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Abstract
Using the entropy production rate method to determine the influence of glucose on a glycolysis model for HeLa 

tumor line, the greater complexity and robustness hypoglycemic phenotype was established. On the other side, 
inside the same metabolic phenotype a higher glucose concentration corresponds to a higher entropy production 
rate. It is concluded that this behavior is indicative of the directional character and stability of the dynamical behavior 
of cancer glycolysis.
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Introduction
Cancer is a generic name given to a complex interaction network of 

malignant cells that have lost their specialization and control over normal 
growth. This network could be modelled as a nonlinear dynamical 
system, self-organized in time and space, far from thermodynamic 
equilibrium, exhibiting high complexity, robustness, and adaptability 
[1]. Cancer cells, for the most part, show a high glycolytic rate and 
low pyruvate oxidation rate compared to normal cells, which brings 
with it a high consumption of glucose of the extracellular medium 
and an increase in the production of lactate, phenomenon known 
like “Warburg Effect” [2]. Increased glycolytic rate is beneficial for 
cell proliferation, as it provides the intermediates necessary for the 
synthesis of new nucleotides, lipids, amino acids and the generation 
of reducing power, all of which are necessary for cell division [3].The 
molecular mechanism behind the constitutive overexpression of aerobic 
glycolysis is not yet fully defined. Activation of oncogenes and tumor 
suppressor genes such as Ras, C-Myc, SRC and TP53 have implications 
for the regulation of aerobic glycolysis. These genes cause alterations in 
signalling pathways of growth factors and these in turn exert control 
over cellular metabolism [4]. Due to a combination of high glucose 
consumption rates by tumor cells and reduced tumor vascularization, 
the glucose concentration in the tumors can be 3 to 10 times lower than 
in normal tissues, according to the stage of its development. Therefore, 
tumor cells must develop strategies for their growth and survival in 
metabolically unfavorable environments [5]. Since the last years, cancer 
glycolysis has been a target in oncology research [6]. The significant 
increase of glycolysis rate observed in tumors has been recently verified, 
yet only a few oncologists or cancer researchers understand the full 
scope of Warburg’s work [6,7] despite of its great importance. Altered 
energy metabolism is proving to be as widespread in cancer cells as 
many of the other cancer-associated traits that have been accepted 
as hallmarks of cancer [8]. The regulation of metabolism, relevant 
to senescence process, would be a key to improve and identify new 
anti-cancer therapies in the future. The complex systems theory and 
the thermodynamics formalism in the last years have shown to be a 
theoretical framework as well as a useful tool to understand and forecast 
the evolution of the tumor growth [9-17]. The goal of this work is to 
extend the thermodynamics formalism previously developed [18-22] to 
the metabolic rate of human cancer cells. The manuscript is organized 
as follow: Firstly, a theoretical framework based on thermodynamics 
formalism, particularly the entropy production rate is presented. Then 

results and discussion are presented. Finally, some concluding remarks 
are presented.

Materials and Methods
Kinetic model of cancer glycolysis

The model used was proposed by Marin et al. [23] for the glycolytic 
network of HeLa tumor cell-lines growth under three metabolic states: 
Hypoglycemia (2.5 mM), Normoglycemia (5 mM) and Hyperglycemia 
(25 mM) during enough time to induce phenotypic change in cellular 
metabolisms. However, the growth saturation was not attained in 
this phase. Subsequently the cells were exposed to different glucose 
concentrations: 2.5 mM, 5 mM y 25 mM until they reach the stationary 
state. The entropy production rate was calculated using the glycolysis 
network model of HeLa cell lines at steady state. The modelling of the 
metabolic network was made in the biochemical network simulator 
COPASI v 4.6 (Build 32) (http://www.copasi.org). The parameters and 
concentration values used were reported by Marin et al. [23].

Thermodynamics framework

As we know from classic thermodynamics, if the constraints of 
a system are the temperature T and the pressure P, then the entropy 
production can be evaluated using

Gibbs’s free energy [24], as:
1

i TpS dG
T

δ = −                      (1)

 If the time derivative of (1) is taken, we have that:
1 Tpi dGS

dt T dt
δ

= − (2)
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 Where iS
dt
δ represents the entropy production rate iS . The term 

TpdG
dt

can be developed by means of the chain rule as a function of the 

degree of advance of the reaction ξ as:

Tp

Tp

dG G d
dt dt

ξ
ξ

 ∂
=  ∂ 

                                       (3)

Where 
Tp

G
ξ

 ∂
 ∂ 

, according to De Donder and Van Rysselberghe 

[25] represents the affinity Α with opposed sign and the term d
dt
ξ  is 

the reaction rate ξ, this value was obtained from COPASI simulation 
for each one of the 22 reactions. The reaction rate ξcan be evaluated 
according to the difference between the forward ξf and backward 
reaction rates ξb

( ) ( )
( ) ( )( ) v k v k

f b f k f b k bk c k cξ ξ ξ= − = −∏ ∏                                   (4)

Taking into account (2) and (3), we get the entropy production rate 
in cells due to chemical processes driven by affinity as:

1 1
iS A G

T T
ξ ξ= = ∆                                                                                         (5)

The variation of free energy of reaction (ΔGk) was calculated by the 
isotherm of reaction.

1
ln

n

k k n n
i

G G RT v C⊕

=

∆ = ∆ + ∑                                                         (6)

Where νn represent the stoichiometric coefficients, Cn 
concentrations of the involved biomolecules in the stationary state 
and 

kG⊕∆ the standard Gibbs free energy, which was adjusted for the 
physiological conditions: temperature T=310.15 K , ionic force I = 0.18 
M and pH = 7 [26].

To calculate the rectified standard Gibbs free energy ( kG⊕∆ ) the 
equation (7) was used.

( , , , ) ( , , , )

2

( , , , ) l
( ) I(1 ) ln10.

298,15 298,15 1 1,6 I

k T p H I n T p H I
n

H
k T p H I n H

G G

RT Z NT TG G H N RT pHθ θ α

⊕ ⊕

⊕

∆ = ∆

−
∆ = ∆ + − ∆ + −

+

∑
 (7)

where: α is the Debye-Hückel constant
1/2

1.20078 kg
mol

α  =  
 

, z 

is the specie charge, R is the universal gases constant 8.31 J/(mol.K) 
and NH is the average number of hydrogen atoms bond to the specie. 
The fundamental postulate followed was: those reactions that exhibit 
a higher value of iS  are considered fundamental ones in the process 
[27,28]. This statement could be considered as extension of the 
‘Principle of Maximum Entropy’ [29]. The entropy production rate was 
normalized in percent using as a baseline the highest value.

Substituting (6) and (4) on (5) is obtained:

( ) ln 0f
i f b

b

S R
ξ

ξ ξ
ξ

= − ≥


  



                                   (8)

In a previous work [30] we have shown that the entropy production 

rate is a Lyapunov function, in fact we extended this formalism to the 
development of cancer [31,32]. Thus we have the entropy production 
per unit time meets the necessary and sufficient conditions for 
Lyapunov function [33], therefore, it gives an evolutionary criterion 
and in addition, the global stability of the system.

We could write:

( ) 0iS f= Ω >                               (9)

Where, Ω is the vector of control parameters. The Eulerian 
derivative (4.1) must meet:

0i idS S d
dt dt

∂ Ω
= ≤
∂Ω

 

                                                    (10)

Results
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Figure 1: Total entropy production rate J/K.min. 10-3.
A. For HeLa cells in different metabolic phenotypes.
B. For HeLa cells exposed to different glucose concentrations until they reach the stationary state in each phenotype.
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The Figure 1a  shows the total entropy production rate ( iS )T obtained 
for HeLa tumor cell lines in three different metabolic phenotypes: 
hypoglycemia (2.5 mM), normoglycemia (5 mM) and hyperglycemia 
(25 mM). It is observed that the ( iS )Tfor the hypoglycemic phenotype 
(2.5 mM) is higher than the ( iS )T of others phenotypes, and the ( iS )T for 
the normoglycemic phenotype is higher than the ( iS )T of hyperglycemic 
phenotype. In addition, for the same metabolic phenotype, the cells 
exposed to higher extracellular glucose concentration (25 mM) showed 
the higher entropy production rate (see Figure 1b).

Finally, as shown in Table 1, for the transporters: GLUT and 
MCT1, and for the reactions catalyzed by the enzymes: HK, GAPDH 
and PYK, the iS markedly changed when the cells transited from 
the extracellular glucose concentration of 2.5 mM to 25 mM in each 
metabolic phenotype. It is remarkable that when GLUT and HK are 
evaluated in 25 mM they turn out to be fundamental in the three 
metabolic phenotypes, in other words, exhibited a higher value of iS .

Discussion
The highest values of entropy production rate were observed in the 

hypoglycemic phenotype, which means this phenotype exhibits higher 
robustness [20]. This can be correlated to the metabolic change induced 
in the HeLa cells lines grown in hypoglycemic conditions and its 
independence of the extracellular glucose conditions in the second face 
(2.5 mM, 5mM y 25 mM) until they reach the stationary state (Figure 
1a). The sustained decrease of the glucose availability can stimulate 
changes in the cellular phenotype. For example KRAS mutations can 
increase the GLUT1 expression and that of many genes that codify the 
enzymes of the fundamental steps of glycolysis, like HK1, HK2, PFK-1 
and LDH-A [33,34]. These changes imply an increase of glycolytic flow 
and consequently an increase of entropy production rate (Equation 
5). Even if the extracellular glucose concentration returns to normal 
values, the changes can be maintained [35]. Moreover, the entropy 
production rate increases when exposed to higher extracellular glucose 
concentration in the three phenotypes (Figure 1b). Taking the glucose 
concentration like a control parameter and replacing in the equation 
(10), we have:

0i idS S dGlc
dt Glc dt

∂
= ≤
∂

 

                       (11)

The glucose concentration decreases because is a reactant, thus we 
have dGlc/dt<0; therefore, we must have / / 0iS G c∂ ∂ > (Figure 1b). It 
is noted that the production of entropy per unit of time

iS , evaluated 
through Equation (5) is indicative of the directional character and 
stability of the dynamical behavior of cancer glycolysis. One of the 
strategies used to fight the cancer has been the abrupt decrease of 
glucose concentration in the tumor microenvironment [6]. Cancer 
cells that develop accelerated glycolysis due to activation of oncogenes 
(including Ras, Her-2 and Akt) or due to loss of tumor suppressor 
function (including TCS1/2, p53, LKB1) undergo rapid apoptosis when 
placed in culture conditions with low glucose concentrations [6]. That 
is observed in Figure 1b for the three phenotypes. Therefore, glucose 
deprivation must be carried out in a shorter time than required by 
the tumor cells to acquire a characteristic phenotype. In this case the 
hypoglycemic phenotype which, as shown in Figure 1a, exhibits a higher 
entropy production rate, consequently will have a greater robustness. 
It´s known that the glucose deprivation markedly enhances oxidative 
stress by increasing the intracellular level of ROS [36]. ROS acts as a 
signal transduction messengers and can promote the proliferation or 
cellular death of cancer cells, depending of the intra and extracellular 
condition of the antioxidant defense mechanisms.

Cancer cells subjected to persistent endogenous and exogenous 
oxidative stress were shown to develop adaptive responses, mainly 
related to the upregulation and activation of the antioxidant machinery, 
which can contribute to cancer progression through an array of 
interconnected signals, amongst them, activation of RAS oncogene [37]. 
The bigger robustness of the hypoglycemic phenotype may be related to 
the increase of levels of ROS as consequence of low extracellular glucose 
concentration, and therefore is related to the contribution of ROS to the 
development and cell proliferation. The cells grown in hypoglycemic 
conditions could be adapted to a ROS-resistant phenotype, and this could 
be maintained even if the cells were later submitted to a high glucose 
concentration. In Table 1 is observed that the reactions that show a high 

iS
 
variation in the range of 2.5 to 25 mM of glucose were GLUT, MCT1, 

HK, GAPDH y PYK. This behaviour is related to the capacity of these 
proteins to change their flow in this range, in other words, an increase 
of their reaction rate and in consequence an increase of the entropy 
production rate (Eq. 4 and 8).

The reactions GLUT and HK exhibit high values of iS
 
for the 

glucose concentrations of 25mM in the 3 phenotypes (Table 1); 
this behaviour was corroborated by the results of the studio of the 
sensibility analysis. Sensitivity analysis [38] quantitatively investigates 
the behavior of a system as a response to changes in parameter values. 
The transporter GLUT 1 performs a fundamental roll in many steps 
of cancer progression. It has been demonstrated that GLUT1 may 
regulate proteins that play a role in early tumor growth as well as in 
cancer invasiveness and metastasis [39]. Several studies demonstrate 
that hexokinase, particularly the Type II isoform (HK II), plays a 
critical role in initiating and maintaining the high glucose catabolic 
rates of rapidly growing tumors. Thus, it appears that hexokinase 
and its association with mitochondrial protein complex may play 
important roles in the essential homeostatic processes such as glucose 
metabolism and apoptosis. The inhibition of HK has significant effects 
in the metabolism and cell survival [40].

Conclusions and Remarks
Using thermodynamics formalism of irreversible processes, 

complex systems theory and systems biology we propose and quantify a 
marker able to establish, in a quantitative way, the degree of malignancy 
of a human tumor cell. For this, it is used the fact that altered energy 
metabolism is proving to be as widespread in cancer cells as many of 
the other cancer-associated traits that have been accepted as hallmarks 
of cancer [8]. Thus, we propose that the regulation of metabolism, 
relevant to senescence process, would be a key to improve and identify 
new anti-cancer therapies in the future. In summary, in this paper we 
have found that:

1- Independently of the phenotype, it is shown how the increase of 
glucose concentration conduces to an increase of the total entropy 
production rate, which is indicative of the directional character and 
stability of the dynamical behaviour of cancer glycolysis.

2- The total entropy production rate that is shown by cancer glycolysis 
in the hypoglycemic phenotype is greater than those of the others 
states. In fact, this metabolic condition exhibits more robustness.

3- Any therapy directed to deplete a tumor from glucose, has to be 
completed in less time than that required by tumor cells to develop 
the hypoglycemic phenotype. The present theoretical framework 
will hopefully provide a better understanding of cancer and 
contribute to improvements in cancer treatment.
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Recommendations
Extend this study to other tumor cell lines.
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