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It has been well established that the immune and neuroendocrine 
systems interact and communicate with each other, a relationship that 
contributes to the regulation of cell-mediated and humoral responses 
[1-4]. The effect of stress on immune responses has been noted for 
centuries; observations that psychological stress influences the body’s 
ability to respond to infection and the recovery from wounds in battle 
have been recorded throughout history. Recently, short-term stress 
has been shown to enhance immune responses whereas long-term 
stress leads to suppression. Although the mechanisms responsible for 
these observations have still not been fully elucidated data from this 
laboratory indicate that molecules produced in response to stress may 
play a major role. More surprisingly, it appears that the active moieties 
are extremely small peptides cleaved from larger neuroendocrine 
molecules.

Recently it was recognized that the neuroendocrine system and 
immune cells produce peptide hormones, which interact through 
shared ligand receptors [1,5-6]. These bidirectional molecules include 
endogenous peptide opioids, such as endorphins and enkephalins, 
which function as natural analgesics [2,7]. A lthough the enkephalins 
share amino acid homology with the endorphins and dynorphins (i.e. 
the first five amino acids of β-endorphin are identical to methionine-
enkephalin; the first five amino acids of dynorphin A are identical to 
leucine-enkephalin), these molecules are though to be derived from 
different precursors. Thus, β-endorphin and several other bioactive 
peptides including adrenocorticotropic hormone (ACTH), lipotropins 
and melanotropins are derived from pro-opiomelanocortin (POMC), 
a product of the pituitary and the hypothalamus [8,9]. The dynorphins 
are derived from prodynorphin, also a pituitary hormone [10,11]. 
The enkephalins (methionine enkephalin, Tyr-Gly-Gly-Phe-Met 
and leucine-enkephalin, Tyr-Gly-Gly-Phe-Leu), are derived from 
proenkephalin A and are thought to be synthesized at various locations 
including the adrenals [2,7,8]. It was also discovered that immune 
cells could also produce β-endorphin, dynorphins and enkephalins 
[9,12,13].

Several investigations have shown that endogenous peptide 
opioids, such as endorphins, dynorphins and enkephalins, are capable 
of modulating immune activities in vivo and in vitro [1,2,14-19]. 
Reports describing many of these immunomodulatory effects have 
been conflicting in that some show only dose-dependent suppression 
whereas others describe dose-dependent enhancement of the same 
function [20-23]. In some cases, a biphasic response was observed in 
the same system, the resultant response dependent on concentration 
- for example lower concentrations of the enkephalins enhanced while
higher concentrations suppressed the activity or function [23-32].

Data from this laboratory has demonstrated that methionine-
enkephalin (met-enkephalin, Tyr-Gly-Gly-Phe-Met [YGGFM]) 
and certain of its peptide derivatives (Tyr-Gly-Gly [YGG] and Tyr-
Gly [YG]) modulate immune responses in a biphasic manner with 
suppression at high doses and enhancement at low concentrations. 
These data showed in vivo (via delayed-type hypersensitivity responses, 
[33] and in vitro (via cytokine production, [34]) that met-enkephalin,
YGG and YG modulated immune responses in a concentration-
dependent biphasic manner without affecting the overall number
of cells. Met-enkephalin, YGG and YG modulated the production
of IFN-γ biphasically. Furthermore, at higher concentrations met-

enkephalin and YG suppressed the production of IL-2 and IL-4. The 
di- and tri-peptides showed a higher specific activity than the parent
molecule with YG being the smallest active moiety: Tyr alone did not
show activity although the terminal Tyr was required on the peptide
since GGFM [des-tyr met-enkephalin] was inactive. We initially
proposed that met-enkephalin must be cleaved to YG to be active since
we had found YG and YGG were more potent than met-enkephalin
in immune enhancement. However, we subsequently found that an
analog of met-enkephalin resistant to peptidase activity (D-Ala2,
D-Met enkephalin [DADME]) enhanced responses in our system
but did not induce suppression at any concentration. Thus, while
cleavage of YGGFM to YG may be required for induction of immune
suppression it is not required for immune enhancement. Naloxone (an
opioid receptor antagonist) only blocked the enhancing effects of met-
enkephalin and not the suppressive ones. Thus, it appears that binding
to classical opiate receptors is involved in the initiation of enhancement
by met-enkephalin while cleavage to YG and an unidentified, nonopioid
receptor may be associated with suppression.

This is consistent with negative feedback such that when the 
concentration of YG rises to sufficient levels, a suppressor mechanism 
is stimulated to down regulate immune responses. The nature of this 
suppression is yet to be elucidated. The following model/hypotheses is 
proposed to account for these observations:

• Neuroendocrine cells produce met-enkephalin (either directly
or via cleavage of β-endorphin) in response to stress. During
immune stimulation lymphoid cells also produce met-
enkephalin.

• Low concentrations of met-enkephalin enhance the immune
response possibly via modulation of an inflammatory type 1
response. This effect appears to be mediated by classical opiate
receptors (most likely δ) on T cells.

• Met-enkephalin is cleaved into YGG and YG by proteases
present in serum or via membrane-bound ectoenzymes on
cells; YGG is further cleaved to YG. At low concentrations,
YG continues to stimulate type 1 responses possibly through
unidentified, nonopioid receptors.

• As the level of YG rises, a feedback mechanism is initiated
that suppresses the immune response (cytokine-mediated/
regulatory cell-mediated?).

• The activity of YG and the other bioactive molecules is then
curtailed by cleavage of the terminal Tyr by membrane-bound
or secreted aminopeptidases.
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Because others have shown that stress stimulates the endogenous 
synthesis and release of opioid peptides our data could thus provide 
a mechanism for understanding why immune responses in highly 
stressed individuals have frequently been found to be lower than in 
their unstressed counterparts. It also explains why short-term stress 
is associated with enhanced immunity. Further understanding of how 
opioid peptides are able to modulate the immune system may provide a 
basis for monitoring the endogenous immunomodulatory parameters 
of patients, enhancing immune reactions that are suppressed (such as 
due to stress) and suppressing those that are deleterious (such as allergic 
or inflammatory responses). Additionally, these studies may identify 
a novel immunoregulatory mechanism heretofore unrecognized and 
given that the enkephalins are conserved throughout nature, it may 
represent one of the oldest means of regulating immune responses in 
phylogeny.
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