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Editorial
Sexual differentiation of the human body is under the control of 

sex specific substances produced by the differentiated gonads, testes in 
men and ovaries in women. This knowledge has been deduced already 
by the healers of ancient civilizations. The name for the masculinizing 
substance produced by testes, androgen, is derived from the Greek 
world for a man, Andros. Biochemically, androgen family of steroid 
hormones is composed of testosterone and testosterone derivatives 
metabolized in several tissues. Testosterone molecule was identified 
and isolated in the early 1930s by the Chicago University chemists Fred 
Koch and Lemuel McGee. Scientists were awarded Nobel Prize for this 
important discovery in 1939. Androgens contribute to differentiation 
of almost every system of the human body [1,2]. They are essential for 
induction of the masculine type morphogenesis and differentiation of 
the urogenital region, including the genital appendage and urogenital 
glands. Androgens also regulate the balance between the muscle and fat 
tissue mass. In turn, sexual differentiation and reproductive function 
of the female body is regulated by a group of steroid molecules named 
estrogens from the Greek world, Estrous, signifying the regular cycle of 
sexual excitability in females. Estrogens were first described by Charles 
Stockard and George Papaniclaou who reported a study of hormonal 
regulation of female physiology in guinea pigs [3]. In 1923, Edgar Allen 
and Adelbert Doisy isolated a potent estrogen, estradiol, from human 
ovaries [4]. 

A large body of physiological and biochemical evidence 
supports the inductive and directive sex hormone function in sexual 
differentiation. Androgens are expressed at high levels in the male 
during sexual development and in adult. Estrogens are expressed 
at high levels in females during reproductive system development 
and adult function. Androgens and estrogens can also reprogram 
sex specific body development when upregulated in or administered 
to opposite sex. Recent studies point that the scope of androgen and 
estrogen function is considerably broader then sexual specification and 
more universal than previously thought. First, androgens and estrogens 
are produced in both sexes. In addition to high level expression in the 
testes, androgens are produced by the adrenal glands, and metabolized 
in the male and female urogenital glands and genital tissues, and in the 
ovaries. Estrogen is produced at high levels in the ovaries, but it is also 
metabolized in both sexes in the liver and fat cells, and produced at low 
level by the male testes. Thus, sexual hormones are not sex exclusive. 
In fact, presence of androgens, estrogens and their respective receptors 
in both sexes presents the essential biochemical mechanism driving 
the binary choice in sexual differentiation. Secondly, both androgens 
and estrogens were found to carry non sexual functions in multiple 
organs and tissues. For instance, androgens and estrogens contribute to 
induction of specific secretory proteins in the mouse ocular glands [5]. 
Androgens have been suggested to promote differential predisposition 
to bladder cancer in men [6]. Thirdly, sexual hormones have been 
found to play important roles in development of the opposite sex 
organs. I will further review this interesting property. In this review, 
I will discuss the classic paradigms, and new concepts and molecular 
mechanisms, of the male and female hormone function on the example 
of sexual differentiation of the male genital appendage, the phallus. 

The anabolic androgen, testosterone, is produced at high levels 
by the male testes and secreted into the bloodstream. Lower levels of 

testosterone are produced by the female ovaries and by the adrenal 
glands in both sexes. About 5% of circulating testosterone is converted 
to a three-fold more potent dihydrotestosterone by 5α-reductase 
metabolism in the male urogenital glands and genitalia [1]. In addition, 
dihydrotestosterone is metabolized from adenosterone in the liver in 
both males and females, and is absorbed and delivered by the vascular 
system [2]. Thus, the main factor in male sexual differentiation is that a 
potent androgen is localized to sites of its function in the male genitalia 
and exocrine glands. Androgens are necessary to induce the male specific 
shaping and growth of the phallus, including male specific remodeling 
and internalization of the urethra. Androgens are also essential for 
induction, differentiation and survival of the male sex-accessory 
exosecretory glands: the seminal vesicles and prostate, bulbourethral 
and preputial glands [7-12]. In males, estrogens are synthesized by 
Ledwig and germ cells in the testis by metabolism of testosterone via 
CYP19/aromatase that converts it into estradiol. Estrogens are also 
produced in the liver, adrenal glands and fat cells. Tissue-specificity 
of estrogen function is conferred by expression of estrogen receptors 
α and β.  Interestingly, a potent estrogen, estradiol, was found to play 
several important functions in sexual differentiation of the male, in 
particular, at maturation of the sperm [13] and development of the 
prostate [9] and phallus [14]. Furthermore, developing male phallus 
also contains receptors for another female hormone, progesterone 
which role is not yet clears [15]. 

In the last 10 years, genetic and anatomic studies of human 
genital development have been complemented significantly by 
laboratory studies in mouse models. Development of genital 
appendage is considerably easier to study in mouse models that allow 
precise timing of embryonic stages and accessibility of embryos. 
Furthermore, recently engineered conditional mouse systems can be 
used to achieve time and tissue-specific manipulation of a target gene 
function, and a lineage specific tracing of cell fates and movement. By 
implementing these systems, several mouse development laboratories 
have significantly added to our understanding of genes and signals 
involved in patterning and morphogenesis of the genital region, and 
the hierarchy of interactions between hormonal and developmental 
signals [8,16-43]. Genital protrusion is initiated with formation of 
genital swellings at embryonic day 10 (E10) in the mouse of 19.2-5 
days of gestation [22,23]. Notably, sexual differentiation of the genital 
tubercle is initiated only at E14. Thus the initial genital outgrowth and 
morphogenesis take place in sexually naive stages. This period, from 
E10 to E14, coincides with partitioning of the cloacal cavity into a 
topologically separate urethra and hindgut [23,24]. Distal outgrowth 
of the genital swelling mesenchyme occurs alongside extension of the 
ventral cloacal epithelium that at this stage forms a solid urethral plate 
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(Figure 1a) [22,23]. At this early stage, cloacal and genital tissues are 
already pre-patterned by the caudal homeobox genes Hox9 to Hox13 
[25], the Sonic hedgehog (Shh) signaling molecule expressed in the 
endoderm [22,26,27], and Wnt [28,31,33] and Bone morphogenetic 
proteins (Bmp) in pericloacal mesenchyme [23,29]. The distal 
urethral epithelium is marked by expression of the Fibroblast growth 
factor 8 (Fgf8) similar to the apical ectoderm ridge during limb bud 
outgrowth [16,36]. Loss of the Fgf receptor 2 causes abnormal ventral 
positioning of the urethral opening in the male called hypospadias [32]. 
Intriguingly, Fgf8 appears to be dispensable for genital development 
indicating possible redundant roles genitally expressed factors, Fgf4, 8 
and 10 [28,33]. 	

Sexual differentiation of the genital appendage begins at E14 in 
the mouse and at 9 week of gestation in the human, and is induced 
by upregulation of testosterone production in the male [32-34]. The 
role of androgen signaling in genital development, and its downstream 
cellular and molecular mechanisms are still not completely understood. 
The current hypotheses postulate androgen roles in maintenance, 
survival and proliferation of genital progenitor cells and a directive 
function in sex specific differentiation. One obvious difficulty in these 
models is that a signal function both in cell fate maintenance and 
terminal differentiation can be seen as mutually exclusive. Genetic 
studies in mouse models indicate that androgens promote phallus 
differentiation by upregulating the levels of caudal homeobox proteins 
[25], and signaling by the canonical Wnt [17], Ephrin [44] and Fgf 
[32] pathways. In addition, Shh function is essential for male genital 
differentiation, and loss of signal results in a failure to internalize 
the urethra [27,62]. Shh activity has been suggested to promote 
proliferation of the periurethral mesenchymal cells [27]. Shh can also 
function to up regulate Wnt ligands (Figure 2) [30,33].

Androgen receptor signaling supports survival and proliferation 
of responsive tissues. This is consistent with a larger size of the male 
phallus compared to the female clitoris. However, besides the size, 
male and female genital structures differ substantially in the position 
and topology of the urethral duct. During sexual differentiation in the 
male, urethral plate extends to the distal tip of the genital appendage. 
In between E15 to birth, the central part of urethral plate becomes 
canalized forming a urethral duct while most of the ventral plate is 
displaced by mesenchyme [23,26,34-36] (Figure 1C,D). In contrast, in 
females, urethral opening is located axially and urethral plate epithelium 
is displaced to the ventral surface of the appendage. The process of male 
specific urethra differentiation is an intriguing topological problem. 
Hypothetically, the process of separation of the axial urethral duct form 
the perineal seam (Figure 2C, D) could be achieved by directed change 
in epithelial cell polarity similar to conversion-extension in Drosophila. 

During mouse development such processes are regulated by the Wnt 
[45], Bmp [24] and Ephrin [44] polarizing signals. Downstream of 
these signals, c-Jun N-terminal and Rho kinases [24,44,45] regulate cell 
polarity by stabilizing actin skeleton and microtubule cell scaffold [37-
38].

Androgen receptor is expressed both in the genital mesenchyme 
and epithelium. However, it is signaling in the mesenchyme that 
is essential for genital urethra internalization and remodeling 
[17]. Sexual differentiation of the genital urethra is mediated by 
dihydrotestosterone metabolized locally in the genital mesenchyme 
[46]. Several components of androgen signaling pathway have been 
genetically linked to proximo-distal defects in remodeling of the 
urethra, including the androgen receptor [47] and the 5-α-reductase 
type 2 that catalyzes dihydrotestosterone metabolism [48,49]. In the 
developing genital tubercle, several cell communication mechanisms 
are responsive to androgens, namely, the Fgf [32], Ephrin [44] and Wnt 
[17] pathways. Both Ephrin and Wnt signals can regulate cell adhesion 
and polarity. Fgfs are known proliferative factors and chemoattractants, 
that are essential for genital outgrowth [16]. Loss of the Fgf receptor 
2 causes hypospadias in the male. Expression of the Fgf receptor 
2 in genital explants can be disrupted by treatment with androgen 
antagonists [44] indicating dependence on androgen signal. Another 
important clue on the mechanisms of sexual differentiation came from 
the discovery that Wnt/β-catenin pathway is regulated differentially in 
the genital tubercle in male and female [17]. Specifically, female genital 
mesenchyme produces higher levels of the Wnt pathway inhibitors, 
Dkk2 and Sfrp1. Dkk2 levels are also increased in males deficient for 
androgen receptor or treated with an androgen receptor antagonist. 
Thus, canonical Wnt pathway functions in genital development as an 
important masculinizing factor downstream of androgen signal. 

Very important advances in defining factors involved in urethral 
remodeling came from human genetics studies. Analysis of nonsense 
mutations in patients with penoscrotal hypospadias identified a Notch 
pathway transactivator, the Mastermind-Like Domain containing 1 
(MAMLD1) gene [18,19]. MAMLD1 protein is transiently expressed 
in the developing Leydig cells. Gene knockdown results in a drastic 
reduction in testosterone production at a crucial point in genital 
development [19]. Thus, androgen deficiency was suggested as the 
most likely cause for MAMLD1-associated hypospadias. The situation, 
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Figure 1: Genital development viewed in Bmp7-lacZ mouse model [29]. 
(A) Extending urethral plate (up) epithelium is marked by LacZ. (B) Lateral 
view of male urogenital system at E17.5, and genital sections (C, D). During 
sexual differentiation at E14.5-18.5 urethral cleft undergoes a progressive 
fusion starting from proximal (D) to distal (C) regions as the Bmp7-expressing 
mesenchyme (arrow in D) advances to the genital tip. Bl, bladder; ur, urethra; 
ck14, cytokeratin 14.
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Figure 2: Model of hormonal and patterning signal interactions during sexual 
differentiation of the male genital appendage. DUE, distal urethral epithelium. 
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however, can be more complex. MAMDL1 defects can be due, in part, 
to estradiol deficiency, as Sertoli cell differentiation is also disrupted 
in the mutant. Importantly, the MAMDL1/Notch pathway can play a 
role in  cell fate and lineage choice in the urethral epithelium, and these 
functions have not been yet examined. 

In addition to defects in androgen signaling, exposure to estrogenic 
compounds during pregnancy can also induce hypospadias in male 
fetuses in human and in rodents [39]. Estrogen receptors α and β 
are expressed in the developing male genital appendage [21] and 
mutations have been linked to hypospadias [39]. One of the suggested 
mechanisms of estrogen function in male urethral development 
involves regulation of the Activating Transcription Factor 3 (ATF3). 
Mutations in ATF3 have been linked to hypospadias [40-43]. ATF3 
mediates the Transforming Growth Factor- β/Mitogen Activated 
Protein Kinase signaling that can feed into several pathways regulating 
cell survival, proliferation and polarity. Future ATF3 studies studies 
in the animal and explant models should unveil the cellular functions 
of ATF3 in urethral remodeling. Estrogens can also interfere with 
masculine differentiation by modulating the hypothalamic–pituitary–
gonadal axis, by interfering with androgen receptor expression, or by 
suppressing testes differentiation [50,51]. 

In summary, recent studies show that male sexual differentiation is 
regulated by a balance of androgen and estrogen signals that modulate 
downstream epithelial-mesenchymal communications. Deregulation 
of the fetal endocrine environment is the major suspect for the 
unusually rapid raise in incidence of hypospadias in the United States 
since 1970s [52,53]. The most likely sources of endocrine disruptors 
are household chemicals, pesticides and herbicides commonly found 
in urban and suburban households [54]. Several of these endocrine 
disruptors have been shown experimentally to cause hypospadias 
and cryptorhidism in wild animals and rodent models [55-57]. Direct 
evidence to link endocrine disruptors to human genital malformations 
is still limited. That is due to experimental limitations of epidemiologic 
studies to access exposure effects at precise fetal developmental stages. 
Hormonal effects and their interactions with developmental factors 
are stage and cell lineage sensitive. For this reason, testing in animal 
models is certain to play a major part in defining the roles and effects 
of endocrine disruptors in embryonic development [59-61]. Further 
cellular biological studies in mouse models and genetic studies in 
human are most promising to bring a better understanding of male 
sexual differentiation and the etiology of genital malformations. 
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