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 RESEARCH Open Access 

HLA mismatches and hematopoietic cell transplantation: 
structural simulations assess the impact of changes in pep-
tide binding specificity on transplant outcome 

 
Abstract 
The success of hematopoietic cell transplantation from an unrelated donor depends in part on the degree of 
Human Histocompatibility Leukocyte Antigen (HLA) matching between donor and patient. We present a 
structure-based analysis of HLA mismatching, focusing on individual amino acid mismatches and their ef-
fect on peptide binding specificity. Using molecular modeling simulations of HLA-peptide interactions, we 
find evidence that amino acid mismatches predicted to perturb peptide binding specificity are associated 
with higher risk of mortality in a large and diverse dataset of patient-donor pairs assembled by the Interna-
tional Histocompatibility Working Group in Hematopoietic Cell Transplantation consortium. This analysis 
may represent a first step toward sequence-based prediction of relative risk for HLA allele mismatches. 

Background 
 

Unrelated hematopoietic cell transplantations (HCTs) 

involving perfectly matched patient-donor pairs generally 

have higher success rates than those between patients and 

donors mismatched at one or more loci [1-4]. As HLA-

matched donors are only available for a minority of pa-

tients, there is considerable interest in distinguishing 

HLA mismatches that significantly increase the risk of 

complication (nonpermissive mismatches) from those 

that do not (permissive mismatches). One approach has 

been to look at HLA mismatches in terms of the set of 

amino acid mismatches present, with the goal of identify-

ing specific amino acid mismatches that are associated 

with increased risk [5,6]. Knowledge of general patterns 

at the level of amino acid mismatches could allow esti-

mation of risk even for allele-level mismatches with in-

sufficient prior clinical data. Here we investigate the con-

nection between HLA mismatching and transplant out-

come, using structural predictions of HLA-peptide inter-

actions to characterize the impact of amino acid mis-

matches on peptide binding specificity divergence, a po-

tential mediator of T-cell alloreactivity. Using a large and 

diverse clinical dataset assembled by the International 

Histocompatibility Working Group in Hematopoietic 

Cell Transplantation consortium, we find support for the 

hypothesis that residue-level mismatches predicted by 

structural modeling to perturb HLA-peptide binding 

specificity are associated with increased mortality risk.  

 

To predict the effect of a single amino acid mismatch on 

HLA-peptide binding specificity, we build structural 

models for a pair of HLA sequences that differ only by 

the mismatch in question. One sequence is taken from a 

naturally occurring HLA allele; the other is a mutated 

variant which may not match the sequence of a known 

allele. Flexible-backbone peptide docking simulations are 

performed against each of these protein models, and 

binding specificity profiles are inferred from the output 

of these simulations. The magnitude of the difference 

between these predicted binding profiles is taken as the 

predicted specificity divergence induced by the given 

mismatch. 

 

To assess the impact of binding specificity changes on 

transplant outcome, we compared predictions of induced 

binding specificity divergence for a set of common 

amino acid mismatches in the HLA-C locus with mortal-

ity risk factors for those mismatches estimated from the 

clinical dataset. This comparison identified a significant 

correlation between the magnitude of the binding speci-

ficity change induced by a mismatch and the mortality 

risk associated to that mismatch. The validity of this 

analysis depends in part on reasonably accurate estimates 

of peptide binding specificity for HLA sequences and 

their mutated variants. To test the robustness of the ob-

served correlation, we recalculated the binding specificity 

divergences using the neural network peptide binding 

predictor NetMHCpan-2.4 [7], and found again a statisti-

cally significant correlation with mortality risk. Our 

choice of the pan-specific predictor NetMHCpan — 

which is capable of making predictions for novel HLA 

sequences by generalizing from experimental binding 

data for related alleles — was motivated by the need to 

make predictions for HLA-C alleles and allele-variants 

with little or no experimental binding data. The choice of 

a structural approach to HLA mismatching was also mo-

tivated in part by this lack of experimental binding data: 

our structure-based binding predictions rely on estimates 

of peptide-HLA binding affinities derived from physico-

chemical potential energy functions and atomically-

detailed molecular models. Furthermore, atomic level 
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simulations of HLA-peptide complexes provide addi-

tional valuable information beyond binding affinity [8], 

such as structural insight into differences in binding 

specificity and changes in peptide binding modes, also 

thought to be a factor in T-cell alloreactivity [9]. 

 

Structural features have been used previously to quantify 

mismatching between HLA molecules [10-12]. Although 

structure-based algorithms have been applied success-

fully in certain clinical settings [13], studies have ques-

tioned their effectiveness in the context of HCT [14,15]. 

Kawase and co-workers identified six amino acid mis-

matches associated with increased risk of acute graft-

versus-host disease [6]. They then characterized these 

mismatches with respect to three physicochemical prop-

erties of amino acids: hydropathy, isoelectric point, and 

molecular weight, and found that four of the mismatches 

were characterized by a large change in hydropathy, 

while a fifth resulted in a significant change in the mo-

lecular weight of the mismatched amino acid. The predic-

tive value of these physicochemical properties in distin-

guishing permissive from non-permissive amino acid 

mismatches was not assessed, however. 

 

Results 
As described in detail in the methods section, we as-

signed a relative mortality risk factor to each residue-

level mismatch in the HLA-C locus based on analysis of 

1,110 unrelated patient-donor HCT pairs. For example, 

we assigned a risk factor of 1.21 to the mismatch F ver-

sus Y at position 99, and a risk factor of 0.92 to the mis-

match of G versus R at position 91. These relative risk 

factors compare the mortality risk for patients with the 

given mismatch to the mortality risk for patients without 

that mismatch but still mismatched elsewhere at the HLA

-C locus. All patient-donor pairs analyzed were perfectly 

matched at HLA-A, B, DRB1, DQB1, and the other HLA

-C allele (termed 9/10 matched pairs). To reduce noise in 

these averaged risk factors, we restricted our analysis to 

mismatches with high counts in the clinical dataset 

(details in Methods). 

 

We then used structural modeling methods to analyze the 

impact of each mismatch on peptide binding. We com-

puted peptide-binding specificity profiles for an HLA-C 

protein containing one of the two mismatched residues at 

the relevant position, and for that same protein after mu-

tating that position to the other residue. We compared the 

resulting profiles to yield a prediction of binding speci-

ficity divergence associated with that mismatch. This 

structural modeling calculation was done using as a tem-

plate protein both of the two HLA-C proteins with solved 

X-ray crystal structures, C*03:04 and C*04:01 (PDB ids 

1efx [16] and 1qqd [17], respectively).  

 

Figure 1 summarizes the results of these binding specific-

ity calculations for the two templates. For each residue 

mismatch, the impact of that mismatch on amino acid 

preferences is shown for each of the nine peptide posi-

tions. The total predicted change in specificity — the 

sum of the nine positional changes — is shown in the 

final column. From these plots one can see that the speci-

ficity changes tend to be localized to a single position or 

a few consecutive positions. Some mismatches, such as 9 

S/Y, affect the N-terminus of the peptide, while others, 

such as 77 S/N, affect the C-terminus, and these patterns 

generally reflect the location of the corresponding HLA 

positions relative to the peptide. For example HLA posi-

tion 9 forms part of the pocket for the first anchor posi-

tion (P2), while position 77 makes contacts with the C-

terminus of the peptide. These specificity changes can be 

further investigated by examining the structural models 

produced by the binding prediction algorithm. Figure 2 

illustrates structural interactions underlying the predicted 

changes in peptide binding specificity for two mis-

matches with large predicted divergences, 116 F/S and 

152 E/A. 

 

We next asked whether amino acid mismatches predicted 

to induce larger changes in binding specificity were asso-

ciated with increased clinical risk factors. Figure 3 shows 

a plot of the relative mortality risk for each mismatch (y-

axis) versus our structure-based prediction of peptide 

binding specificity divergence (x-axis; Supplementary 

Table S1). Although far from perfect, there is a clear cor-

relation between the two measures, with Pearson's linear 

Figure 1 - Structure-based predictions of peptide binding specificity divergence. For each analyzed mismatch, the per-position binding profile divergence 

induced by that mismatch is indicated by the shade of gray in the corresponding box (white indicates no change; darker colors reflect positions at which the 

amino acid preferences are significantly changed by the mismatch), and the predicted total change in binding specificity is shown in the final column. 
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correlation coefficients of 0.371 (P-value 0.09) and 0.425 

(0.048) for the predictions made using C*03:04 and 

C*04:01 structures, respectively, as template. This sug-

gests that divergence in peptide-binding specificity may 

be a contributor to mortality risk after transplantation, 

perhaps through alloreactivity of donor T-cells towards 

peptides presented by patient HLA molecules but not by 

donor antigen presenting cells during T-cell development 

in the thymus. We find this degree of correlation promis-

ing for several reasons. First of all, the structural model-

ing, while state-of-the-art, has significant limitations (see 

Discussion) that may impact the accuracy of our binding 

predictions. In addition, the peptide-binding specificity 

change induced in a single template, even if correctly 

predicted, will not necessarily correlate with binding 

specificity changes induced in other templates with dif-

ferent intrinsic binding preferences, whereas the clinical 

risk factors represent averages over many different allele-

level contexts for each mismatch. At the same time, none 

of the residue-level mismatches occur in isolation in any 

given patient-donor pair; they co-occur with other amino 

acid mismatches that may also affect outcome. Some of 

Figure 2 - Structural basis of binding specificity divergence. Left: Differential PFMs [8], showing, for each position, the amino acids predicted to bind one 

HLA variant more favorably than another. The height of each column is proportional to the specificity divergence at that position; the difference in amino 
acid frequencies determine the height and order of the corresponding letters. Mutation of position 116 from F to S reduces preference for H, M, and L at 

peptide position 9 and increases preference for Y and F (upper panel); mutation of position 152 from E to A reduces preference for small polar amino acids at 

peptide position 7 while increasing preference for aromatics (lower panel). Structural models (second and third columns) suggest plausible connections be-

tween HLA sequence mismatches and peptide binding preference. Y9 can form hydrogen bonds with S116, and S7 with E152; hydrophobic interactions drive 

preferences of proteins with F116 and A152 (peptide backbone is shown in green, interacting peptide and HLA side chains are depicted in yellow and pink, 

respectively; for clarity, peptide positions are denoted in bold while HLA positions are italicized). 

Figure 3 - Correlation between clinical risk factor and structure-based predictions of peptide binding specificity divergence for single amino acid mismatches 

(Pearson's linear correlation coefficients (    ), Spearman's rank correlation coefficients (    ), and the corresponding P-values are indicated). 
Pr rS
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these correlations can be quite strong: the 77 N/S and 80 

K/N mismatches co-occur across almost the entire     

dataset, as do the 103 L/V and 173 E/K mismatches. This 

complicates the attribution of risk to individual mis-

matches. We predict a larger effect for mismatches at 

position 77 than for mismatches at position 80, whereas 

their clinical risk factors are essentially identical (thus 

even a perfect prediction of mismatch-induced specificity 

divergence would correlate poorly with risk when re-

stricted to these positions). Lastly, the extent to which per

-position specificity divergences (Figure 1) affect the 

mortality risk is, likely, position-dependent, and        

quantitatively similar changes in binding preference at 

two peptide positions might be related to different, if not 

opposing, clinical outcomes. 

 

Disease severity 

In the preceding analysis, the risk factor associated with a 

given mismatch is simply the ratio of the mortality rate 

for patients with that mismatch to the mortality rate for 

patients without the mismatch. To minimize the impact 

of non-genetic factors, we have focused on frequently 

occurring mismatches; mortality rates assigned to these 

mismatches are calculated over large sets of patients and 

are therefore less sensitive to stochastic noise. A more 

refined statistical assessment of the mortality risk associ-

ated with residue-level mismatches would take into ac-

count disease severity at the time of transplantation, cor-

relations between HLA sequence positions, treatment 

regimen, and other relevant clinical factors. Although 

such an analysis is beyond the scope of this article — the 

primary goal of which is to present our structural ap-

proach to HLA mismatching — we sought to assess the 

potential effect of a more refined analysis on the ob-

served correlations. Given that disease severity is an im-

portant non-genetic factor influencing patient mortality, 

we recalculated risk factors for our set of high-counts 

mismatches after removing all patients with severe dis-

ease (based on a three-level classification of disease se-

verity). Encouragingly, we found improved correlations 

between these revised mortality risk factors and the 

specificity divergences predicted from structural      

simulations (Figure 4). While not conclusive, this result 

points to the benefits of future statistical analysis of               

residue-level mismatching, and further supports a role for 

binding specificity divergence in transplant outcome. 

 

Comparison with NetMHCpan  

The divergence in peptide binding specificity between 

two HLA molecules can be also inferred from predictions 

of peptide binding affinities for the two proteins.  Unlike 

binding profile divergence, such a measure does not as-

sume an underlying binding model; thus it allows a direct 

comparison between different prediction methods. Corre-

lation of predicted peptide binding affinities was used by 

Nielsen et al. [18] as a distance measure to cluster HLA 

proteins according to their specificity profiles. Here, it is 

used to compare the structure-based predictions with 

those obtained using NetMHCpan-2.4, a state-of-the-art, 

neural-network-based predictor [7]. Specifically, we pre-

dicted binding affinities for a set of 10,000 random pep-

tides to the native C*03:04 or C*04:01 sequence as well 

as to sequences mismatched at a single position, using 

either NetMHCpan or the structure-based PFMs.  Fol-

lowing Nielsen et al. [18], we then defined the diver-

gence associated with a mismatch as   , where  

    denotes the Pearson correlation between the sets 

of predicted binding affinities for the ―wild type‖ and the 

mismatched sequences. The structure- and NetMHCpan-

based divergences are highly correlated (Pearson correla-

tion coefficients of 0.802 and 0.611 for C*03:04 and 

C*04:01, correspondingly), attesting to the validity of the 

structural simulations. Importantly, the correlations be-

tween predicted divergence and mortality risk for these 

two approaches are similar (Figure 5), supporting the 

importance of peptide binding specificity divergence in 

transplant outcome. It should be emphasized that the 

NetMHCpan software was developed for the purpose of 

predicting binding of peptides to naturally occurring 

HLA alleles as opposed to the singly-mutated protein 

sequences necessarily used here in order to estimate the 

impact of individual residue mismatches. An analysis of 

binding specificity divergence focused on allele-level 

rather than amino-acid mismatching — while not directly 

Figure 4 - Refined clinical risk factors (excluding high-risk patients) show improved correlation with structure-based predictions of binding specificity diver-

gence. 

rP
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comparable to the structural simulations — might be ex-

pected to take greater advantage of this widely used soft-

ware package. Such an analysis is complicated, however, 

by the challenge of assigning reliable clinical risk factors 

at the allele level, rather than the residue level, since the 

patient-donor counts are much lower (none of the allele-

level pairs meet our high-counts threshold of 100 mis-

matches in each orientation; only three allele-pairs ex-

ceed 20 mismatches). 

 

Discussion 
In this study, we have used structural simulations to in-

vestigate the role of peptide binding specificity diver-

gence in transplant outcome. By analyzing a large set of 

patient-donor pairs, we assigned mortality risk factors to 

individual amino acid mismatches in the HLA-C gene. 

We then used structural modeling simulations to predict 

the binding specificity changes induced by each of these 

mismatches. We found significant correlations between 

the magnitude of these predicted specificity changes and 

the mortality risk factors derived from the clinical data-

set. For comparison, we also computed binding specific-

ity divergences for all mismatches using the neural-

network predictor NetMHCpan-2.4. These predicted 

specificity divergences also correlate with mortality risk, 

further supporting the role of peptide binding divergence 

in transplant outcome.  

Structural modeling offers several advantages as a tool 

for investigating HLA-peptide interactions. The predicted 

divergences in binding specifity can be decomposed into 

positional contributions (Figure 1), and the structural 

basis for these positional contributions can be explored 

by analysis of structural models of low-energy HLA-

peptide complexes with and without the mismatch of 

interest (Figure 2). Extending the work presented here, 

the impact of mismatches on HLA-KIR and HLA-TCR 

interactions could be examined using existing structural 

data for these complexes. These peptide-HLA binding 

simulations also have important limitations: the HLA 

backbone is held fixed throughout the simulations (the 

sidechains near the peptide can rearrange); the force 

fields that are used were parameterized for monomeric 

protein structure prediction and design, and likely could 

be substantially improved for modeling protein-peptide 

interactions; modeling simulations focused on binding of 

9-mer peptides, and — in order to focus conformational 

sampling — the peptides were initially constrained to 

sample canonical positions for the anchor residues 

(positions 2 and 9, although these could shift during the 

high-resolution refinement stage), potentially skewing 

the results if peptides with non-canonical binding are 

important. We are currently working to extend the HLA-

peptide modeling simulations — by incorporating limited 

HLA backbone flexibility, for example — to address 

Figure 5 - The correlation between NetMHCpan-2.4 predicted divergence and refined clinical risk factor (lower panel) is similar to that obtained using struc-

ture-based PFMs (upper panel). Divergence is defined, for both methods, in terms of the Pearson's correlation coefficient between predicted affinities for the 

wild type protein (either C*03:04, left, or C*04:01, right) and a protein mismatched at a single position. 
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these limitations and thereby more accurately model 

changes in HLA-peptide binding preferences. 

 

Critical for clinical application would be a method for 

arriving at predictions of risk for allele-level mismatches. 

If sufficiently robust and accurate, this might allow rank-

ing of candidate donors in cases where a perfectly 

matched donor cannot be found. The simplest approach 

would be to add the predicted binding specificity diver-

gences for each amino acid mismatch found in the allele-

level mismatch of interest to arrive at a single prediction 

of total binding divergence. Examination of the patterns 

of binding specificity divergence per peptide position 

shown in Figure 1 suggests one subtlety that should be 

considered in combining predictions: mismatches that 

affect the same peptide positions would be expected to 

combine differently from those that affect different posi-

tions. For example, if two mismatches both perturb bind-

ing at position 2, then the combined effect will likely be 

less than the effect of combining a mismatch that per-

turbs binding at position 2 with one that perturbs position 

9. In the latter case, both positions 2 and 9 will likely be 

perturbed (hence summing the predictions might be ap-

propriate), whereas in the former case the combined ef-

fect might be closer to taking the maximum of the two 

individual predictions. 

 

In addition to predicting risk factors for patient-donor 

allele mismatches, we anticipate that further molecular 

modeling of HLA-peptide interactions, together with 

more sophisticated analysis of clinical risk factors in the 

dataset, may lead to insights into the mechanisms of graft

-versus-host disease, graft rejection, and related compli-

cations. By analyzing peptide binding specificity changes 

independently from changes to the HLA-TCR and HLA-

KIR interaction surfaces, structural analysis has the po-

tential to probe the molecular basis of clinical outcomes, 

generating experimentally testable hypotheses regarding 

disease processes. 

 

Methods 

In order to investigate the effect of divergences in HLA-

peptide binding specificity on transplant outcome, we 

applied a structure-based protocol for predicting peptide-

HLA interactions to a large set of variant HLA molecules 

derived from HLA-mismatched patient-donor pairs. We 

sought to test the hypothesis that patient-donor pairs 

whose mismatched alleles are predicted to have divergent 

peptide-HLA binding specificity might be at greater risk 

for negative outcomes after transplantation. To compare 

structural modeling to clinical data, it was necessary to 

reduce the clinical data and patient-donor genotypes data 

down to a manageable set of relatively robust statistics. 

To do this, we reduced each patient/donor pair to a set of 

mismatched residues together with a binary survival out-

come. For each residue mismatch (for example, A/T at 

position 73) we combined outcomes data from all patient/

donor pairs having that mismatch in order to arrive at a 

single statistic for the relative risk associated with that 

mismatch (details and rationale are given below). To 

make a structure-based prediction of the degree of 

change in peptide binding specificity associated with that 

mismatch, we performed peptide binding simulations on 

proteins having either of the two mismatched residues at 

the position of interest (for example, either an A or a T at 

position 73), and on those same proteins after introducing 

the mutation of interest in the HLA sequence. We com-

pared the peptide binding specificity profiles before and 

after performing the mutation using a standard distance 

metric for probability distributions; the numerical result 

of this comparison was taken as the structural prediction 

of the magnitude of peptide binding specificity change 

associated with that mismatch. 

 

Structure-based prediction of peptide binding profiles 
To generate a peptide binding specificity profile for a 

given HLA molecule, we perform twenty thousand inde-

pendent, flexible-backbone peptide docking simulations. 

These simulations differ from standard docking simula-

tions — which seek to predict the bound structure of a 

complex from the structures of the individual compo-

nents [20] — in that the sequence of the peptide, as well 

as its internal structure and orientation relative to the 

HLA molecule, is optimized during the simulation. This 

sequence optimization is accomplished by incorporating 

protein design algorithms [21] into the docking protocol. 

By combining simultaneous sequence and structure opti-

mization we can identify high-affinity peptides with a 

variety of binding modes. The final, optimized peptide 

sequences are compiled into a position-specific fre-

quency matrix (PFM) that serves as our representation of 

the predicted binding specificity. 

 

Each independent modeling simulation proceeds in two 

stages. In the first stage, a low-resolution backbone 

model for the peptide bound to the HLA is built by a 

Monte Carlo simulation that combines sampling         

techniques from protein-protein docking, loop modeling, 

and de novo structure prediction. The peptide sequence is 

randomized at the start of each simulation and held fixed 

throughout the low-resolution simulation. The backbone 

of the peptide is built outward from the two canonical 

anchor positions (residues 2 and L for a peptide of length 

L) by assembling 3-residue fragments from proteins of 

known structure and similar local sequence (fragment 

assembly [22]); a break in the peptide backbone is intro-

duced at a randomly selected location between the two 

anchor positions to allow independent sampling of the 

two halves, and loop closure algorithms are applied to 

close the chainbreak after each sampling step [23]. The 

orientation of the anchor positions is sampled by docking 

moves that replace the orientation in the current model 

with an orientation derived from a peptide-HLA complex 

of known structure. This guarantees that the anchor resi-

dues will sample canonical pockets in the HLA. The low-

resolution simulation is conducted with a backbone-only 

representation of the peptide and HLA, in the context of a 

knowledge-based scoring function that incorporates resi-

due environment and pair interaction preferences and a 

soft van der Waals term to prevent atomic overlaps [22]. 

 

The low-resolution modeling stage is followed by a sec-

ond, high-resolution refinement stage. In this stage, all 

sidechain atoms (including hydrogens) are added to the 
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low-resolution backbone model, which is subsequently 

refined with a Monte Carlo plus Minimization (MCM) 

optimization procedure in a more realistic molecular me-

chanics force field [24]. Each move in this MCM optimi-

zation consists of a Monte Carlo perturbation to the cur-

rent conformation or to the sequence of the peptide fol-

lowed by gradient-based minimization; moves are ac-

cepted or rejected according to the Metropolis criterion 

[25]. The sequence of the peptide is sampled during this 

refinement simulation through the use of peptide        

mutation MCM moves. The sequence of the peptide at 

the end of the refinement simulation is saved, and the list 

of all final peptide sequences is compiled into a per-

position amino acid frequency profile, illustrated graphi-

cally by the logo representation [26] at the bottom right 

of Figure 6. Within each column the amino acids are or-

dered from top to bottom by frequency of occurrence; the 

height of each letter is proportional to the frequency of 

that amino acid in the PFM at that position. 

Comparing peptide binding profiles  

Figure 7 illustrates the process of combining these mod-

eling simulations to arrive at structure-based predictions 

of binding specificity divergence for amino acid mis-

matches. Starting from a ―wild type‖ C*04:01 template 

with F at position 116, we conduct a binding specificity 

calculation as described above to arrive at the binding 

profile on the top left. We then mutate HLA position 116 

to S, and recalculate a binding profile. This mutation 

slightly perturbs the wild type binding specificity profile 

by shifting the frequencies of certain amino acids at cer-

tain positions (for example, the frequency of Y is in-

creased at position 9, corresponding to a predicted in-

crease in affinity for Tyrosine at this position); the abso-

lute magnitude of these frequency changes is shown on 

the top right of the figure. For each of the 9 peptide     

positions in the profile, we compute the divergence be-

tween the wild type profile at that position and the mu-

tant profile using the Jensen-Shannon divergence, a stan-

dard metric for comparing probability distributions [27]. 

This metric combines the differences in frequencies for 

each amino acid in the wild type and mutant profiles into 

a single number reflecting the overall divergence be-

tween the two amino acid     frequency distributions. The 

results of these 9 comparisons are shown in the graphic 

on the bottom right, with white corresponding to little or 

no change in the binding preferences, and darker shades 

of gray reflecting larger changes. In this way we can see 

clearly that the predicted change in binding specificity 

induced by the F116S mutation is primarily localized to 

position 9 of the peptide. The sum of the 9 per-position 

divergences is taken as our prediction for the total bind-

ing specificity change induced by this mutation. 

 

Clinical dataset  
We analyzed a dataset of 1,110 patient-donor pairs for 

which the patient and donor were mismatched at a single 

HLA-C allele, and matched at the other HLA-C allele 

and at the HLA-A, B, DRB1, and DQB1 loci (referred to 

as ―9/10 pairs‖ for HLA-C); complete HLA-C protein 

sequences were available for each pair. Focusing on the 

9/10 pairs facilitated identification of correlations be-

tween specific mismatches and outcome. As a measure of 

clinical outcome we focused on patient survival. Thus, as 

input for our analysis we had, for each patient-donor pair, 

two aligned HLA-C sequences and a single binary out-

come variable. We mapped each pair to the set of residue

-level mismatches (e.g., A/T at position 73, L/T at posi-

tion 116, R/W at position 156, etc.) between their HLA-C 

proteins. We then tallied for each mismatch the total 

number of pairs with that mismatch, and the overall mor-

tality rate for those pairs. We initially preserved         

Figure 7 - Prediction of binding specificity changes induced by the F116S 

amino acid mismatch. Predicted binding profiles are shown on the left as 

logo plots for the wild type C*04:01 template protein and for the same 
protein after mutating position 116 from F to S. Absolute changes in amino 

acid frequencies across all peptide positions are shown on the top right, 

colored from light green (no change) through black. The total change in the 

amino acid frequency distribution at each position, computed using the 

Jensen-Shannon divergence, is shown in the gray-scale bar on the bottom 

right. 

Figure 6 - Structure-based prediction of peptide binding specificity. Two-

stage modeling simulations explore peptide sequence and structure space to 

identify predicted high-affinity peptides. Binding specificity profiles are 
compiled from per-position amino acid frequencies in these sequences, and 

represented here as logo plots [19], in which the amino acid frequencies 

determine the height and order of the corresponding letters. 
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orientation in this analysis, i.e., we separated A/T mis-

matches at position 73 according to whether the patient 

had A and the donor T, or vice versa. This revealed strik-

ing asymmetry in mortality rates for a subset of the resi-

due mismatches; for example, transplant pairs in which 

the patient had A and the donor had T at position 73 had 

a significantly lower mortality rate than pairs in which 

the patient had T and the donor had A. As our structure-

based predictor of binding specificity divergence is in-

herently symmetric, we chose to symmetrize the mortal-

ity rates by taking the maximum of the two oriented mor-

tality rates as the single mortality rate for each unoriented 

mismatch. In total, there were 90 distinct oriented amino 

acid mismatches and 50 unoriented mismatches observed 

in the clinical dataset. 

 

Preliminary analysis revealed that certain alleles and al-

lele pairs contributed disproportionately to the dataset, 

which had the effect of potentially skewing mortality 

rates for mismatches that were correlated with these al-

leles. For example, more than half of the 239 patient do-

nor pairs with the 91 R/G mismatch had the C*03:03/

C*03:04 allele-level mismatch. To reduce these biases, 

we computed revised mortality rates for each mismatch 

by randomly sub-sampling the patient-donor pairs con-

tributing to that mismatch so that no single allele-pair 

contributed more than 10 pairs. This sub-sampling was 

repeated 1000 times and the calculated mortality rates 

were averaged to yield an adjusted risk score for each 

mismatch. 

 

For assessing the impact of disease severity, we classi-

fied patients into three groups based on available clinical   

information. Diagnoses and stage of disease were catego-

rized as low, intermediate, and high, with the high-risk 

category consisting of diseases that, on average, perform 

more poorly following transplant compared to the other 

two groups.  The high-risk patients were taken to be any 

disease in relapse, CML in blast crisis, or MDS-RA with 

excess blasts or excess blasts in transformation. 

 

Amino acid mismatch set  

To reduce noise in the clinical risk factors, we restricted 

our analysis to high-counts mismatches, which we define 

as residue-level mismatches with at least 100 occurrences 

in the dataset in each orientation (patient/donor and do-

nor/patient). We computed the predicted binding speci-

ficity divergence induced by a given mismatch by apply-

ing it within the context of a ―wild-type‖ HLA protein of 

known three-dimensional structure, either C*03:04 or 

C*04:01 (PDB IDs 1efx [16] and 1qqd [17], respec-

tively). For this study, we restricted ourselves to amino 

acid mismatches in which one of the two amino acids 

was found in the template protein, although this restric-

tion (which eliminated only a single high-counts mis-

match for each template) could easily be relaxed. For this 

reason, the specific set of mismatches analyzed for the 

two templates is slightly different. The complete set of 

mismatched positions is shown in Figure 8 (see also Sup-

plementary Table S1).  

 

Acknowledgements 

We thank the members of the Rosetta development community for their 

many contributions to the software used in this research and gratefully 

acknowledge superlative computing support from FHCRC PHS IT, 
with special thanks to Jeffrey Katcher, Carl Benson, and Dirk Petersen. 

This work was supported by FHCRC new development funding and a 

Searle Scholars Fellowship (PB) and grants AI069197 and CA18029 
from the National Institutes of Health (EWP, MM).  

The CIBMTR is supported by Public Health Service Grant/Cooperative 

Agreement U24-CA76518 from the National Cancer Institute (NCI), 
the National Heart, Lung and Blood Institute (NHLBI) and the National 

Institute of Allergy and Infectious Diseases (NIAID); a Grant/

Cooperative Agreement 5U01HL069294 from NHLBI and NCI;  a 
contract HHSH234200637015C with Health Resources and Services 

Administration (HRSA/DHHS); two Grants N00014-06-1-0704 and 

N00014-08-1-0058 from the Office of Naval Research; and grants from 
AABB; Aetna; American Society for Blood and Marrow Transplanta-

tion; Amgen, Inc.; Anonymous donation to the Medical College of 

Wisconsin; Astellas Pharma US, Inc.; Baxter International, Inc.; Bayer 
HealthCare Pharmaceuticals; Be the Match Foundation;  Biogen IDEC; 

BioMarin Pharmaceutical, Inc.; Biovitrum AB; BloodCenter of Wis-

consin; Blue Cross and Blue Shield Association; Bone Marrow Founda-
tion; Canadian Blood and Marrow Transplant Group; CaridianBCT; 

Celgene Corporation; CellGenix, GmbH; Centers for Disease Control 
and Prevention; Children’s Leukemia Research Association; ClinIm-

mune Labs; CTI Clinical Trial and Consulting Services; Cubist Phar-

maceuticals; Cylex Inc.; CytoTherm; DOR BioPharma, Inc.; Dynal 
Biotech, an Invitrogen Company; Eisai, Inc.; Enzon Pharmaceuticals, 

Inc.; European Group for Blood and Marrow Transplantation; Gamida 

Cell, Ltd.; GE Healthcare; Genentech, Inc.; Genzyme Corporation; 
Histogenetics, Inc.; HKS Medical Information Systems; Hospira, Inc.; 

Infectious Diseases Society of America; Kiadis Pharma; Kirin Brewery 

Co., Ltd.; The Leukemia \& Lymphoma Society; Merck \& Company; 
The Medical College of Wisconsin; MGI Pharma, Inc.; Michigan Com-

munity Blood Centers; Millennium Pharmaceuticals, Inc.; Miller Phar-

macal Group; Milliman USA, Inc.; Miltenyi Biotec, Inc.; National 
Marrow Donor Program; Nature Publishing Group; New York Blood 

Center; Novartis Oncology; Oncology Nursing Society; Osiris Thera-

peutics, Inc.; Otsuka America Pharmaceutical, Inc.; Pall Life Sciences; 
PDL BioPharma, Inc; Pfizer Inc; Pharmion Corporation; Saladax Bio-

medical, Inc.; Schering Corporation; Society for Healthcare Epidemiol-

ogy of America; StemCyte, Inc.; StemSoft Software, Inc.; Sysmex 
America, Inc.; Teva Pharmaceutical Industries; THERAKOS, Inc.; 

Thermogenesis Corporation; Vidacare Corporation; Vion Pharmaceuti-

cals, Inc.; ViraCor Laboratories; ViroPharma, Inc.; and Wellpoint, Inc. 
The views expressed in this article do not reflect the official policy or 

position of the National Institute of Health, the Department of the 

 

Figure 8 - HLA mismatch positions analyzed in this study. The HLA 

molecule (residues 1-181 of PDB ID 1qqd, chain A) is colored blue, with 
mismatch positions colored yellow and shown in stick representation; the 

bound peptide (1qqd chain C) is shown in pink with the anchor residues in 

stick representation. All protein images generated with the molecular 

graphics package PyMol [28]. 
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