments, 
the life expectancy of HGPS patients does not exceed their second decade. Death is usually due to cardiovascular 
complications. 

Recently, a new technology for mammals in vivo gene editing has been developed: the clustered regularly 
interspaced short palindromic repeats/Cas protein (CRISPR/Cas) system. The CRISPR/Cas technology permits 
to edit the genome at specific loci. Even if the CRSIPR/Cas constructs are transiently administered to the target 
cells, the genome editing is permanent. The advantages of the combination of non-integrating transient vectors in 
combination with the CRISPR/Cas constructs could give rise to a secure approach for the treatment of disease of 
genetic origin, especially those caused by dominant negative mutations, such as HGPS.

A potential application of non-integrating transient vectors carrying CRISPR/Cas constructs for the treatment of 
HGPS will be discussed in detail.
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[1,4], telomere dysfunctions [11], and quicker cellular senescence [11] 
have been reported [8,11].

The major difference between HGPS and physiological ageing is the 
occurrence of cancer; in fact, in HGPS patients, cancer transformation 
is a very rare event [12].

Current Therapies
To date, no effective therapy is available for HGPS. The 

cardiovascular conditions are carefully monitored and the use of low-
dose aspirin is a usually recommended medication [1]. 

The use of Farnesyl Transferase Inhibitors (FTIs), such as the 
lonafarnib, showed some limited improvement in the conditions of 
the patients [13]. Several pharmacological approaches are tried to 
ameliorate specific conditions [1] (e.g. the zoledronic acid used to 
increase bone mineral density). 

Up to date, the only treatment that has the aim to revert the 
causative agent of HGPS is the FTIs treatment that tries to reduce the 
amount of farnesylated progerin. Unluckily, FTIs treatments showed 
only modest results [13]. 

In order to find an effective treatment for HGPS the possibility 
of using gene therapy is currently taken into account. The use of the 
CRISPR/Cas gene editing system delivered by non-integrating viral 
vectors might be an interesting approach for the genetic therapy of 
HGPS.

CRISPR/Cas System
CRISPR/Cas system was discovered as acquired immune system 

in bacteria and archaea [14]. In bacteria, CRISPR/Cas system degrades 
non-self DNA via a RNA-guided DNA cleavage. 3 types of CRISPR-Cas 
systems have been isolated [15]. One of those, the type II CRISPR/Cas 
system has been transformed into a high efficient and sequence-specific 
genome-editing tool [16]. 

In bacteria, Type II CRISPR involves a CRISPR RNA (crRNA), 
a trans-activating CRISPR RNA (tracrRNA), and the Cas9 protein. 
Portions of the DNA of the invading agent, usually a virus, are inserted 
within the bacterial genomic CRISPR loci. Those sequences are 
transcribed into specific crRNA. crRNAs determine the target DNA 
sequence that will be manipulated by the CRISPR/Cas system. The 
universal tracrRNA together with the sequence specific crRNA guide 
the Cas9 double-stranded DNA endonuclease to cleave specific DNA 
sequences. Cas9 activity generates double strand breaks (DSBs) [14,15].

During the efforts to use the CRISPR/Cas system in genetic 
engineering, the system has been simplified. Now, it is routinely used 
a chimeric guide RNA (gRNA) consisting of a fusion of crRNA and 
tracrRNA. A sequence specific gRNA can efficiently guide the Cas9 
system to generate DSBs within the desired sequence with high 
efficiency and specificity [16-18].

The CRISPR/Cas system can be used in many ways. The two most 
used applications are the gene disruption creating either an indel 
(small insertions/deletions) within the gene of interest or sequence 
specific gene editing [16,17]. The changes introduced by these uses of 
the CRISPR/Cas system are permanent. Several modified CRISPR/Cas 
systems have been developed to increase the specificity of the DSBs to 
minimize the risk of off-target cuts [16-18].

Indels
The DSB is repaired usually by the Non-Homologous End Joining 

(NHEJ) DNA repair pathway. During NHEJ repair, InDels may occur. 
One or two nucleotides indels alter the Open Reading Frame (ORF). 
That usually leads to an early truncation of the protein downstream of 
the DSB site [16-18]. It is worth to note that an early truncation near the 
C-ter of the progerin should lead to a protein that cannot be farnesylated 
that highly resemble a mature non-pathogenic wild type lamin-A.

Gene editing
Alternatively, the CRISPR/Cas system can also be used to specifically 

edit the target sequence. When a DNA sequence with a high degree of 
homology to the sequence immediately upstream and downstream of 
the DSB is present, the Homology Directed Repair (HDR) mechanism 
can be used instead of NHEJ repair. In the presence of a suitable 
template, HDR can faithfully introduce specific nucleotide changes at 
the DSB site. The donor DNA template can be transfected into the cell 
together with the gRNA/Cas9 or can be present within the genomic 
DNA [16-18]. It is worth to note that the wild type LMNA allele can be 
used as donor DNA in the case of a DSB that specifically occurs within 
the progerin-coding gene, even if the frequency of HDR correction 
might be too low in absence of a co-transfected donor template.

Vector Selection for Gene Therapy
Gene therapy aims to manipulate the genome as ultimate treatment 

for various disorders. Gene therapy applied to patients who suffer 
from genetic disorders aims to revert their phenotype to wild type 
[19]. Traditional gene therapy tried to introduce one transgene to 
compensate for a loss of function [19]. 

A critical step in this process is to find an efficient transduction 
technique to be used in human cells. Viral vectors have showed great 
potentiality for their use in gene therapy. Viral vectors have been 
engineered to be not-pathogenic defective viruses to increase their 
safety and capacity. They are now tailored to their specific applications 
and far away from their pathogenic wild type counterpart [19]. Viral 
vectors con be roughly divided into two subgroups: integrating and 
not-integrating viral vectors [19-21].

Integrating vectors
Lentiviral derived vectors represent a typical example of integrating 

viral vectors. These vectors have the capacity of integrating their 
retrotranscribed genome within the host genome with the advantage 
of a permanent and heritable change and transgene expression. The 
drawback of this system is that the viral genome is inserted at a random 
position and it can perturb the function of cellular genes and thus 
promote the development of cancer [20]. 

Non integrating vectors
A typical example of non-integrating vectors is represented by 

Adenoviral derived vectors. These vectors carry their genetic material 
in the form of double-stranded DNA that is not incorporated into the 
host genome. Adenoviral vectors oncogenicity is virtually non-existent, 
but they have the drawback to induce only transient expression of the 
transgenes within the host cells [21], and the drawback to have the 
ability to induce immune responses [21]. A promising class of non 
integrating vectors are represented by the Adeno-associated virus 
derived vectors, that cause a very mild immune response, possess a 
wide cell host spectrum but they have the drawback that rarely exert 
a random integration in the host genome [22,23]. Nevertheless, they 
showed good promise in therapy [24]. Engineered non-integrating 
lentiviral vectors share many promises and drawbacks of Adeno-
associated virus derived vectors [25].
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Why Use Adenoviral Vectors Carrying CRISPR/Cas 
Constructs for the Treatment of HGPS

The use of adenoviral-derived vectors carrying CRISPR/Cas 
constructs permits to overcome the limitation of classical gene therapy. 
This approach has given the first positive results [26-30] and, in authors’ 
opinion, their numbers will rise quickly. The adenoviral derived 
vectors don’t integrate within the host genome, so the possibilities that 
they can induce cancer transformation is remote [21]. Their major 
drawback is that they can only exert their functions transiently. The 
CRISPR/Cas system overcames this problem. In fact, the transiently 
derived CRISPR/Cas system can permanently modify the genome at 
the required loci [16]. Then, during the cell divisions, the adenoviral 
vectors and construct will be lost, but the genome modification will 
be retained. The combination of those two technologies transforms a 
transient expression of the CRISPR/Cas constructs into a permanent 
genome editing. 

The use of this technology seems particularly suited for the 
treatment of genetic diseases caused by a dominant negative mutation, 
such in the case of HGPS. In detail, specific genome editing in the 
mutated locus can activate either NHEJ repair system [16-18], that 
will lead the production of a truncated form of progerin that highly 
resemble the wild type unfarnesylated mature lamin-A [1], or the HDR 
repair system [16-18] using either the wild type allele as donor template 
or a co-transfected donor plasmid, that will lead to the production 
of wild type lamin-A. Whatever it will be the case, the change will be 
permanent, and it will be inherited by the daughter cells through the 
entire lineage. The first evidences of the adenoviral-based CRISPR/
Cas treatment in mammals are very promising [26,27], and they seem 
to assure a high efficiency of genome editing with very few off-target 
events. 

It is worth to note that an adenoviral approach to treat HGPS has 
been previously investigated. Induced pluripotent stem cells derived 
from patients have been engineered via adenoviral vectors to induce 
a homologous recombination-based gene correction [31]. Even if the 
approach described there does not make use of CRISPR/Cas technology, 
it gives the proof of principle that adenoviral vectors are a feasible tool 
to treat HGPS. Moreover, the authors showed that the same approach 
might be used to engineer mesenchymal stem cells (MSCs), addressing 
the major concern to define the ideal cellular targets for genetic 
correction.  In fact, at least two different strategies might be exploited. 
In HGPS patients, given the hereditary genetic origin of the syndrome, 
all cells of the affected individuals are involved, with the notable 
exception of the nervous system thanks probably to an epigenetic 
phenomenon [8,32]. By this perspective, targeting and correcting 
progenitor stem cells might hopefully repopulate differentiating cell 
lineages with corrected cells thus leading to the development of healthy 
tissues. Even if that could be an ideal strategy, it is difficult to be realized 
in vivo. An ex vivo approach using autologous MSCs reprogramming 
and transplantation might be a good compromise; in fact MSCs are easy 
to collect [33], MSCs derived tissues are specifically damaged in HGPS 
[1], the stem cells homing effect might help to colonize and populate 
damaged tissues [34] and this approach has given promising results in 
the past [31,35]. 

As mentioned before, heart disease is the major cause of death in 
HGPS patients. A second strategy worth to exploit is to specifically 
target cardiac and blood vessels for correction. Interestingly, an 
engineered adenoviral vector that enables multi-organ vascular 
endothelial targeting in vivo has been recently reported [36].

It is worth to note that the cells with their genome edited to 
resemble the wild type condition, might compete with the cells that 
retain the HGPS mutation, and by competition and selection they 
might gain a selective advantage in colonizing the different body part 
[37], magnifying in vivo the effect of the treatment.

Conclusions
HGPS is a rare condition caused by a dominant negative mutation 

in the LMNA gene that leads to the accumulation of a mutated form 
of the nuclear lamin-A called progerin. Recent innovations in genetic 
engineering techniques have lead to the production and refining 
of the CRISPR/Cas tool for genomic editing. This tool shows great 
potentiality for its use in gene therapy. In fact, it permits to manipulate 
the site of pathogenic mutations using transient viral vectors such as the 
adenoviral-derived vectors or other non-integrating vectors. The great 
advantage is that even if the vector cannot integrate within the host, 
the constructs can permanently manipulate the genome, adding to the 
safety of the vector, the possibility to introduce permanent and site-
specific genomic modifications. 

Specifically, due to the peculiar nature of the HGPS causative 
negative dominant mutation within the C-terminus coding region, 
this approach might lead to the reversion to a wild type phenotype 
independently from the repair mechanism activated by the introduction 
of the DSB, either NHEJ or HDR.  It is worth to note that the same 
approach might be taken into account for the treatment of other genetic 
diseases caused by dominant negative mutations, for which the delivery 
of specifically tailored CRISPR/Cas constructs by non-integrating 
vectors might prove to be an efficient therapeutic strategy.
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