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Abstract

Fecal pollution in food and water is the major cause of disease outbreaks, so accurate identification of this fecal
pollution in these locations is critical to prevent such outbreaks. Fecal source tracking (FST) is an effective tool to
identify the sources (human vs. animal) of any particular instance of fecal pollution. Many FST technologies were
developed over the past two decades and used mainly to monitor and manage water quality, but their applications
have recently attracted more attention in food systems. With the great advances of technologies in DNA sequencing
and related bioinformatic tools, a significant number of novel genetic markers of fecal indicator bacteria (FIB) have
been identified to be associated with particular host species, and thus, suitable for FST. The host-specific genetic
markers were originally limited to 16S rDNA sequences of FIB, which are relatively conserved. Novel genetic
markers include genes of the host-bacterium interaction and intervening sequences within the 16S- and 23S-rDNA
of fecal bacteria. However, most of the genetic markers were only evaluated in laboratory settings, and their
compete values in the monitoring and management of food and water safety need further assessments in the field.

Keywords: Fecal Source Tracking (FST); Food safety; Water safety;
Fecal contamination; Monitoring; Foodborne illness; Waterborne
illness; Fecal Indicator Bacteria (FIB)

Introduction
The feces of human and food animals are the main sources of

pathogens associated with foodborne and waterborne illness
outbreaks. Not only ill people and animals can shed pathogens in their
feces; healthy animals can be reservoirs of pathogens. Cattle have been
determined to be the major reservoir for enterohemorrhagic
Escherichia coli O157:H7 [1], chicken and turkey for Salmonella spp.
and Campylobacter jejuni [2], and pig for Campylobacter coli [3].
Thus, one of the main concerns regarding the microbiological quality
of food and water is the presence of pathogens associated with human
and animal feces. It is impossible to monitor all pathogens on a routine
basis because each of these microorganisms requires a specific test
method. Therefore, fecal indicator bacteria (FIB) were introduced to
evaluate the food and water systems to assess the microbiological
quality and to predict the presence of pathogens therein [4,5].

While the presence of FIB is indicative of fecal pollution, it provides
no information about the sources of pollution. That information is
needed so that effective steps can be taken for food and water safety. To
identify fecal pollution sources, fecal source tracking (FST) or
microbial source tracking (MST) methods have been developed.
Although current FST methods are primarily used in the field of water
monitoring and management to reduce outbreaks of waterborne
diseases, it is suggested that MST methods can be applied to track fecal
pollution sources in food systems to better prevent the contamination
of food by feces-carrying pathogens [6]. The principle of FST is to
compare the characteristics of microorganisms isolated from the
polluted water with those of fecal microorganisms in host-known feces

[6,7]. The assumption of FST is that the distribution of fecal
microorganisms in human or animal intestinal tracts is not random,
i.e., some fecal microorganisms are host-specific. Obviously, the goal of
FST is to determine which fecal microorganism(s) or associated trait(s)
(i.e., phenotypic or genotypic) is/are specific to an animal species.

Over the last two decades, FST technologies have expanded greatly,
from phenotype-bases to genotype-bases, from detection of standard
FIB to alternative FIB, from differentiations of bacterial 16S-RNA
genes to other less conserved genes, and from fecal bacteria to viruses.
There have been several comprehensive review papers on FST
technologies and their application in the monitoring and management
of water quality [6-11]. This review evaluates the recent developments
in FST technologies, with an emphasis on those using host-specific
genetic markers of fecal bacteria and their application in the
management of food and water safety.

Fecal Indicator Bacteria
Historically, total and fecal coliforms, E. coli, and enterococci

bacteria were used as standard FIB in many countries to monitor the
microbiological quality of food and water. Recently, E. coli has been
proven to be a better fecal indicator bacterium than total and fecal
coliforms for fresh water, while enterococci are optimal when testing
marine water [12]. The Beaches Environmental Assessment and
Coastal Health (BEACH) Act of 2000 requires states with marine or
Great Lakes to adopt enterococci as the fecal indicator to monitor
recreational water quality [13].

However, the standard FIB (E. coli and enterococci) have at least
two drawbacks. First, they are found in relatively low numbers in
human and animal intestinal tracts (feces), resulting in low detection
sensitivity. In human and animal intestines, prokaryotes are the
dominant microbes, with approximately 1011 cells/g feces [14], but the
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phylum Proteobacteria, which contains E. coli, only represents less
than 2% of the prokaryotic populations. Second, under certain
conditions, E. coli and enterococci can survive and multiply in water
environments [15,16], beach sand, or sediments [17-20], resulting in
false alarms of fecal pollution. To circumvent the limitations of the
standard FIB, other fecal microorganisms, mainly obligate anaerobic
bacteria, have been proposed as alternative FIB, including bacteria in
Bacteroidales [21-23], Catellicoccus spp. [24], Faecalibacterium spp.
[25-28], Lactobacillus spp. [29], Bifidobacterium spp. [30-32]
Brevibacterium spp. [33], Rhodococcus spp. [34], and Desulfovibrio
spp. [35]. Among the aforementioned alternative FIB, bacteria of
Bacteroidales is the most intensively studied and those of
Faecalibacterium spp. and Brevibacterium spp. are the most recently
reported.

The alternative FIB is relatively abundant in human or animal feces
compared with the standard FIB. For example, about 25% of bacteria
in the human colon belong to the Bacteroides spp. [36]. The
Faecalibacterium is the most abundant bacterium in chicken feces [37].
In human infant stool samples, the Bifidobacteriales order accounts for
80.6% of bacterial populations [38]. Lactobacillales is among the top
six most abundant bacterial groups in swine feces [39]. Bacteria of the
genera Faecalibacterium, Bacteroides, and Bifidobacterium, and some
members of the genera Lactobacillus and Prevotella, are obligate
anaerobes. They can only survive for a short time and hardly multiply,
if any, in non-host environments, due to their low oxygen tolerance.
Their fast decay in the environment makes these anaerobes suitable for
the detection of fresh and extensive fecal pollution [40].

Other biological fecal indicators have been proposed and used
mainly in tracking the sources of fecal pollution. These include host-
associated archaea and viruses as well as the mitochondria of the
epithermal cells of human and animal intestinal tracts. However, the
genetic indicators of these categories are beyond the scope of this
review.

Genetic Marker Based FST Methods
With advances in science and the advent of new technologies, many

FST methods have been developed and used to track fecal pollution in
water. Categorically, these methods can be divided into library-
dependent and library-independent methods [6]. The library-
dependent methods require the construction of a library or database
containing a set of either phenotypic or genotypic characteristics of
FIB, commonly E. coli or enterococci bacteria, isolated from the feces
of known host sources. To determine the fecal sources of a feces-
polluted site, strains of E. coli or enterococci are isolated from the site
and their phenotypic or genotypic characteristics are then compared
with those in the library to find the matches [6]. On the other hand,
library-independent FST methods do not require a reference library,
relying instead on the detection of host-specific markers associated
with FIB or animal feces.

A host-specific marker can be either a genetic or chemical marker
that is unique to the feces of an animal species or human being. A
host-specific genetic marker refers to a unique nucleic acid (i.e., DNA
or RNA) sequence that is exclusively or strongly associated with
particular host sources. This sequence can be either a nucleic acid
sequence of fecal cells (e.g., bacteria and viruses) or of host cells. A
number of chemicals and metabolites have been found to be associated
with humans or animals because of different life styles and digestion
systems. Chemical marker-based methods have been comprehensively

reviewed recently [41], so this review will focus on the host-specific
genetic makers of fecal bacteria.

Host-specific Genetic markers of Fecal Bacteria
Theoretically, genes in microorganisms involved in host-microbe

interactions are ideal potential host genetic markers. However, most
fecal microorganisms are uncultured, and their genomes remain
largely unknown. For many years, bacterial 16S rDNA were the only
genetic markers used in FST.

16S rDNA
The pioneer work of developing host-specific markers derived

from16S rDNA sequences of fecal bacteria is credited to research by
Field and others [42]. Since 2000, a considerable number of host-
specific genetic markers for the detection of major sources of fecal
pollution have been identified in 16S rDNA Table 1. Among them,
host-specific genetic markers of Bacteroidales 16S rDNA have been the
most intensively studied, including through field studies, as these
markers are the most promising for FST [43]. Therefore, 16S rDNA has
become the most widely used genetic marker in FST.

Target Host Target bacteria Marker Reference

Human

Bacteroidales

HF134F, HF183F Walters and
Field [85]

HuBac Layton et al. [49]

BacHum Kildare et al. [86]

BacH Reischer et al.
[87]

Human-Bac1 Okabe et al. [51]

BuniF2, BfragF1,
BvulgF1,
PcopriF1,
BsteriF1,
BthetaF2

Haugland et al.
[88]

Bifidobcterium
adolescents and B.
dentium

Bi-AOD, Bi-DEN Bonjoch et al.
[30]

Bifidobcterium spp. HM Gómez-Doñate
et al. [89]

Faecalibacterium spp. HFB-F3/R5 Zheng et al. [28]

Cattle

Bacteroidales

CF128F, CF193F Bernhard and
Field [21]

BacCow Kildare et al. [86]

Cow-Bac Okabe and
Shimazu [90]

CI125f Stricker et al.
[91]

YCF Jeong et al. [92]

Bifidobcterium spp. CW Gómez-Doñate
et al. [89]

Deer/Elk Bacteroidales EF447F/990R Dick et al. [93]

Dog Bacteroidales DF475F Dick et al. [93]
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Bacteroidales BacCan Kildare et al. [86]

Duck

Bacteroidales CG-Prev f5 Lu et al. [94]

Desulfovibrio-like E2 Devane et al.
[35]

Faecalibacterium  Sun et al. [27]

Goose Bacteroidales

CGOF1-Bac,
CGOF2-Bac

Fremaux et al.
[95]

CG-Prev f5 Lu et al. [94]

Gull Catellicoccus
marimammalium Gull-2, Gull-4 Lu et al. [24]

Herbivore Rhodococcus
coprophilus  Savill et al. [34]

Horse Bacteroidales HoF597 Dick et al. [96]

Pig

Bacteroidales

PF163F Dick et al. [96]

Pig-Bac1, Pig-
Bac2 Okabe et al. [51]

Pig-Bac, Pig-2-
Bac

Mieszkin et al.
[97]

Bifidobcterium sp. PG Gómez-Doñate
et al. [89]

Faecalibacterium  Duan et al. [25]

Lactobacillus sp. OTU171 Konstantinov et
al. [98]

Poultry Bifidobcterium spp. PL Gómez-Doñate
et al. [89]

Brevibacterium avium LA35 Weidhaas et al.
[33]

Faecalibacterium spp. IVS-p Shen et al. [26]

Ruminants Bacteroidales

BacR Reischer et al.
[99]

Rum-2-Bac Mieszkin et al.
[100]

Table 1: Host-specific genetic markers derived from bacterial 16S
rDNA.

Although 16S rDNA is highly conserved across species of the same
genus of bacteria, variable regions of 16S rDNA provide a tool to
discriminate between bacteria at the subspecies level, according to
their host [44]. In addition, 16S rDNA has multiple copies in most
bacterial cells [45]. For example, each E. coli cell has seven copies of
almost identical 16S rDNA in its genome [46]. Multiple numbers of
markers in cells can increase the detection sensitivity.

Recently, studies of the physiology, ecology, and biodiversity of
intestinal flora have resulted in an enormous number of 16S rDNA
sequences of microorganisms from human and animal guts or feces.
Those sequences are available via public databases, such as the
Ribosomal Database Project (RDP) [47] and Genbank [48]. By
comparing these sequences using bioinformatics approaches, host-
specific markers can be found in 16S rDNA [26].

However, 16S rDNA-based genetic markers are not without
drawbacks. Cross-reaction is a common issue [49-52].

Target host Target bacteria Target gene Gene function Reference

Human E. coli STIb Enterotoxin Field et al. [57]

Enterococcus faecium esp Surface protein Scott et al. [64]

Bird E. coli tsh Hemagglutinin Jiang et al. [58]

Cattle E. coli LTIIa Enterotoxin Khatib et al. [55]

Co2 Putative adhesion Gomi et al. [101]

Dog E. coli papG P fimbrial adhesin Jiang et al. [58]

Duck/goose E. coli GA9, GG11 Putative type III secretion proteins Hamilton et al. [59]

GB2, GE11 Putative adhesion-like proteins Hamilton et al. [59]

Pig E. coli STII Enterotoxin Khatib et al. [56]

Ch7 Putative adhesin Gomi et al. [101]

Ch13 Putative minor fimbrial Gomi et al. [101]

Rabbit E. coli ralG Fimbrial Jiang et al. [58]

GB2, GE11 Adhesion-like proteins Hamilton et al. [59]

Table 2: Host-specific genetic markers derived from bacterial virulence genes
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Bacterial virulent genes
Several virulent genes of pathogenic strains of the standard FIB have

been reported to be host associated Table 2. The heat labile toxin IIa
(LTIIa) gene and the heat stable toxin II (STII) gene in enterotoxigenic
E. coli (ETEC) have been found to be responsible for diarrheal diseases
of cattle and pig [53]. Sequence analysis of LTIIa and STII in addition
to PCR reactions showed the two markers were 100% specific to cattle
and pig feces, respectively [54-56]. Other studied but less successful
FST markers in the toxin genes of E. coli include a heat-stable
enterotoxin gene (STIb) for humans [57], a major fimbrial subunit
gene (ralG) for rabbits, a P fimbrial adhesin gene (papG) for dogs, and
a temperature-sensitive hemagglutinin gene (tsh) for birds [58].Seven
goose/duck specific genetic markers were identified in E. coli isolates
by the suppression subtractive hybridization (SSH) method, and their
specificities were tested with the colony hybridization method. Among
the markers, sequences of GA9 and GC11 are homologues to the genes
encoding type III secretion proteins in E. coli O157:H7, and both GB2
and GE11 have been found to encode adhesion-like proteins in E. coli
O157:H7 [59].

In Enterococcus faecium, a putative virulence gene encoding the
enterococcal surface protein (esp) was also proposed for identification
of human fecal pollution, with controversial results [60-64]. The
detection sensitivity of virulent genes has also been an issue because
healthy humans and animals usually do not shed such pathogens in
their feces, and the pathogens are present in low numbers in ill humans
and animals.

Bacterium-host interaction genes as markers
As host-specific genetic markers, genes involved in bacterium-host

interactions are superior to other genetic markers. Although
knowledge of such genes is very limited for most intestinal microbes,
studies have identified some host-specific genetic markers that might
be associated with bacterium-host interactions, primarily through gene
annotations Table 3.

Bacteroides thetaiotaomicron is a symbiont living in the human gut,
and it contributes to degrading indigestible polysaccharides to provide
calories and maintain the health of the intestinal ecosystem. The gene
encoding α-1,6-mannanase is believed to be involved in this
degradation [65], and this gene has been found to be highly associated
with human feces [66,67].

There are several genetic markers reportedly associated with
domestic animals. By the method of genome fragment enrichment of
fecal metagenomes, Shanks et al. [68] identified 26 genetic markers in
B. thetaiotaomicron highly associated with humans. Three of them
showed high similarities to the genes encoding outer membrane
protein (hum39), genes encoding the outer membrane efflux protein
precursor (hum336), and genes of a protein associated with
remodeling bacterial surface polysaccharides and lipopolysaccharides
(hum163) [68]. With the same metagenomic approach, a series of
cattle-specific markers were identified, and three Bacteroidales-like
markers (i.e., Bac1, Bac2, and Bac3) were randomly selected for PCR
assay development. The markers are predicted to be associated with
membrane protein and secretion [69].

Other bacterial genes as markers
There are various bacterial genes, whose functions are unknown or

not directly involved in bacterium-host interactions, found to be

associated with particular host sources Table 3. With DNA microarray
hybridization, Soule et al. [70] identified eight genetic markers in the
Enterococcus genome specific to cattle (M15 and M19), two to elk/
deer (M40 and M48), and four to humans (M67, M68, M77, and M81).
M15 is homologous to the helicase gene, M40 belongs to the MutS2
family, M68 is related to carbohydrate kinase PfkB, M77 encodes a
transcriptional regulator, and the other markers do not have significant
similarity to function-known genes [70].

Using the metagenomic method, Lu et al. [71] identified 21 chicken-
specific genetic markers having various predictive functions, including
cellular process, metabolism, and information storage. The three
markers (i.e., CP2-9, CP3-49, and CB-R2-42) that performed best were
associated with bacterial metabolism.

Recently, research by Zheng et al. [26] used the approach of
bioinformatics in the comparative analysis of 7,458 sequences of
Faecalibacterium 16S rDNA, reportedly associated with human and
animal species. They identified an intervening sequence (IVS), IVS-p,
within Faecalibacterium 16S rDNA. IVS-p appeared to be specific to
poultry (chicken and turkey) feces. IVS was considered to be a
bacterial adaptation to a close working relationship with the host
species [72].

Applications of FST in Food Systems

Seafood
Using FST technologies in tracking fecal pollution sources in foods

has attracted increasing interest recently [73-75]. Pathogens carried by
feces can enter the food production chain through various paths, from
farm to table. Food crops can be polluted in the field, by untreated
human or animal manure used as fertilizer or by feces-polluted
irrigation water. Pathogens can enter a water body through point (i.e.
specific) pollution sources, such as effluent from wastewater treatment
plants, lagoons, and septic tanks, or through non-point (i.e. non-
specific) pollution sources, such as wildlife or storm runoff from urban
and agricultural areas [76]. FST methods were first introduced into
aquaculture and then into vegetable production for food safety
management.

Molluscan shellfish, including oysters, clams, mussels, and scallops,
are an important food commodity in the United States. Shellfish can
accumulate waterborne pathogens in their bodies, posing health risks
to consumers [7]. Mauffret et al. [77] investigated the presence of host-
specific genetic markers in oysters, cockles, and clams grown in water
artificially or naturally polluted by feces. HF183 (human-specific,
Bacteroides), Rum2Bac (cattle-specific, Bacteroides), Swine1Bac (pig-
specific, Bacteroides), and Gull2 (gull-specific, C. marimallium) were
quantified in 100% of intravalvular liquid samples of oysters living in
artificially polluted water, while HF183 and Rum2Bac were quantified
in 31% and 23% of those shellfish living in naturally polluted water.
However, none of the host-specific markers was detected in the cockle
or clam. This study suggests that FST methods can be used to manage
at least some seafood products.

Fresh produce
Fresh produce has been associated with rising numbers of

foodborne disease outbreaks in the United States, as the products are
increasingly consumed as a part of healthy diets. Most of the pathogens
causing outbreaks are of fecal origin. Feces-polluted irrigation water
and/or improperly composted human/animal wastes can be the
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sources of fecal pollution in produce [78,79]. The work of Ravaliya et
al. [74] in Northern Mexico has provided evidence that Bacteroidales
16S rDNA markers may serve to distinguish both general and human-
feces contamination in the production environment. Furthermore, FST

can be used for the rapid identification of human or livestock fecal
contamination in fresh produce [73]. It is generally believed that FST
technologies can be a powerful tool to manage food safety in produce
production.

Target host Target bacteria Target gene Gene function Reference

Human Bacteroides thetaiotaomicron α-1-6, mannanase Degradation of polysaccharides Yampara-Iquise et al.
[67]

hum39 Putative outer membrane protein Shanks et al. [68]

hum163 Putative remodeling of bacterial surface polysaccharides and
lipopolysaccharides

Shanks et al. [68]

hum336 Putative efflux protein precursor Shanks et al. [68]

E. coli ycjM Putative degradation of polysaccharides Deng et al. [102]

H8 Sodium/hydrogen exchanger precursor Gomi et al. [101]

H12 Putative phage protein Gomi et al. [101]

H14 ATP/GTP-binding protein Gomi et al. [101]

Cattle Bacteroidales Bac1, Bac2, Bac3 Putative membrane secretion protein Shanks et al. [69]

E. coli Co3 Putative integrase Gomi et al. [101]

Pig E. coli P1 F1C fimbrial usher Gomi et al. [101]

P3 DNA fragment Gomi et al. [101]

P4 Hypothetical protein Gomi et al. [101]

Poultry E. coli Ch9 Hypothetical protein Gomi et al. [101]

Ch12 Type I restriction-modification system Gomi et al. [101]

Table 3: Host-specific genetic markers derived from bacterium-host interaction or other genes

Conclusion
Although 16S rDNA are currently the dominant FST genetic

markers, their high degree of conserved sequences makes the cross-
reaction an inherent issue. Genetic markers with higher host-
specificity may be found in microbial genes involved with microbe-
host interactions. In fact, the known human-feces marker, the α-1,6-
mannanase gene of B. thetaiotaomicron, is highly associated with
humans [66,67]. However, the determination of microbe-host
interaction genes relies much on the current knowledge of the
microbial genome, which excludes most fecal microbes. It has been
proposed to use the ribosomal intervening sequence (IVS) of fecal
bacteria as genetic markers for FST, which would combine the
advantages of the enormous data about 16S rDNA available in public
databases with the desirable host specificity of the genes (DNA
fragments) involved in microbe-host interactions. Ribosomal IVSs are
insertion sequences in the 16S or 23S rDNA of prokaryotes. They are
post-transcriptionally excised by RNase III without religation, which
causes rRNA fragmentation [80]. The fragmentation may enhance the
rRNA degrading rate by creating more targets for certain ribonucleases
[80]. It is known that bacterial cells adjust their rRNA levels based on
environmental changes. The fact that IVSs are mainly found in
symbionts and pathogens of eukaryotic hosts also supports the
conclusion that IVSs may contribute to the host-microbe interaction
[72]. The presence of ribosomal IVS in prokaryotes is relatively
uncommon but does occur in many bacterial species [81,82]. IVS is

more commonly found in 23S rDNA than in 16S rDNA [80,81,83].
With the development of next-generation sequencing (NGS) methods,
a vast amount of 23S rDNA data has been increasingly accumulated,
which will facilitate the identification of novel, host-specific IVSs in
microbial 23S rDNA.

Phylogenetic analysis of fecal microbes from different host species
is a common method for the identification of host-specific genetic
markers. This method is based on alignment analysis against the DNA
sequences of potential FST molecules of the target fecal
microorganisms. Before the availability of NGS technologies, DNA
cloning and Sanger DNA sequencing were the necessary steps for
phylogenetic analysis. However, DNA cloning is time-consuming and
subject to cloning bias. NSG provides a high-throughput, time-
efficient, and cost-effective tool for the identification of host-specific
FST markers.

The major challenge of using FST technologies for the safety of
water and food is that the correlation between the FST markers/
indicators and pathogens/diseases has not been well established [6,84].
Nevertheless, the future of FST should not be underestimated,
especially in the area of food safety.
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