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Abstract

Multiple Sclerosis (MS) is probably the best studied chronic inflammatory and demyelinating disease of the
Central Nervous System (CNS), with a clear impact on patients’ quality of life. Many factors have been described to
play a role in the initiation and clinical course of the disease, as well as in the response to medication. These factors
include age at onset, gender, viral infections, Human Leucocyte Antigen (HLA)-genotype, non-HLA genes, Vitamin D
levels and smoking. HLA genetic profile is the most important one, as it not only influences every aspect of the
disease, but it also modifies the effect of the other factors.

In this review article we summarize the decisive effect of HLA-genotype on MS initiation, clinical course, cognitive
impairment and therapeutical outcome, as well as on other demyelinating diseases of the CNS (including
Neuromyelitis Optica and Acute Disseminated Encephalomyelitis). HLA-DRB1*15:01 is the best established allele,
both increasing the risk of MS 2-3 times and influencing response to first line medication (including Interferon-beta
and Glatiramer Acetate), but neutralizing antibodies’ formation against natalizumab, as well. Other Class I and Class
II HLA alleles have either a detrimental (DRB1*08:01, 03:01, 13:03, 15:03, 04:05) or a protective (DRB1*14:01, *07,
*11, A*02:01) effect on MS. Taking into account their epistatic interactions, we conclude that HLA-genotyping may
lead to an individualized approach of MS patients, in different ethnic groups.
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Introduction
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of

the central nervous system (CNS), affecting around 2 million people
worldwide, with Europe considered a high prevalence region for MS
(prevalence ≥ 30/100,000) containing more than half of the global
population of people diagnosed with MS [1]. Its etiology, although not
completely understood, is multifactorial, as both genetic and
environmental agents can influence the disease risk and clinical course.
Vitamin D levels, smoking and Epstein Barr Virus (EBV) (both anti-
Epstein Barr Nuclear Antigen-EBNA-IgG seropositivity and infectious
mononucleosis) are the best established environmental factors [2],
while Human Leucocyte Antigen (HLA)-genotype carries the strongest
genetic burden for MS, although non-HLA genes and gene-gene
interactions (called epistasis) play a role [3]. Non-HLA genes seem to
participate not only in MS initiation, but also in patients’ response to
treatment.

As far as HLA-genotype (especially class II genes) is concerned, it is
not only responsible for up to 30% of the MS risk, but it also crucially
participates on almost every aspect of the disease [4]. In other words,

HLA genetic profile modifies the risk of the disease, influences its
clinical course and plays a decisive role in patients’ response to
treatment. Given the inflammatory nature of MS (among others), the
role of Major Histocompatibility Complex (MHC) in the disease’s
pathophysiology cannot be ignored [5]. Supporting evidence is
provided by the role of HLA in other demyelinating disorders of CNS,
like Neuromyelitis Optica (NMO or Devic’s disease) [6] and Acute
Disseminated Encephalomyelitis (ADEM) [7].

Of great interest is the observation that HLA alleles seem to modify
the influence of environmental factors on MS risk. Smokers have
higher risk of developing MS compared to non-smokers [8] and this
risk seems to be higher among patients carrying specific HLA alleles.
Increasing levels of circulating Vitamin D (25-OH-Vit D) lower the risk
of MS [9]. This last observation is of great importance as it can
partially explain the well demonstrated latitude-depending prevalence
of MS. Further investigation revealed a close relation between vitamin
D and HLA-DR antigen expression and presentation, a finding being
described as gene-environment interaction [10]. Epstein- Barr virus
has also been found to increase the risk of MS and this is a well-
established and unanimously accepted correlation which is stronger
among individuals carrying HLA-DRB1*15:01 allele [11]. Other
members of Herpesviridae family, including Cytomegalovirus (CMV)
[12] and Herpes Simplex Virus (HSV) [13], have also been connected
to MS risk.

The HLA genetic background clearly modifies MS clinical
characteristics. Age at onset [14], gender of patients [15], clinical

Stamatelos & Anagnostouli, Immunogenet open
access 2017, 2:1

Review Article Open Access

Immunogenet open access, an open access journal Volume 2 • Issue 1 • 1000116

Immunogenetics: Open accessIm
m

un
og

enetics: Open Access



course [16] and cognitive impairment [17], all seem to be more or less
influenced by specific HLA alleles, making an individualized prognosis
of the disease according to HLA genotype a plausible target. All of the
above highlight the importance of HLA, making it inevitable to think
that it may also play a key role in response to treatment. This
hypothesis has been confirmed for the first line treatment agents, like
glatiramer acetate (GA) [18] and interferon-beta (IFN-β) [19], which
are the most commonly used disease modifying drugs. Their positive
effect on MS differs among patients with different HLA-genotype
[18,19], a finding that opens the avenue to personalize our therapeutic
decision-making, thus optimizing response to medication.

In conclusion, HLA is by far the best studied factor for over than
thirty years now and possibly the most important one. Aim of our
review article is to summarize the role of HLA-genotype in every
aspect of MS; from pathophysiology to treatment so as to explore its
effects in a holistic approach, towards personalized therapeutics.

Multiple Sclerosis and HLA-Genotype

Risk and protection for the disease
Risk evaluation: the role of HLA-Genotype: There are plenty of HLA

alleles some of which are referred to predispose for MS, while others to
protect from the disease. The best documented HLA allele is
DRB1*15:01, which is the strongest risk factor for MS. Human Genome
Epidemiology review of 72 papers published from 1993 to 2004 found
that in all but a very few studies, the frequency of DRB1*15:01 was
greater in cases than controls [4]. The studies where DRB1*15:01 was
not associated with MS were, in nearly every instance, conducted in
non-European populations. More recently, GWAS (Genome Wide
Association Studies) have pointed out HLA-DRB1 gene, in the class II
region of the MHC, as the main susceptibility locus, explaining up to
10.5% of the genetic variance underlying risk. HLA-DRB1*15:01 has
the strongest effect with an average odds ratios (OR) of 3.08, and all
additional DRB1 associations appear to account for less than 2% of the
remaining variance [20]. These findings have been confirmed by a
meta-analysis of GWAS studies. (DRB1*15:01 OR=2:92) [3].

Another meta-analysis (including studies in Caucasian populations,
published from 1994 to 2010) confirms the above mentioned data,
concerning the role of HLA-DRB1*15:01. HLA-DRB1*15 frequencies
were significantly higher (OR=2:59) in MS patients compared with
controls in both allele and phenotype groups [21].

Interestingly, the risk associated with HLA-DRB1*15:01 seems to be
additive, depending on the copies of the risk allele with a clear dose
response to 0, 1 or 2 copies. A similar pattern of dose effect of HLA-
Genotype has been observed in other autoimmune diseases as well,
including rheumatoid arthritis, narcolepsy, and celiac disease and
Type-1 diabetes.

An independent association for DRB1*08:01 has been observed in
an Ashkenazi cohort when patients were subdivided into clinical
subgroups, with a weak but significant association reported for
primary progressive MS patients only [22].

A well established, although not very strong (OR=1:7), association
has been found for DRB1*03:01, a very common allele worldwide.
HLA-DRB1*13:03 is a well-studied gene, although its association with
MS risk is neither as strong nor as clear as that of HLA-DRB1*15:01. A
possible explanation for the inconsistent identification of DRB1*13:03
in MS risk is the low power due to its worldwide rarity. Where it is seen

at higher frequencies, such as in the Israeli population [23], in Sardinia
[24,25], or in studies with thousands of individuals, DRB1*13:03 is
revealed clearly as a risk allele.

As far as African Americans are concerned, DRB1*15:03 seems to be
the predominant DR2 allele in this population [26]. Importantly, this
DRB1*15 subtype is also associated with MS (OR=1:6). HLA-
DRB1*15:01 also plays a role, but it is not so common among African
Americans (frequency 7.3%, in contrast to around 50% among white
Americans population with MS) and its effect seems weaker, too
(OR=1:7). Similar results arise from case-control studies in Martinique
[27], Iran [28] and Brazil [29].

Another risk allele for MS is DRB1*04:05. DRB1*04:05 was
recognized as a risk variant for “Asian” MS [16] (OR = 2:23), but with a
clinically distinct disease course characterized by earlier age at onset,
reduced severity and fewer brain lesions, while DRB1*04:05 negative
Japanese patients have features similar to Western-type MS,
characterized by an association with EBV infection as well as presence
of DRB1*15:01. These results have been partly reproduced in another
Asian cohort [30].

HLA-DRB1*04:05 has also been found to be associated with MS in
Sardinia, where the incidence of MS is quite high [31], among African
Americans [32] as well as Sicilians [33]. This allele is relatively
common in both the Japanese and Sardinian populations, but much
less so in other Europeans. Thus, limited statistical power may explain
a lack of clear association of DRB1*04:05 in other populations [20].

As far as the protective alleles for MS are concerned, DRB1*14 and
DRB1*07 showed protective effects against MS in a meta-analysis of 37
case control studies, all in Caucasian populations [21].

The class II allele, which is most consistently associated with
protection from MS in European populations, is DRB1*14:01.
Protection mediated by DRB1*14 appears to be dominant, reducing the
predisposing effect of DRB1*15:01 [34]. HLA-DRB1*15/14
demonstrates strong evidence for a protective effect when contrasted
with HLA-DRB1*15/X genotypes (where X stands for any other HLA
allele, except DRB1*15) (OR=0.2) [34].

HLA-DRB1*11 was also found to be protective in Brazilian [35],
Canadian [36] as well as Greek [37] populations. The protective role of
HLA-A*02:01 has been confirmed among many different populations
and it remains the best studied HLA-Class-I allele, independently
associated with MS [38].

Except for HLA genes, there are also other genes outside the MHC
region (non-HLA genes), which have been found to predispose for MS
and in some cases to be able to influence the therapeutical outcome.
Candidate gene studies, as well as genome wide association studies
(GWAS) provide evidence concerning the role of non-HLA genes.
Cytokines play a core role in MS pathophysiology. Dysregulation of
cytokines, like Interleukins and Tumour Necrosis Factor (TNF) may be
one of the early events that contribute to the onset and further cascade
of inflammation, not only in MS patients, but also among patients with
other autoimmune diseases. Not surprisingly, the genes coding TNF
are located within chromosome 6, at the MHC region [39]. Genes
coding for interleukin receptors (IL7RA and IL2RA) have been proved
to confer a moderate risk for MS in many studies [39]. De Jager et al.
point out in their meta-analysis specific susceptibility loci (with a
modest effect) at TNFRSF1A, IRF8 and CD6 genes [40]. Recently,
Lopez de Lapuente et al. highlighted the detrimental effect of ANKRD
55 not only on MS risk, but also on neuroinflammation procedures
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[41]. Interestingly, a CD58 variant (rs2300747) has been established as
a protective allele, as its expression seems to boost the function of a
CD4 subpopulation which is defective among MS individuals [42]. On
the other hand, rs12044852 allele has been proved to increase MS risk
[43].

To conclude at this point, various non-HLA genes have a well-
established, but much weaker than HLA genes, effect on MS risk.
However, their contribution is rather important as they may represent
the missing genetic link of MS, taking into account their epistatic
interactions with HLA alleles.

Epistasis: Epistasis refers to the combinatorial effect of one or more
factors, which seem to influence the risk of a disease. These factors may
be both genetic (gene-gene interactions) and environmental (gene-
environment interactions) [44]. Via epistasis we try to interprete
interactions found to be statistically relevant in order to get closer to
their biological definition and to understand the underlying functional
mechanisms [45]. Given the great number of factors implicated in MS,
epistasis is a really useful tool in our aim not only to study those factors
but also to explore their possible interactions.

Gene-gene interactions

As mentioned above, the role of many HLA and non-HLA alleles
and their contributions to MS is almost clear. However, the possible
interaction between those genes, along with the extent of these
interactions still remains rather obscure. The epistatic interactions
between HLA and non-HLA genes have been thoroughly examined in
a meta-analysis by Moutsianas et al. [46].

After analyzing high-density Single Nucleotide Polymorphisms
(SNPs) data on 17,465 cases and 30,385 controls from 11 cohorts of
European ancestry, the authors found evidence for two interactions
involving pairs of class II alleles: HLA-DQA1*01:01-HLA-DRB1*15:01
and HLA-DQB1*03:01-HLA-DQB1*03:02.

HLA-DQA1*01:01 plays a protective role only in the presence of
HLA-DRB1*15:01, which replicated in meta-analysis (OR=0.65). A
second allelic interaction involving HLA-DQB1*03:02 and HLA-
DQB1*03:01 was also identified such that the latter abolished the risk
associated with the former (OR in the presence of HLA-
DQB1*03:02=0.60).

No evidence for interactions between HLA and non-HLA risk loci
has been found among MS patients, although such interactions have
been described for other autoimmune diseases (including psoriasis,
ankylosing spondylitis and Behçet’s disease) [46].

Besides these findings, the authors suppose that it is nevertheless
possible that the effects of individual classical alleles are modulated by
many weak effects at many loci across the genome, a phenomenon
called polygenic epistasis.

Another case control study of a Spanish population (380 unrelated
patients diagnosed with MS and 1088 healthy controls) [47] found
DRB1*07 allele to exert an epistatic effect along with the DRB1*15 but
in an opposite direction which neutralizes this genotype, but this
hypothesis still needs to be verified.

In a family-based investigation of a Canadian population48 HLA-
DQA1*01:02 was also found to interact strongly with HLA-DRB1*15,
increasing MS risk in the presence of HLA-DRB1*15 and playing a
protective role in its absence. To assess this allele for interaction with
HLA-DRB1*15, transmission of HLA-DQA1*01:02 from HLA-
DRB1*15-negative parents was stratified by the presence

(overtransmission) or absence (undertransmission) of HLA-DRB1*15
(transmitted from the other parent) in affected offspring. HLA-
DQA1*01:02 is overtransmitted (OR=2.1) when HLA-DRB1*1501 is
also present in affected offspring, but when HLA-DRB1*15:01 is
absent, HLA-DQA1*01:02 is undertransmitted (OR=0.64).

Gene-environmental interactions

The role of vitamin D: Hypovitaminosis D has long been established
as a risk factor for MS probably explaining the epidemiological
evidence which correlate MS risk to latitude and subsequently
exposure to sunlight [48,49] (MS prevalence increases with distance
from the equator in both hemispheres). Ramagopalan et al. [50] have
identified a vitamin D response element (VDRE) in the HLA-DRB1
promoter region, a finding of great importance, as it indicates a direct
biological interaction between the main MS risk allele (HLA-DRB1)
and one of the best established environmental risk factors (Vitamin D).
This interaction when studied to its full extent may explain the so-
called missing genetic risk for MS. Ongoing randomized controlled
trials have to find out if Vitamin D supplementation reduces the risk of
MS, as current data implicate a protective role of high serum levels,
proposing Vitamin D intake as a primary prevention measure against
MS [9,51,52].

Smoking: Both ever-smokers and current-smokers have a higher MS
risk and this is a well-established correlation by numerous
retrospective and prospective studies. The influence of smoking on MS
natural history remains controversial, although smoking seems to
deteriorate disease’s clinical course, accelerating conversion to
secondary progressive MS [8,53]. Smoking interferes with the HLA-
Genotype, thus modifying the risk of MS among patients carrying
specific risk or protective alleles. Hedström et al. have found that the
odds ratio associated with a profoundly susceptible genotype (carriage
of HLA-DRB1*15 but not HLA-A*02) in smokers was 13.5, whereas in
non-smokers was 4.9, compared with non-smokers without these
genetic risk factors [54]. The same authors expanded the above
mentioned findings among passive-smokers, although this correlation
is weaker [55].

The role of viruses in MS initiation and HLA-Genotype: A number
of viral agents have been investigated and Epstein–Barr virus has been
the most consistently associated with increased MS risk.

Epstein Barr virus

The role of EBV in autoimmune diseases and especially its
contribution in MS pathogenesis is thoroughly examined, but not yet
fully understood. EBV is a human gamma-herpes virus that specifically
infects nasopharyngeal epithelial cells and resting B-lymphocytes,
hiding in a latent form in memory B-cells in the majority of the world
population. As infected memory B-cells differentiate into plasma cells
EBV switches to lytic reproductive phase to produce new EBV
particles. Enhanced lytic replication results in new infection events and
EBV-associated transformation events, and seems to be a risk factor
both for malignant transformation and the development of
autoimmune diseases [13].

There is a persuasive body of evidence linking EBV infection to MS
risk and several hypotheses have been proposed to explain the role of
EBV in the development of MS [56].

Epidemiologic evidence of its involvement include higher
prevalences of anti-EBV seropositivity (virtually 100%) in MS patients
compared with matched controls, higher concentrations of serum
antibodies against both the EBV viral capsid antigen (VCA) and
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nuclear antigens (EBNA-1) and more frequent history of infectious
mononucleosis, a marker of late age at infection with EBV. A
systematic review of eight published case-control studies comparing
EBV serology in MS patients and controls included a total of 1,005
cases and 1,060 controls. The summary odds ratio of MS comparing
EBV seropositive individuals with EBV seronegative individuals was
13.5 (95% Cl =6.3-31.4). These findings support a role of EBV in the
etiology of MS [57].

A similar correlation has been established in paediatric populations
[58-60]. Moreover, infectious mononucleosis (manifestation during
adolescence or early adulthood) is identified as a clear risk factor for
MS later in adulthood [61].

Considering this association and the close relationship (both
epidemiological and aetiological) between HLA genes and MS, it is
inevitable to suppose that HLA genotype may interfere with the effect
of EBV infection to MS pathogenesis, clinical course and response to
treatment.

A meta-analysis calculated the additive (S) and multiplicative
interaction indexes (OR) between EBV infection and HLA-DRB1*.
EBV infection was significantly associated with MS (OR=2:60). HLA-
DRB1*15:01 was associated with a significantly increased risk of MS
(OR, 3.06). An additive interaction effect between EBV infection and
HLA-DRB1*15:01 on MS was observed (S, 1.43; 95% Cl, 1.05-1.95,
P=0.023), but no interaction effect was observed on the multiplicative
scale. HLA-DRB1*15:01 was associated with a 3-fold elevation in MS
risk, and EBV infection was associated with a 2.6-fold elevation in MS
risk. The combined effects of HLA-DRB1*15:01 positivity and EBV
infection result in an up to six-fold increased risk of MS. These
findings highlight the importance of the interaction effects between
HLA-DRB1*15:01 and EBV infection on the occurrence of MS [11].
Another study population reproduced the additive interaction of HLA-
DRB1*15:01 status and EBV infection (expressed by antibodies against
EBNA1 or EBNA1 fragments). All EBNA1 fragment IgGs were
associated with MS risk. However, EBNA1 fragment 385-420 IgG levels
were more strongly associated to MS than total EBNA1 IgG, OR=3.60
(2.75-4.72 95% Cl), and also interacted with both HLA-DRB1*15 and
absence of HLA-A*02. These observations suggest that the mechanism
through which HLA genes influence the risk of MS may, at least in
part, involve the immune control of EBV infection [62].

Similar results were found in a paediatric population (189 MS
patients and 38 controls), as DRB1 positivity seemed to be associated
with higher EBNA-1 antibody response among those who were
EBNA-1 positive. In contrast, DRB1 positivity was not associated with
higher VCA, EBNA, CMV or HSV-1 antibody response among those
who were positive for seroconversion against the virus [12].

On the other hand, the above mentioned correlation was not
confirmed in a Kuwaiti MS cohort (including 141 patients and 40
controls) [63].

Herpes simplex virus (HSV)

As far as the role of HSV is concerned, Waubant et al. have found no
significant association between HSV infection and MS risk [59].
However, it is of great importance the notice that HSV-1 does appear
to have a strong role in predicting MS or Clinically Isolated Syndrome
(CIS) when evaluated separately in HLA-DRB1*15-positive and HLA-
DRB1*15-negative individuals.

HSV-1 positivity seems to be associated with greater MS risk in
DRB1-negative patients (OR=4:1) but reduced risk in HLA-DRB1-
positive patients (OR=0:7).

Cytomegalovirus (CMV)

As far as CMV is concerned, there is no definite evidence regarding
its role in MS, as both a protective and a harmful effect have been
reported. However, during the last years there is a growing amount of
evidence supporting its protective role. CMV, another virus from the
Herpesviridae family, is a common virus with a seroprevalence ranging
from 45% to 100% worldwide, and slightly higher in women compared
to men [64].

Both a case control study and a meta-analysis published by
Sundqvist et al. [65] found CMV to be associated with a decreased MS
risk (OR=0.73 and 0.77, respectively).

Interestingly, the authors describe an interaction on the additive
scale between CMV seropositivity and HLA-DRB1*15. Some
additional evidence for a protective role of CMV on MS risk was found
in a meta-analysis of only prospective studies [66].

CMV infection is also associated with better clinical and MRI
outcomes in MS patients [67] and with a lower risk of developing MS
or CIS (OR 0.37, 95% Cl 0.16-0.84, p=0.02) among a paediatric
population [59]. Supporting evidence come from a pilot study which
studied whether underlying murine CMV (MCMV) infection affects
the course of the Theiler's murine encephalitis virus (TMEV) induced
murine model of MS [68].

Age at onset and HLA-Genotype: Although MS has been
traditionally recognized as a disease of early adult life, it is nowadays
well-established the fact that the disease can begin in childhood or
adolescence, despite the rarity of this condition. Approximately 2-5%
of MS patients experience their first symptoms before the age of 18,
thus having an early-onset MS. When disease begins before the age of
16 we are talking about pediatric onset MS, while disease onset
between 16-19 years is called adolescent onset MS [37]. An initial
attack of demyelination in childhood, named acute demyelinating
syndrome (ADS), is not always a prelude to MS appearance, as in some
cases it remains a monophasic illness [14]. The correlation of HLA
genotype with ADEM (another demyelinating disease of childhood) is
further analysed in next sections.

There is evidence that genetic background between paediatric and
adult MS is similar, while children with ADS seem to have a different
and still not well-defined genetic profile [69].

Data from large Canadian prospective studies proved that children
with HLA DRB1*15 alleles have increased risk of developing MS after
an ADS (OR=2.32-2.7) [70,71]. Interestingly, this association has been
established only in children of European ancestry. HLA-DRB1*15 has
been described as a risk factor for early-onset MS in a Scandinavian
population [72], while in an Australian cohort it seems to be associated
with a reduced age at onset only when combined with HLA-
DRB1*04:01. The same authors found that HLA-DRB1*04:01 may
delay age at onset when combined with HLA-DRB1*08:01,
highlighting the effect of possible epistatic interactions on MS onset
[73]. In a Korean population, close linkage of DRB3*02, DRB1*13 and
DQB1*03 was also associated with the risk of childhood MS, but the
sample size is not sufficient to establish those associations [74].

Part of the above mentioned findings were also confirmed in the
Hellenic population [37]. Patients with early-onset MS had
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significantly higher frequencies of the DRB1*15 allele (OR=2.653) and
significantly lower of the DRB1*11 allele (OR=0.448). HLA-DRB1*16
allele was found significantly absent in the paediatric group (p=0.011),
while HLA-DRB1*11 allele was significantly lower in the adolescent
group (OR=0.204). Adult-onset MS (above 20-years-old) was
characterized by significantly higher HLA-DRB1*15 allele frequency
(OR=2.653) and significantly lower DRB1*11 allele frequency
(OR=0.462).

Patients with adult-onset disease onset had a significant increased
frequency of DRB1*16 allele versus patients with paediatric onset
(p=0.004).

Patients with adolescent onset MS showed increased frequency of
the DRB1*16 allele than the paediatric group (p=0.009).

Gender and HLA-Genotype: It is common knowledge that MS
affects more women than men, with a female to male ratio as high as
3:1 [75], with an increasing trend established in many prospective
studies [15]. However, when examining each type of MS ratios are
quite different: in Relapsing Remitting (RR)/Secondary Progressive
(SP) MS patients sex ratio is similar to the overall ratio (2.5:1), while in
the Primary Progressive (PP) MS group distribution among sexes is
almost equal (ratio 1.2:1). Concerning RRMS, men seem to experience
a more malignant form of the disease compared to women, as they
have a more rapid accumulation of disability and a poorer recovery
after relapses [76]. Interesting data correlate HLA genotype to gender,
suggesting that HLA-DRB1*15:01 haplotype seems to be female
specific, meaning that among affected individuals, the female-to-male
ratio was significantly higher in the presence of HLA-DRB1*15
[77-79]. A maternal parent of origin effect has also been established; in
other words, a significant over-transmission of the maternal HLA-
DRB1*15 allele.

Epitope spreading and HLA-Genotype: Multiple Sclerosis, as an
autoimmune disease, is caused by an inappropriate T-cell response
against various autoantigens (Myelin Basic Protein, Myelin
Oligodendrocyte Protein and Proteolipid Proteins are the most
pronounced ones), which leads to the initial attack of demyelination.
As the inflammatory process goes on, T-cell activation spreads to other
epitopes of the same antigen (intramolecular epitope spreading) or to
other antigens (intermolecular epitope spreading), possibly sharing
similar physicochemical features to the initial (trigger) autoantigen, a
phenomenon called molecular mimicry. Epitope spreading has been
found to play a role in MS pathophysiology both in animal models and
among MS patients [80]. There is plenty of data from animal MS like
models supporting the hypothesis that specific HLA risk alleles hold a
vital role in the immunological processes of autoantigen presentation
and epitope spreading, which guide the inflammatory procedure in MS
[5]. HLA-DQB1*06:02 along with DRB1*15:01 are the best studied
alleles which seem to boost pathogenic autoimmunity via targeting the
above mentioned autoantigens. Despite really intriguing, these data
still remain to be confirmed in studies among human populations so as
to explore if epitope spreading is a crucial link of HLA’s contribution to
MS pathogenesis.

Clinical course and HLA-Genotype
The clinical course of MS is diverse. Most patients (around 85%)

experience a chronic disease with relapses and remissions (RRMS),
which after an unpredictable period of time changes to a progressive
type (SPMS) in about 75% of patients. In only 15% of patients the
disease may follow a progressive course from the onset (PPMS) [81].

One of the main problems when facing MS patients is our difficulty to
predict the disease course; in other words to personalize prognosis.
HLA genotype may play a key role in identifying those patients prone
to a better or worse clinical outcome.

HLA genotype and especially HLA-DRB1*15:01 has frequently been
associated with markers of disease severity, acting as a disease modifier
[37,82]. MS patients carrying the HLA-DRB1*15:01 haplotype are
more likely to be female and have earlier age at onset [83,84], while
disease course [85] (as expressed by Expanded Disability Status Scale-
EDSS- score), spinal cord pathology [17] (in terms of demyelination
and inflammation), motor cortical demyelination [86], loss of brain
volume and cognitive decline all seem to be more severe [87].

However, a big family based, case-control study by Barcellos et al.
[34] failed to reproduce the above mentioned findings.

Two case control studies [88,89] suggest that disease course of MS
may be influenced by the presence of alleles encoding HLA-DR
molecules containing specific amino-acids in positions important for
antigen binding. These alleles have been found to protect against the
development of a relapsing–remitting course or increases the
susceptibility to a primary progressive course of disease, or both.

These findings have been partially confirmed from a molecular
point of view by Kumar et al. [90], as they found that in a Sardinian
population protective allele HLA- DRB1*16:01 (in contrast to
predisposing one DRB1*15:01) may discriminate between self and
non-self-peptides, thus modifying the inflammatory procedure and as
a result the disease course.

Cognitive impairment and HLA-Genotype
Multiple sclerosis is a progressive disease of the CNS characterised

by widespread lesions in the brain and spinal cord. The common
cognitive impairment includes deficits in complex attention, efficiency
of information processing, executive functioning, processing speed and
long-term memory [91]. Although cognitive impairment in MS is well
established, less is known about the effect of HLA. Only DRB1*15:01
has been proved to deteriorate cognitive function measured by
neuropsychological tests [87]. HLA-genotype seems to influence
cognitive status and its decline over years not only in MS patients, but
also among healthy populations and in other neurodegenerative
diseases. Payton et al. have found in a healthy population HLA-
DRB1*11:01 to be associated with improved vocabulary ability, while
HLA-DRB1*08:01 was associated with impaired vocabulary ability and
faster rate of decline in addition to impaired memory ability [92].
Furthermore, there is evidence of shared immunopathological
mechanisms between MS and Alzheimer’s disease, as Lambert et al.
have identified HLA-DRB5-DRB1 region as a possible susceptibility
genetic locus for Alzheimer’s disease (OR=1.11) [93]. However, the
authors did not accurately define the gene(s) responsible for this
correlation, due to the complex genetic organization of HLA region on
chromosome [6].

Only few studies have provided evidence connecting cognitive
decline among MS patients with the presence of Oligoclonal Bands
(OCB) in their Cerebrospinal Fluid (CSF).

Patients with OCB seem to perform significantly worse on both
visual and verbal memory compared to patients without OCB [94], but
studies with big sample size are needed to establish this finding, given
the rarity of OCB-negative MS. These data may indicate an indirect
connection of HLA with cognitive impairment, if we take into account
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the quite clear association between OCB status and HLA-genotype
(analyzed below).

Brain volume: As far as the characteristic radiological findings of
MS are concerned, these include T2 lesions, postcontrast enhanced
lesions, T1 hypo intensive lesions and global or regional atrophy or
brain volume reduction [95].

HLA-DRB1*15:01 not only deteriorates cognitive function (as
mentioned in the previous section) but also increases radiological
burden, expressed by the above mentioned MRI findings [87]. This
correlation between HLA-DRB1*15:01 genotype and neuroradiological
findings has been reproduced in a prospective study of a PPMS
population [96].

As Healey et al. have proven, HLA-B*44 is associated with higher
Brain Parenchymal Fraction(BPF) and lower T2 lesion volume, what in
other words means that this allele seems to have a protective effect (in
contrast to DRB1*15:01) in terms of MRI disease burden [97].

Except for the brain lesions, HLA-DRB1*15 seems to increase the
extent of both demyelination and inflammation in the spinal cord of
MS patients [17,98].

Oligoclonal bands and HLA-Genotype
Only few studies have provided evidence connecting cognitive

decline among MS patients with the presence of OCB in their CSF.

Patients with OCB performed significantly worse on visual memory
compared to patients without OCB. Evaluation of verbal memory in
MS patients supported a main deficit in information retrieval, followed
by encoding as disability increased, with infrequent storage deficit [94].

The presence of OCB has been also connected with HLA genotype
of MS patients. Mero et al. have shown in a Scandinavian population
that DRB1*15:01 is associated with presence of OCBs in the CSF of MS
patients, while HLA-DRB1*04:04 is associated with increased risk of
OCB negative MS and reduced risk of OCB positive MS [20]. The
above mentioned correlation of HLA-DRB1*15:01 gene with OCB has
been reproduced in Spanish [47], Italian [99] and Japanese (where also
a negative association of HLA-DRB1*04:05 with OCB status has been
found) [16,100] cohorts and confirmed by Goris et al. [101], through a
large study based on data collected from nine countries. The same
authors concluded that patients with MS and high CSF antibody levels,
as characterized by OCB-positive status and/or high IgG index, more
often are female and seem to have a lower age at onset and higher
Multiple Sclerosis Severity Score (MSSS). OCB-status and IgG index
are highly correlated probably reflecting the same immunological
process [102]. Both measurements are useful in the diagnosis and
management of MS, as OCB is the most sensitive method to detect
abnormal antibody production in CSF, while quantitative assessment
of IgG in CSF is much easier and quicker and thus can be used as an
additional diagnostic tool [103].

Other Demyelinating Diseases and HLA Association
Studies

Neuromyelitis optica (NMO)
Neuromyelitis optica represents<1% of demyelinating diseases of

the CNS in Caucasians and it is certainly more common in Asians.
NMO was for many years considered as an opticospinal subtype of MS,
but today a broader disease spectrum (NMO spectrum disorder,

NMOSD) is recognised with standard diagnostic criteria [6]. Studies
regarding NMO and its HLA genetic background have been conducted
mainly in Japanese populations, given the greater frequency of NMO
in Asia.

Researches among Asian populations have found that NMO is
associated with the HLA-DPB1*05:01 allele [104-106] HLA-
DPB1*05:01 is the most common DPB1 allele in Japanese, which may
explain the frequent occurrence of anti-aquaporin-4 antibody (anti-
AQP-4) in Japanese Opticospinal MS (OSMS- subtype of MS in Asians
that shows a selective involvement of the optic nerve and the spinal
cord). However this association has not been reproduced in a
Caucasian population [107], while HLA-DRB1*03 allele is highly
frequent in the NMO-IgG positive patients [108]. On the other hand,
frequency of HLA-DRB1*15:01 was reduced among NMO patients
compared to MS patients fact that indicates a possible protective role
of this allele [109]. This is of great importance, given the role of this
allele in MS risk.

As a conclusion, it is clear that quite different HLA alleles are
correlated to NMO compared to MS patients, resulting to a
distinguished ethnic distribution of these two diseases. The above
mentioned ethnic and consequently genetic discrepancy possibly
reflects different underlying immunopathogenic mechanisms [6].

Acute disseminated encephalomyelitis (ADEM)
ADEM is an inflammatory disorder of the CNS characterized by a

widespread demyelination, predominantly involving the white matter
of the brain and spinal cord. The condition is usually precipitated by a
viral infection or vaccination. The presenting features include an acute
monophasic encephalopathy with multifocal neurologic signs and
deficits. Children are preferentially affected. As specific biological
markers have not been established, the diagnosis of ADEM is still
based on the clinical and radiological findings. Recurrent or
multiphasic forms have been reported, raising diagnostic difficulties in
distinguishing these cases from MS [110,111].

Given the rarity of this condition, no big studies examining its
connection to HLA genotype have been conducted.

Studies on peripheral immunocytes and CSF revealed the presence
of cytokine-mediated responses in ADEM [112]. As the cytokines
profiles are mediated by HLA, it can be speculated a possible
association between ADEM and HLA alleles. Possibly, a T-cell
mediated autoimmune response to myelin basic protein, triggered by
an infection or vaccination, underlies its pathogenesis, as well as the
possible role of HLA-genotype [113].

Still, there is evidence proposing a role of HLA-genotype in the risk
of ADEM. More specifically, ADEM seems to be associated with HLA-
DRB1*01 and HLA-DRB1*17 in the Russian population [7].

Leon et al. [113] found in a Brazilian population significant
association of HLA- DQB1*06:02, HLA-DRB1*15:01 and HLA-
DRB1*15:03 alleles with ADEM monophasic patients. Italian cohorts
provided some further evidence, regarding the role of HLA.
Frequencies of HLA-DRB1*16 and HLA-DQB1*05, as well as the
association of HLA-DRB1*16/HLA-DQB1*05 were significantly
increased in ADEM population compared to the control group [114].
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Response to Treatment
The studies so far show that HLA-genotype plays a vital role in

response to treatment of MS patients. As a result it is of great
importance to study and evaluate every possible aspect of this
correlation, as that would allow us to target and personalize our
therapeutical approaches, thus leading to better outcome.

Interferon-beta (IFN-β) and Glatiramer acetate (GA) are called
Disease Modifying Treatments (DMTs), as they have been clearly
found to reduce relapse rate and delay progression of disability
[115,116]. No significant difference has been found between these two
agents, concerning both the clinical and the neuroradiological outcome
[117-119]. Other agents (including alemtuzumab, natalizumab, and
fingolimod) have been proved to be equally or even more effective, but
these data remain yet to be confirmed in long term trials, regarding not
only their efficacy, but also their safety [120,121].

A number of studies have shown a modest positive correlation
between HLA- DRB1*15:01 genotype and response to GA [122,123].
Furthermore, Gross et al. have identified the additive model of that
association, meaning that individuals homozygous for HLA-
DRB1*15:01 appear to have a longer event-free time when compared
to heterozygous subjects [18].

These findings are of great importance, given the known mechanism
of action of GA [124,125]. As the drug binds to MHC class II
molecules, different HLA alleles (which indicate structural variations
of the MHC molecule) may favor this binding, thus leading to a better
pharmacological and clinical response through a switch in patients’
neuroimmunological profile (Table 1) [126-128].

Drugs HLAa allele Response to treatment Pathophysiology References

Glatiramer Acetate DRB1*15:01 Positive Favors binding of GAb to MHCc

molecules
[122]

[123]

[18]

IFN βd (Regardless of
preparation used)

DRB1*15:01 Negative Anti-IFN antibodies [19]

DRB1*04:01

DRB1*04:08

Negative Anti-IFN antibodies [139]

[140]

DRB1*07:01 Negative Anti-IFN antibodies [141]

IFN β-1b DRB1*04 Negative Anti-IFN antibodies [19]

IFN β-1a i.m.e DRB1*04 Negative Reduces relapses

Delays EDSSf progression

[144]

B*15 Positive

IFN β-1a s.c.g DRB1*03 Positive Reduces relapses

Delays EDSS progression

[145]

DQB1*02 Positive

DQB1*03 Positive

Natalizumab DRB1*13 Negative Anaphylactic/anaphylactoid reactions [148]

DRB1*14 Negative

DRB1*15 Positive

aHLA: Human Leucocyte Antigen; bGA: Glatiramer Acetate; cMHC: Major Histocompatibility Complex; dIFN β: Interferon beta; ei.m.: intramuscular; fEDSS: Expanded
Disability Status Scale; gs.c.: subcutaneous

Table 1: Summary of the effect of HLA alleles on response to treatment.

IFN-β has long been identified as a DMT in MS with a well-
established safety and efficacy profile. It is a fact however that around
40% of the patients is poor- or even non-responders to the drug [129].
The exact mechanism of action remains obscure, although
immunomodulatory effects on B- and T- cells, along with an effect on
Blood Brain Barrier (BBB) are identified. Antibodies against IFN-β
have been largely studied as possible inhibitors of drug action, while
their production seems to be influenced by HLA genotype. Antibodies
prevent IFN-β from effectively binding to or activating its receptor,
thereby blocking its biological effects and inhibiting its favourable
therapeutic outcome, as expressed by relapses and MRI activity
[130-136]. Not surprisingly, antibody development depends on the

IFN-β preparation, as IFN β-1a i.m seems to be by far the less
immunogenic, whereas IFN β-1b and IFN β-1a s.c. seem to be related
with higher percentage of neutralizing antibodies [137, 138].

As Link et al. [19] have shown, HLA-DRB1*15:01 carriers are
associated with increased risk of developing antibodies (OR=1.43,
Pc=0.036) and especially high or so-called biologically relevant titers
(OR=1.58; Pc=0.01), which more effectively block IFN-β efficacy. That
risk seems to follow the above mentioned pattern of IFN preparations’
immunogenicity. In addition, HLA-DRB1*04 carriage was associated
with development of biologically relevant titres (OR 3.53; P=0.029;
AR=28.2%) in patients receiving IFNb-1b. HLA-DRB1*04 (including
*04:01 and *04:08) has been found to increase the risk of developing
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antibodies in two further studies, although the correlation with specific
IFN preparation was not studied [139,140]. Barbosa et al. [141] have
identified HLA-DRB1*07:01 as a risk allele for antibody development,
but this finding has not been reproduced.

Nevertheless, the above mentioned findings have not been
reproduced in two other studies. [142,143].

Lately, HLA-genotype has been proved to directly influence clinical
efficacy of IFN-β, in terms of relapses and progression in the EDSS
during follow up. Mazdeh et al. have found increased frequency of
HLA-DRB1*04 and decreased frequency of HLA-B*15 to be associated
with better response to IFNβ-1a (intramuscular preparation) [144].

Furthermore, HLA-DRB1*03, HLA-DQB1*03 and HLA-DQB1*02
alleles have been found to contribute to better response to IFNβ-1a
(subcutaneous preparation) in an Israeli group consisting of 17 RRMS
patients [145].

Recent studies have identified a possible role of non-HLA genes,
too. Homozygotes for a CD58 variant (rs12044852) which as
mentioned above has been proved to increase MS risk, seem to have a
poor response to IFN-β therapy [43].

Warabi et al. have shown that patients carrying the NMO-specific
HLA-DPB1*05:01 allele showed a poor prognosis following IFN-1b
treatment [146].

Natalizumab is a humanized monoclonal antibody against integrin a
[4] and its biological action is based on blocking migration of T and B
cells into the CNS with a well-established clinical efficacy [147]. Not
only the efficacy, but also the safety of a drug must be taken into
account before choosing the appropriate agent. HLA genotype seems
to influence the possibility of adverse effects among MS patients
treated with Natalizumab. Individuals carrying HLA-DRB1*13 and
HLA-DRB1*14 alleles seem to have higher risk for developing
natalizumab-related anaphylactic/anaphylactoid reactions, while on
the other hand, HLA-DRB1*15 allele, has a rather protective effect
[148]. Another aspect that we should not ignore is the risk of
natalizumab-associated progressive multifocal leukoencephalopathy
(PML). Positive anti-JC virus antibody status (among other factors,
including prior use of immunosuppressants and duration of treatment)
clearly increases the possibility of PML during or after the treatment
with Natalizumab, Consequently, the stratification of patients
regarding their anti-JC antibody status is a measure that allows us to
individualize our therapeutic approach [149].

McKay et al. have identified that transcription factors EOMES and
TBX21 (ET) can be used as clinical biomarkers to predict response to
Natalizumab, as their expression significantly increases during the
treatment with this drug reflecting its efficacy [150].

Towards personalized therapeutics in MS
For over 30 years now HLA genotype has been established as a key

risk factor for MS. HLA-DRB1*15:01 is the best studied allele (from
animal model studies to big MS-case control studies) and it seems to
influence every aspect of the disease: its role is crucial in MS initiation
and pathophysiology, clinical course and, last but not least, response to
treatment. During the last 15 years it has become possible to widely use
the methods of molecular biology, so as to perform population based
studies (GWAS), which have revealed not only the differential
distribution of HLA alleles among different populations, but also more
HLA alleles (other than HLA-DRB1-15:01) closely correlated to MS.

Using GWAS studies we are capable to know the HLA background
of every population studied. These data combined with clinical and
radiological findings make the stratification of MS patients a plausible
goal and the individualized therapeutic approach the main clinical
challenge nowadays.
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