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How Protein Adsorption Shapes the Biological Identity of NPs — Where do

we Stand?
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The still growing use of nanoparticles (NPs) and nanomaterials in
scientific and commercial applications leads to an increasing release
and accumulation of NPs in the environment. An additional source of
human exposure to NPs is the development of NP based formulations
for drug-delivery and diagnostic applications which is a fast growing
area of contemporary research. These, intended and unintended,
scenarios of human exposure to NPs have sparked a substantial interest
in understanding the interactions of NPs with biological systems.

A central aspect of the biological response to NPs is the adsorption of
proteins and other biomolecules onto NP surfaces and the consequences
arising from this interaction process. Wherever NPs come in contact
with biological systems, physical and chemical interactions take place
between surfaces of NPs and different biological components (Nel et al.
[1] presented an excellent discussion of the basic physical interactions
occurring at the nano-bio interface). It is now well established that,
upon NP exposure to an organism, proteins from body fluids bind to
NP surfaces [2], so living systems really encounter NPs enshrouded
with biomolecules rather than bare particles. This so-called “protein
corona” forming around the NPs largely defines the biological identity
of the NP, and the efficiency of this interaction can be a decisive factor
of the biological response of an organism to NP exposure [2-5].

The formation of the protein corona is essentially a competition of
proteins and other biomolecules for binding to the NP surface. Whilst
highly abundant proteins will likely dominate the protein corona at
early times after exposure, proteins with a lower abundance but higher
affinities might prevail on longer timescales.

The protein corona affects the colloidal behavior of the NP itself
but can also affect the proteins’ structure and function as well as the
cellular uptake of the NPs. Understanding the formation, persistence
and consequences of the protein corona is a complex task and of great
importance for the elucidation, interpretation and assessment of the
biological effects of NPs.

Role of NP Properties

The physical and chemical characteristics of NPs determine
their interactions with the surrounding medium by promoting the
adsorption of ions, proteins, natural organic materials and detergents,
particle dissolution or even by allowing the free surface energy to be
minimized by surface restructuring [1]. We now know that the surface
chemistry of NPs is a decisive factor for the binding of proteins to their
surface and the presence of polymer coatings around metallic NPs was
shown to markedly affect the protein binding affinity to the NP surface
[6,7]. Whilst typically binding affinities in a micromolar concentration
regime were found for protein adsorption onto polymer coated NPs
[3,6-9], binding onto freely accessible metal surfaces is much stronger
with usually nanomolar binding affinities [6,7,10]. This emphasizes that
the persistence of the surface functionality is an important parameter
affecting protein corona formation in the physiological context. Only
a stable molecular surface functionality on the NP surface under
physiological conditions will be able to play a significant role in shaping
the in vivo protein corona.

In addition to surface chemistry, NP size was shown to be an
influential factor for the formation and composition of the protein
corona in human serum [11]. The current absence of a reliable
molecular scale interpretation for such results further underlines
the complexity of protein corona formation and the dire need for
mechanistic explanations.

Colloidal stability of NPs was shown to be strongly affected by
the formation of a protein corona which was generally observed to
have a stabilizing effect on the colloid by proving an additional steric
stabilization [10,12]. However, the exact correlation between chemical
and physical parameters of the NPs and the effect of the protein corona
on their stability remains to be established.

A further issue that still requires attention is, if, and how different
NPs are degraded in a biological environment. Degradation may not
only remove the protein corona on the NP, it may also modify or remove
the original surface functionality, and it may finally lead to an exposure
of the NP core and even its complete dissolution. These processes can
induce toxic effects by the release of molecular species or metal ions
into the biological environment and the toxicity of degrading NPs will
generally be a combination of ionic/molecular toxicity and toxicity
aspects related to the particulate nature of the material [13].

Animproved understanding of the biological effects of NPs requires
a still more profound knowledge of the binding properties of proteins
and other molecules that associate with the NPs. It is now recognized,
how important a profound understanding of this protein corona is for
shaping the surface properties, charges, resistance to aggregation and
hydrodynamic size of NPs.

Impact on Protein

An important aspect of protein adsorption onto NP surfaces is
that structural changes of the protein may occur, giving rise to altered
protein conformations [14] that can also lead to a loss of protein
function. Structural changes in the protein upon adsorption onto the
NP surface may well lead to the exposure of novel “cryptic” peptide
epitopes, altered function and/or avidity effects [15,16]. When a
protein containing cryptic epitopes is denatured on a particle surface,
the exposure of new antigenic sites may elicit an immune response,
which, if launched against a self-protein, could promote autoimmune
diseases [1].
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Whilst protein structure seems to be retained within the corona
in many cases [3,8,9], a clear loss of protein structure has been
demonstrated for other systems [2,6,10]. First mechanistic insights into
the causes for this behavior were given, considering the involvement of
specific functional groups [7] or Coulomb type interactions between
the NP and charged patches on protein surfaces. However, many
aspects of protein unfolding at NP surfaces remain still elusive [1].

Corona Influence on Cellular Uptake

NP uptake occurs mainly via the endocytic machinery of the cell
[17]. In case of smaller NPs (~10 nm), it was shown that a critical
threshold density on the cell membrane has to be exceeded to trigger
the internalization process [18]. However, quantitative details of such
threshold densities and their dependence on NP characteristics are still
to be established.

Many studies reported effects of protein corona formation on the
cellular response to NP exposure. For example, uptake of carboxyl-
functionalized NPs by HeLa cells with adsorbed blood plasma proteins
was shown to be strongly suppressed in comparison to bare NPs [8].
Immunoglobulin binding caused NP opsonization, thereby promoting
receptor-mediated phagocytosis by macrophages [19]. Adsorbed
proteins are internalized by the cells together with the NPs and may
therefore enter cellular compartments which they would not normally
reach [15]. Pathways for intracellular transport of NPs have also been
revealed [20]. How these are affected by NP properties and by the
presence of a protein corona around their surface is an important issue,
needing close attention.

Moreover, NPs can penetrate cell membranes by processes that
do not involve any active uptake machinery of the cell. The involved
processes depend on the NPs’ physical properties including size, surface
composition, and surface charge [21-26]. While some NP types were
shown to rupture the plasma membrane, eliciting noticeable cytotoxic
effects [27,28], other studies demonstrated that NPs may enter cells
without causing membrane leakage [29]. Again, little is known about
the cause-effect relationship between NP properties and their behavior
in passive uptake.

Conclusion

Conclusively, the current state of knowledge demonstrates an
urgent need for further detailed studies of protein adsorption to NPs
on the molecular level. Most importantly, the temporal evolution from
a weakly bound (soft) corona to a more persistent (hard) corona under
physiological conditions needs a mechanistic explanation.

First correlations between NP properties and their behavior
towards proteins and cells were established, however, they now
need a mechanistic explanation to gain predictive power. Current
findings indicate the dependence of the protein corona composition
in biological fluids on NP surface properties. However, some of the
original surface properties may well be modified in the biological
environment, which illustrates the importance of the persistence of NP
surface functionalities under biological conditions.

While large gaps still exist in the understanding of the fundamental
physicochemical aspects of corona formation, even larger gaps
exist in applying this knowledge to a realistic biological situation.
The consequences of the protein corona (and its properties) on the
biological behavior of NPs are still elusive and poorly understood.

Recent years have seen substantial progress towards a better
understanding of the interactions at the bio-nano interface, although

many details remain to be explored. The importance of specific
interactions between NPs and cell surface receptors has been shown,
but the effects of physical and chemical properties of the NP surfaces
deserve further attention. The key relevance of the protein corona in
modulating cellular interactions has been recognized, but still very
little is known about the dynamics of protein adsorption onto NPs in
complex biological fluids, protein conformational changes associated
with corona formation and the ensuing effects on cellular responses.
Considering the wide variety of proteins, NPs and cell types much
work remains to be done until a more complete picture can emerge.
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