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Introduction
Radon (222Rn) is a naturally occurring radioactive gas generated 

by the decay of the naturally occurring 238U series [1,2]. Radon is 
directly produced by the decay of radium (226Ra) which is present in 
soil, rocks, building materials, underground and surface waters [1,3]. 
After generation it may dissolve in soil's pores and fluid. Thereafter, 
it migrates near or far through diffusion or convection and dilutes 
in atmosphere, surface and groundwater. Radon also dilutes into the 
atmosphere through release from its aqueous phase [1].

Radon and its progeny are the most significant natural sources 
of radiation exposure to the general population [3] contributing to 
about half of the total effective dose delivered to humans from all 
sources of ionizing radiation. The exposure is mainly delivered in 
domestic environments since the largest period of human lifetime is 
spent indoors. Therefore, the measurement and limitation of radon 
concentration of buildings are important [4].

Moreover, radon has been considered as an additional factor 
of radiation burden in stomach mainly due to water consumption 
[5,6]. Various organizations such as WHO, US-EPA and UNSCEAR 
[3,5,7] refer to this additional burden which can be estimated by 
measurements of radon concentrations in waters. Regarding Europe 
the maximum concentration values for radon are proposed by the 
European Commission [8]. Human exposure to high concentrations of 
radon and progeny has been correlated to lung cancer incidence [9,10]. 
For this reason, radon is considered to be a natural carcinogen of great 
importance.

The typical radon concentrations outdoors are low [3]. However, 
indoor radon may accumulate at significant levels. Radon accumulation 
depends on the radioactive properties of the underlying soil and rock, 
the building structure and the various ways of indoor ventilation and 
heating [1,3]. Radon in water contributes as well [11,12] and sometimes 
significantly [13].
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During the last few years, several radon time-series were collected 
from Greek apartment dwellings. The aim of this work was to estimate 
Hurst exponents (H) of some of these radon time-series. One hundred 
twenty five radon signals were collected with Alpha Guard Pro 
and included, at least, one day active measurements in ten minutes 
cycles. Hurst exponents were calculated by the Rescaled Range (R/S) 
method. The scope was to identify whether indoor radon is governed 
by long-memory dynamics namely if persistent, anti-persistent traces 
can be identified or if the behavior is random, viz. the signals were 
uncorrelated. R/S method was applied through sliding on overlapping 
windows and lumping on non-overlapping sequential windows.

Materials and Methods
Hurst exponent

Hurst exponent (H) is a mathematical quantity which can detect 
long-range dependencies in time-series [14,15]. It can estimate the 
temporal smoothness of time-series and can search if the related 
phenomenon is a temporal fractal [16]. Hurst exponent was 
conceptualized for hydrology [14,15]. It has been employed however 
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Abstract
Radon and progeny (218Po, 214Pb, 214Bi and 214Po) are important indoor radioactive air pollutants with impact to 

humans. Radon is an inert gas that enters buildings from outdoor air, water and soil, especially via gaps around 
pipes and cables and through cracks in floors. Indoors, radon progeny remain free, or attach to indoor aerosols dust 
and water droplets. Hence, inhalable indoor radioactive mixtures are created which enter human lungs and irradiate 
tissues. The radiation exposure depends on several parameters some of which are the building characteristics, local 
geology, breathing rate and others.

This work aimed to estimate Hurst exponents (H) of time-evolving radon signals of Greek apartment dwellings. 
The signals were collected with Alpha Guard Pro and include at least 24 hours of measurements in each dwelling. 
Hurst exponents were calculated by the R/S method through sliding on overlapping windows and lumping on non-
overlapping sequential windows. The scope was to identify whether radon dynamics are governed by persistent, anti-
persistent behavior or if these are uncorrelated.

Most signals presented significant long-memory segments with important persistent sub- segments.
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large sliding windows (Figure1b) produced finer-less deviating Hurst 
exponents which were well concentrated around high H- bands. It is 
very important that all H - values of Figure1b were well above 0.9. It 
may be recalled that H - values between 0.5 < H < 1 manifest long-
term positive autocorrelation in time-series. This means that high 
present values will be followed, on the most part, by high future values 
(persistency) while this tendency will last for numerous future time-
periods [24-28]. Therefore, the analysis of Figure1b indicates strong-
persistent behaviour. Nevertheless, both the analysis of Figure1a 
(sliding windows) and the one of Figure1c indicate also the persistency 
of the signal'. Indeed, most of the H- values were above 0.7, viz., they 
were persistent. It is also very significant that almost all values of the 
Spearman’s correlation coefficients were successive (r2 > 0.95), namely 
they corresponded to a very linear log-log R/S fit.

Figure 2 presents a typical case of radon concentrations often 
observed in Greek apartment dwellings [29,30]. Measurements in 
this dwelling (D2) spanned approximately four days. Recorded radon 
concentrations ranged between 10 Bqm-3 and 100 Bqm-3. As in Figure 
1, most segments exhibited Hurst exponents between 0.5 and 1 with 
successive square Spearman’s correlation coefficient values above 
0.98. This fact indicates that these radon time-series are persistent as 
well. The H - profiles however, deviate more compared to those of 
Figure 1. Despite this, only few H - values are below 0.5. The majority 
of segments are associated with Hurst exponents above 0.7. It is 
noticeable that in both Figures, the H - profiles do not follow those of 
radon concentration. Most importantly, this is observable in all sub-
Figures, namely the tendency is independent of the selection of the 
window size. These observations provide strong indications regarding 
strong long-memory underlying dynamics which govern and drive 
the radon generating system. It is also interesting that larger size of 
sliding windows, produce also less deviating H - values, as in Figure1b. 
It should be noted however that the analysis should not exceed certain 
window sizes. For example, the 32 bin window size corresponds to 
320 min (32x10min) analysis time. This is the power two window 
size closest to five hours. Larger windows would render analysis of 
larger time-windows and this will tend to smooth the H - values near 
large-deviating signal areas, such as peaks and downturns. It should 
be noted as well, that lumping generates H - histograms rather than 
H - profiles. For certain types of long-memory analysis, lumping is 
considered favorable [28,29,31] mainly because lumping renders 
to non-overlapping signal's areas. This fact is advantageous for low-
deviating segments of the time-series.

Two more interesting results (dwellings D3 and D4) are shown in Figure 
3. All Figures correspond to sliding window R/S analysis of window 
size 32 and window step 1. Hurst exponent profiles of both sub-Figures 
show analogous patterns which are similar to those of Figures 1b and 
2b under identical conditions (window size 32, window step 1). These 
Figures provide further evidence of the underlying long-memory radon 
dynamics. Once again, the profiles of Hurst exponents are different 
from those of the variation of radon concentration. This is of extreme 
importance, especially if it is considered that radon concentration 
variations are affected by various factors and, most importantly, in a 
multivariate manner [32]. Radon concentrations of Figure3 are below 
the EU upper action limit for radon concentration, viz. below 400 Bq.m-3. 
Both radon profiles are also typical for Greek apartment dwellings [30]. 
Figure 4 presents collectively the results from the R/S analysis of all 
investigated dwellings. Hurst exponents were calculated through 
sliding window analysis of window size 8 (Figure 4a), 16 (Figure 4b) 
and 32 (Figure 4c). As aforementioned, larger size of sliding windows 
produces less-deviating Hurst exponents. It is important that for all 

in other research topics as well, for example, traffic traces [17], plasma 
turbulence [18], ULF geomagnetic fields [19,20], climatic dynamics 
[21], pre-epileptic seizures [16], astronomy and astrophysics [22] and 
economy [23]. H-values between 0.5 < H < 1 manifest long-term positive 
autocorrelation in time-series. This means that a high present value will 
be, possibly, followed by a high future value and this tendency will last 
for long future time-periods (persistency) [24-27]. H - values between 
0 < H < 0.5 indicate time- series with long-term switching between high 
and low values. Namely, a high present value will be, possibly, followed 
by a low future value, whereas the next future value will be high and 
this switching will last long into the future (antipersistency) [24-27]. H 
= 0.5 implies completely uncorrelated time-series.

Rescaled Range Analysis (R/S)

Hurst exponents were estimated through the method of Rescaled 
Range (R/S) [16] or as frequently referred, R/S analysis. The R/S 
analysis was introduced by Hurst [14] and attempts to find patterns 
that might repeat in the future. The method employs two variables, 
the range, R and the standard deviation, S, of the data. According to 
the R/S method, a natural record in time, X(N) = x(1), x(2),.., x(N), 
is transformed into a new variable y(n,N) in a certain time period 
N(N=1,2,…,N) from the average, ( )nx

N
=x

N

=i
N ∑

1

1 , over a period of N time 
units [14]. y(n,N) is called accumulated departure of the natural record 
in time [14]. The transformation follows the formula: 

 ( ) ( )( )∑ −
n

=i
N

xix=Nn,y
1

                                                                     (1) 

The rescaled range is calculated from (2) [14,16,28] :

 
( )
( )nS
nR=SR /                                                                                        (2) 

The range R(n) in (2) is defined as the distance between the 
minimum and maximum value of y(n,N) by :
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The standard deviation S(n) in (2) is calculated by :

 ( ) ( )( )21
N

xnx
N

=nS −
                                                                          (4)

R/S is expected to show a power-law dependence on the bin size n 

 ( )
( )

HnC=
nS
nR

⋅  (5)

where H is the Hurst exponent and C is a proportionality constant. 

The log transformation of the last equation is a linear relation (6),

 ( )
( ) ( ) ( )nH+c=
nS
nR logloglog ⋅






                                                                 (6) 

from which exponent H can be estimated as the slope of the best 
line fit.

Results
Figure 1 represents a noteworthy case of indoor radon time-

series which evolved within approximately two days (47 hours). 
The corresponding dwelling (D1) was a basement apartment in 
Athens region. Radon accumulated continuously up to 8kBqm-3 
and then decreased down to approximately 3kBqm-3. The recorded 
concentrations were extremely high and considerably above the 
upper limit of 400 Bqm-3 recommended by EU [8]. Three different 
conditions were applied for the R/S analysis of this dwelling; namely 
sliding window analysis of length 8 (Figure1a) and 32 (Figure1b) 
and lumping analysis of length 32 (Figure1c). It can be observed that 
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(a)

(b)

(c)

Figure 1: Flow chart depicting steps involved in MD simulation of a protein.
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(a)

(b)

(c)
Figure 1: Radon concentration and Hurst exponent evolution in dwelling D1. In all Figureures, the top sub-Figureure is the evolution of radon concentration, the middle 
sub-Figureure is the evolution of Hurst exponent and the bottom sub-Figureure is the evolution of the square of the linear correlation coefficient. R/S analysis: (a) sliding-
window of length 8, step 1; (b) sliding-window of length 32, step 1; (c) lumping of  window-length 32.

(a)

(b)

(c)
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(a)

(b)

(c)

Figure 2: Radon concentrations and Hurst exponent evolution in dwelling D2. In all Figures, the top sub-Figure is the evolution of radon concentration, the middle sub-
Figure is the evolution of Hurst exponent and the bottom sub-Figure is the evolution of the square of the linear correlation coefficient. R/S analysis: (a) sliding-window of 
length 8,step 1; (b) sliding-window of length 32,step 1; (c) lumping of  window-length 32.
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(a)

(b)
Figure 3: Radon concentrations and Hurst exponent evolution in dwellings D3 (a) and D4 (b). In all Figures, the top sub-Figure is the evolution of radon concentration, 
the middle sub-Figure is the evolution of Hurst exponent and the bottom sub-Figure is the evolution of the square of the linear correlation coefficient. R/S analysis of 
sliding-window of length 32.
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(a)

(b)

(c)
Figure 4: Box-whisker plots of Hurst exponent evolution outcomes in all investigated dwellings. Sliding-window R/S of step 1 and window-size (a) 8; (b) 16; (c) 32. The 
horizontal axis shows an identification number for each investigated dwelling.

window sizes, the main percentage of each box-whisker plot is within 
the region of persistency, i.e. H - values above 0.5. From another 
perspective, this implies that the majority of Hurst exponents indicate 
persistency, either with window size 8, 16 or 32. It is more important, 
that a vast number of segments exhibited H - values above 0.7 or even 

0.8. These segments indicate strong persistency of the corresponding 
parts of the radon concentration signal. Note, however, that when 
small window sizes are employed in R/S analysis (size 8 or 16), some 
antipersistent areas of the signals are identified. As already implied, 
a window size of 8 corresponds only to 80 minutes of time-series of 
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indoor radon concentrations. This time duration is small enough 
to be biased by the several radon affecting factors. In this sense, the 
corresponding results just outline the signals' tendency in presenting 
persistent long-memory. They cannot evoke, in this consensus, 
emergence of any existing long-memory dynamics. These dynamics are 
emerged by the larger window size of 32. As also mentioned, this size 
is a good compromise between bias due to factors and smoothing due 
to radon peaking or downturn. It should be mentioned though that the 
32-sample window-size rendered inconsistencies in some calculated
Hurst exponents in twenty five radon time-series. For this reason,
these series were excluded from the box-whisker plots of Figure3c.
Conclusion 

Several dwellings were accessed and their indoor radon 
concentrations were measured with active techniques. Time-series 
of at-least one day duration were employed in this study. Utilizing 
R/S analysis through sliding window and lumping, numerous Hurst 
exponents were calculated for each useful time-series. The majority of 
exponents were found to be in the range of 0.5 < H < 1 for the majority 
of the situations. This finding indicated persistency. Several exponents 
were above 0.8, namely the corresponding time-series parts were very 
persistent. In almost all cases it was found that indoor-radon dynamics 
are governed by chaos and long-memory.
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