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single agents, nevertheless the response seems modest for potential 
clinical use [20-22]. While the possibility of more potent candidates or 
combinations is perceivable, rationale suggests that most, if not all of 
these molecules induce clinical toxicity because of their dissemination 
into and thereby activation of bystander cells that do not harbor the 
virus. In fact, it has been experimentally demonstrated that many of 
the latency reversal agents fail at clinically relevant concentrations 
[23]. Many researchers have suggested focusing on “killing agents” 
such as apoptosis inducers as an alternative over “shocking” agents, as 
the latter would be dependent on downstream viral cytopathic effects 
[24]. However, this may not be a very valuable perception given the 
bystander effect mentioned above, unless the therapeutic index (ratio 
of potency over cytotoxicity) of these killing molecules are very high. 
Isolated attempts to address the therapeutic index were performed by 
using nanoparticles that were aimed to deliver HIV kill agents like 
mellitin to infected cells with minimal cytotoxicity to bystander cells 
[25]. Whether such a potent molecule or a cocktail of potent molecules 
would effectively purge out all HIV by reactivating them from latently 
infected patient cells (leading to the reduction of viral burden in 
ART-suppressed patients), would require a great deal of insights into 
strategies that would effectively reduce their bystander effects and in 
vivo cytotoxicity while retaining potency.
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Editorial
Combinatorial antiretroviral therapy (ART) has successfully 

allowed rapid suppression of HIV replication in patients thereby 
reducing their viral burden [1]. However, ART is not curative and a 
minor fraction of the infected cells revert from their activated state to a 
quiescent state allowing persistence of the virus in the presence of ART 
[2]. These cells harboring the HIV-1 provirus contribute to the latent 
reservoir in patients [3]. Studies have shown the reservoir to be seeded 
very early after the primary infection of the host [4]. The absence of 
any detectable viral biomarkers on the cell surface prevent the cells 
harboring these provirus from detection by the immune system of the 
host, thereby evading the host immune responses and persisting for 
long periods, often the lifetime of the host. Researchers have recognized 
the herculean challenge of eradication of this persistent virus of prime 
importance and have tinkered with multitude of strategies to address 
the problem [5]. One approach that has received enormous attention 
is the “shock and kill” strategy that has used small molecules to induce 
provirus transcription followed by synthesis of HIV proteins and virion 
formation [6]. The premise of the strategy is that the cells harboring 
the virus would eventually die by virus mediated cytopathic effects or 
immune mediated clearance.

The past 5 years have seen a surge of small molecules that have aimed 
to sniff out the hidden provirus out of its hiding cell leading to initiation 
of more than 15 clinical trials as of 2017 [7]. Many of these agents have 
targeted specific signaling pathways in the cell that would cause the cell 
to migrate to an activated state and proliferate. Protein kinase activators 
like Bryostatin, Ingenols and Prostratin were among the initial members 
to demonstrate in vitro activation of engineered cell lines bearing HIV 
proviruses. Their unacceptable cytotoxicity limitations [8,9] prevented 
their trials in vivo or resulted in failure of HIV rebound in performed 
trial [10]. However modified bryostatin analogs with lowered toxicity 
have recently shown promising viral rebound in engineered humanized 
BLT mice [11]. These and similar refinement efforts could lead to 
valuable latency reversal candidates for clinical trials. Other signaling 
modifiers including disulfiram that inhibits PTEN enzyme in the cell, 
thereby targeting the Akt pathway and benzotriazole analogs that block 
the process of SUMOylation of STAT5, a transcription factor, have 
also shown to reactivate HIV [12,13], but were inadequate for robust 
in vivo reactivation or need co- stimulation with cytokines. The most 
extensively studied group of HIV reactivators belong to a class of 
epigenetic modifiers that inhibit an enzyme called Histone deacetylase 
(HDAC inhibitors) in the chromatin of the provirus-bearing cells [14-
16]. A variety of these molecules have shown to reactivate provirus in 
engineered HIV cell lines in vitro and patient samples ex vivo. Clinical 
trials with these agents, albeit have shown modest to no viral rebound. 
Other epigenetic modifiers like bromodomain inhibitors [17,18] and 
SMYD inhibitors (methylation blockers) [19] have also been the target 
for HIV reactivation with limited success so far.

The wide variety of molecules that have been examined for HIV 
reactivation has indeed demonstrated that reactivation of the virus 
from its sleeping state is not achievable in a one-step mechanism. There 
is interdependency of the virus on probably numerous host factors to 
achieve even one single round of virus production. This realization 
did prompt many researchers to attempt combinatorial approaches to 
virus reactivation and even succeed with a better response than using 
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