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Abstract

High throughput sequencing (HTS) technologies were developed into indispensable for genomic investigation and
recent hottest topic for research in the field of genomics, which can generate over 100 times more data in
comparison with the most complicated capillary sequencers. Recent advances and developments in HTS using next
generation sequencing techniques have become essential in the studies of digital gene expression profiling, in
epigenomics, genomics, and transcriptomics. These methodologies are dexterous of sequencing multiple DNA
molecules in corresponding; facilitate hundreds of millions of DNA molecules to be sequenced within a short period
of time. Though, the expenses and time period have been significantly reduced; the inaccurate profiles and
boundaries of the new policy differ considerably from those of earlier reported sequencing techniques. The technical
developments and decreasing cost of NGS (Next Generation Sequencing) technology have made RNA sequencing
(RNA-seq) as a worldwide popular technique for gene expression projects. Various approaches have been done for
the standardization of RNA sequencing data, which have been materialized in the reports, contradictory, both in the
type of bias modification and in the statistical approach. On the other hand, as data persistently build up, there has
been no apparent consensus on the proper normalization techniques to be used or the impact of chosen methods
on the downstream analysis. In the present article, we mentioned the key features of HT-NGS like, Key HTS
platforms and different sequencing applications, ethical limitation and future prospective.
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Background
The advancement of high-throughput sequencing (HTS) techniques

remarkable advances in technologies have fundamentally changed to
understand the genetic and epigenetic molecular bases underlying
human health and plant diseases [1-3]. The influence of these
methodologies was developed from the constant sequencing of
genomic regions of interest, for example, exons and protein binding
sites [4,5]. The methodologies involve dispensation large number of
sequencing reads controlled in unprocessed data sets ranging from a
large number of megabytes to over 25 gigabytes [6]. HTS is a novel and
rapid advanced sequencing technology which is commonly used in
transcriptomics, genomics and epigenomics [7], most recent
advancements and approaches during in the last decades, that
alternative sequencing have been develop into available strategies [8,9]
which emphasis to entirely redefine ‘‘High-throughput Sequencing
Technology.’’ The present technological approaches do better than the
previously reported Sanger-Sequencing tools with a factor of addition
of 100–1000 in day by day throughput, and ultimately, by lowering
expenses of one million (1 Mb) nucleotides to 4-0.1% of that making
sequencing technologies mainstream supplementary through Sanger
sequencing [10,11]. To reproduce massive changes, many researchers,
recent reviews and companies apply the terminology ‘‘NGS” (next-
generation sequencing) as an alternative of high-throughput
sequencing (HTS) [12]. Current developments in sequencing
techniques have been dramatically changed the field of genomics
during the present technological development, making it promising

even particular research members to generate gigantic amount of
sequence data very fast at a considerably subsidized budget and
expenses. These HTS techniques make full genome sequencing,
transcript quantification, resequencing and deep transcriptome
sequencing are available for future researcher.

MicroRNAs (miRNAs) play essential regulatory functions in several
organisms through direct cleavage of transcripts, chromatin
modification or translational repression and modulate gene expression
in both plants and animals. Identification of miRNAs has been carried
out in most plant species [13]. Since the first detection of plant
miRNAs from Arabidopsis, plant miRNAs have been extremely
investigated using experimental and computational techniques [14].
According to miRBase release, the large number of miRNAs were
identified and reached up to 4011 [15]. Due to the significant role of
the miRNAs in plant natural processes, ranging from organ
differentiation to biological and environmental stress responses [16].
The recent advances of computational, analytical and experimental
advancements, attention in these undersized molecules has been
considerably improved during last and resent decades. Up to date,
25141 mature miRNA sequences from 193 various species (viruses to
human) reported in the miRBase catalog. The Plant MicroRNA
repository PMRD, released on June 11, 2012, having 10597 miRNAs
discovered in 127 plant species. Currently HTS with NGS tools
becomes precious in digital gene expression profiling [17]. Many
researchers to recognize and verify the expression of new and
conserved tissue or developmental stage-specific levels of miRNAs [18]
have used these tools. In addition, methylation sequencing and
chromatin immune precipitation sequencing might be helpful to
categorize epigenetic changes, while ribosome sequencing used to
resolve mRNA transcripts are dynamically individual translated.
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Especially, woody plants with high heterozygosity, like in Chinese
bayberry, entire genome sequencing involved long-term and costly; as
a result it is presently limited to only some species. As an alternative, it
has been more helpful to get information of UniGenes throughout
transcriptome sequencing [19,20]. Compared with conventional lab
techniques, RNA-Seq is a HTS technology, overcoming the short
comes of microarrays tools, in exploring unidentified genes. Moreover,
thus having recompense in investigating transcriptome fine structures,
for instance, splice junction variation and detection of allele-specific
expression [21]. In this review, we summarized the useful high
throughput sequencing technologies, their application, limitation and
also the future of HTS.

Key HTS Platforms and Applications
Sanger capillary sequencing: Contemporary SCS extensively used in

the GE Healthcare Mega BACE or Applied Biosystems 3xxx series
instrument are supported by the general similar system were used
during 1977 for the genome (wX174) [22]. Initially, millions of
duplicates of the structure to be indomitable are amplified or purified,
contingent on the sequence basis. Reverse strand synthesis is presented
on these duplicates using an identified priming sequence upstream to
be indomitable and a combination of dideoxy-nucleotides (ddNTP,
modified nucleotides missing a hydroxylgroup in sugar at the third
carbon atom) and deoxy-nucleotides. The non-reversible execution of
the extension reaction, dNTP/ddNTP mixture causes random
producing from the multiple copies of molecules extended to varied
size. Subsequently denaturation and cleanup of free moving enzyme,
primers and the nucleotides, while the resulting molecules are
arranged by their molecular weight (analogous of the point of
termination) and the markers involved to the terminating ddNTPs is
read out successively in order formed by the categorization step. With
the application of existing Sanger sequencing techniques, it is precisely
capable of 384 sequences [23] ranging from 600 to 1,000 nt, in length
[24,25] though, the present 384-capillary systems are exceptional. The
additional ordinary 96-capillary apparatus produce a utmost of more
or less 6 Mb of DNA sequence apiece date, with expenses for
consumables cost about $500/1 Mb.

De novo Sequencing
De novo sequencing is applied for generation of the DNA sequence

from DNA molecule with no any aforementioned knowledge regarding
the sequences. For genome research works, enormously high
throughput level and high-end robotics are mandatory in order to
provide the sequencing workflow. During the last decade next-
generation sequencing technologies considerably emphasized on
"Moore's Law", which predicted that the high throughput of DNA
sequencing in faster rate than the development rate of computer
technology, as researchers face difficulties to smooth load and operate
in computer memory system. There is demand for the de novo
assemblers to capably hold the large scale of sequencing data using
scalable commodity servers in the clouds. Chang, Chen [26], reported
Cloud Brush, analogous algorithm that runs on the Map Reduce
framework of cloud computing high-throughput sequencing data for
de novo assembly. The algorithms apply Myers’s bi-directed string
graphs as its basis and consist of two major phases: graph
simplification and construction. De novo Sequencing applications in
various workflow strategies were developed to perform de novo
sequencing. They include Primer walking, Shotgun sequencing, using

transposons to randomly prime sites for sequencing, PCR
amplification of template, nested deletions and mRNA sequencing.

De novo complete or partial genome sequencing might be address
through a variety of common approaches. Initial generation of
genomic sequence of new species and detailed genetic analysis were
only possible after de novo sequencing has been performed, RNA-Seq
is recently developed as an influential, high-throughput sequencing
technology that used to produce millions of short sequence reads in
short time period by deep sequencing. Long reads are more useful and
paired end reads are essential, which allowing gene expression
profiling that divulge several new transcribed sections; splice forms,
SNPs and accurate localization of transcription boundaries. ESTs are
incomplete sequences retrieved from complementary DNA (cDNA). A
number of ESTs might be produced from a single gene and represent
gene expression in all individual samples [27]. The whole transcription
units representing by Full-length cDNAs are more efficient than
incomplete sequences for genome annotation and transcriptome
analysis [28,29]. Full-length cDNAs chosen and can be developed
stand on the 59-cap, a unique traits of mRNA structure [30,31].
Additionally, the genes expected from the de-novo assemblies have to
be authenticated to guarantee the efficiency of the assembly process.
For the reason that reverse transcriptase PCR (RT-PCR) assist the
detection and quantification of target mRNA transcripts, Kim, Lim
[32] applied RT-PCR techniques to predicted tissue-specific candidate
genes in order to confirm the consistency of transcriptome assembly in
Brassica oleracea. RT-PCR used to explore the tissue-specific genes
discovered by de novo assembly and analysis of deep-sequencing data
could be indicating to experimentally certify the continuation of the
assembled genes. Parallel to adornment the low-quality bases at the
end of reads, amalgamation of the contigs produced by multiple
assemblies could also improve the assembly outcome [33,34]. Tissue-
specific genes are especially practical and expressed in specific cell
types or tissues. Not only experimental validation of de novo
assembled genes, but similarly. Thus, the knowledge directs us to
altitudinal or time-course expression patterns show when and where
particular genes are working. Thus, the evidence allows us to assume
link between chronological or growth stage-specific manifestation,
genes and tissues, and innovative gene functions [32].

Metagenomics
Metagenomics termed as MPS (Massive Parallel Sequencing) of

metagenome DNA exclusive of targeted intensification, facilitate a
significant increase in the capacity of data created. Farther more, the
expenditures of MPS is declining quickly. Untargeted MPS used
extracting entire RNA or DNA from the tissue or population of
interest. cDNA or DNA is afterward sequenced, exclusive of besieged
amplification, using a particularly parallel pyro-sequencing podium,
for instance the Illumina GAIIx. Currently, untargeted Massive Parallel
Sequencing of rumen microbial populace have been discovered various
innovative gene sequences used for deep sequencing of single pooled
sample [35]. Conversely, discrepancies among individuals of the
similar category have not yet been revealed due to in rumen
discrepancy (sampling error) or technical or factual biological
variation. The method developed for evaluation the dissimilarity in
rumen meta-genome contours involves a “reference meta-genome”, for
instance a succession of contig sequences starting from previously
reported experimentations, in which sample sequence reads were
aligned. The “rumen meta-genome profile” is then the total of the
reads that make parallel to every contig. For instance, in the database
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200,000 contigs, the profile vector of counts will be a 200,000 × 1.
These contours can then be analyzed through hierarchical clustering
and bootstrap analysis or linear mixed models [36].

Whole Genome/Targeted Re-sequencing
Targeted genome improvement is influential means for assembly of

the substantial throughput of new DNA-sequencing apparatus. In
present, a scalable and simple procedure for multiplex enlargement of
target regions built on the selector methods. The modernized version
exhibits enhanced exposure and compatibility with NGS library-
construction method for shotgun sequencing through NGS podiums
[37].

NGS techniques, which facilitate the fast production of whole
genome sequences have modernized genetic research [38]. By means
of the materialization of economical work surface of NGS platforms,
genomic investigation are at present being carried out in applied or
translational study labs as a substitute of state-of-the art genome center
[39,40]. Although these technological progress, comprehensive
finishing and de novo sequence (genome closure) assembly persist to
urge researchers [41]. Therefore, outsized incomplete genome
sequences have been launched to databanks [42]. Rationalized
techniques to assemble high-quality whole genome sequences were
needed, particularly in the microbial genomics of Gram-negative
multidrug-resistant, somewhere de novo sequencing technique is
constantly mandatory because of the genetic multiplicity and vibrant
genome reorganization take place [43,44]. WGM utilize single-
molecule restriction examination to acquire results concerning the
magnitude of the control splinter and their substantial positions beside
the DNA strand [45]. Whole genome has been exploit in a number of
functions, which comprised of phylogenetic analyses and genotyping
of associated with microbial isolates [46,47], discovery of outsized
genomic structural rearrangements or variations [48,49], and quality
control or verification for genome sequences which were assembled
[50,51]. Physical genome maps based a restriction also having the
potential to be used as a model for the exact arrangement of NGS
contigs and to assist concluding the spaces between mapped contig.
Meanwhile the term “re-sequencing” used as sequencing tool, which
refers to the act of sequencing several samples from the same group,
where a suggested genome has been reported, and is used to support in
the elucidation of the data composed and used for next generation
sequencing advances. Such as, re-sequencing of human genomes has
been used to discover of both mutations [52], and polymorphisms
[53].

Targeted Region Specific Sequencing
Although most important development in NGS, sequencing data

assembly, particularly from re-emerging pathogens or newly
microorganisms, continue inhibited by the short of appropriate
suggested sequences. De novo assemblage is the dominant technique to
accomplish precise completed sequence, except multiple sequencing
paired-end libraries or platforms are frequently essential to complete
whole genome coverage. Onmus-Leone, Hang [54] introduced the
technology to entire bacterial genome sequences assembled through
assimilating shotgun Roche 454 pyro-sequencing through optical
WGM. The WGRM (whole genome restriction map) is applied as the
orientation to platform assembled sequence de novo contigs
throughout a stepwise development (Figure 1). Outsized de novo
contigs be positioned in the exact order and direction from side to side
alignment to the WGRM. De novo contigs so as not could be aligned

to WGRM were combined into scaffolds with contig branching
assembly evidence (Figure 1). These extensive scaffolds are
subsequently aligned to the WGRM to discover the intersections to be
removed along with the gaps and mismatches to be determined with
unexploited contigs. The procedure was repeated in anticipation of a
sequence with whole reportage and alignments through the full
genome maps were accomplished. Exhausting this technique it is
possible to achieve 100% WGRM coverage exclusive of a paired-end
library [54].

Figure 1: Whole genome restriction map.

Exome Sequencing
Exome is basically the protein coding content of the genetic code,

which includes 1%–2% of the genome in all. While sequencers can
read only so many bases per run, researchers sequencing exomes can
produce more of them more quickly, at the greater resolution and the
lower cost. Exome sequencing developed as DNA-enhancement tools
and extremely corresponding nucleotide sequencing to discover
altogether protein-coding modification in the genome. By regulating
the extent of the experiments to the sequences of protein-coding, about
five percent of human genome was sequenced. Collectively with
developing unrestricted databanks of identified variants, exome
sequencing permits for detection of genetic transformations in models
were considered unsatisfactorily helpful for prior genetic studies [55].
Whole-genome and whole-exome sequencing were extremely
successful in detecting the causes of Mendelian genetics in human.
However, next-generation sequencing (NGS) has also progressed in
identifying causes of genetic conditions [56,57]. The major challenge
coupled along complete exome sequencing is the discovery of the
disease-causing mutation(s) along with profuse hereditary candidate
variants. Fuchs, Peeters-Scholte [58] described a number of approaches
to handle this data wealth, counting association among control
databases, growing number of patients and controls, and tumbling the
genomic region under consideration throughout homozygosity
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mapping. Recently, number of exceptional disarray of copper
metabolism has been introduced with suspected, however unidentified
monogenetic cause, as an attractive target for this approach. It is also
anticipated that the application of these novel technologies will
discover the basic deficiency in disorders illustrated, as well as in other
genetic disorders of metal metabolism, in the next few years.

RNA Sequencing
Experimental miRNA investigation are frequently supplemented by

bioinformatic techniques, are used to develop raw sequencing data,
discover mature sequences, miRNA genes, targets and precursors to
determine isoforms, and organize small RNAs into identified miRNA
families [59,60]. These computational and experimental techniques not
only permit for economical, qualitative and quantitative small RNAs
analysis, they also produce more precise results in a limited time
period [61]. Furthermore, in these sophisticated lab techniques, an
opportunity of novel generation of bioinformatics methodologies has
advanced emerged as necessary requirement to accommodate
supplementary planned progress and enhancement of productivity.
The HT-NGS is one of the enormous contests of genomic study.

Establishment of high-throughput tools and deep sequencing
analysis has allowed the discovery of several miRNAs that are not
preserved or are expressed in low levels, such as those found in
Arabidopsis, wheat, rice, tomato and poplar [62]. RNA-sequencing
(RNA-Seq) is extensively used for genomics study and exploring novel
approaches to analyze the functional involvement of transcriptomes.
Particularly Solexa/Illumina sequencing tools has many benefits as a
revolutionary technology for transcriptome investigation, such as high
exposure at a relatively low expenditure [63]. It has also been used to
study transcriptomes in many plants, such as Arabidopsis, rice and
berry [64,65]. Moreover, the Helicos BioSciences platform is suitable
for applications that require quantitative insight in RNA-seq [66] or
through RNA sequencing, as it sequences RNA templates directly
without the required to translate them into cDNA’s [67].

miRanalyzer
A large amount of algorithms has been used in order to develop

outsized range of data [68,69]. Couple of years back, miRanalyzer was
developed; a technique for the discovery of known microRNAs and
prediction of novel ones in HTS experimentation with entirely
redesigned and includes various novel features. The discovery of novel
microRNAs is essentially significant approach as there are several
species with very limited numbers were identified microRNAs. Hence,
miRanalyzer has been developed as an online browsing tool, which
realize all essential techniques for an inclusive analysis of deep-
sequencing of small RNA molecules [70]. NGS platforms like Genome
SequencerTM FLX or Genome Analyzer (Illumina Inc.) has become
easily available for small RNA molecules sequencing, which allow both
the new microRNA sequences, detection of expression levels at very
rapid and sensitivity with economical for common researches. Though,
every sequencing work yielded up to 3 Gbp of sequence data, and their
data analysis represents a key bioinformatics solution and challenge
[70]. Initially, the alignments are performed using the ultrafast short
read aligner Bowtie [71,72] that contribute full color space support,
allows incongruities in the alignment of the read to the genome and is
more rapidly and memory capable than earlier applied alignment
algorithm. Additional, the instrument covers 31 species and allocates
simply addition of new ones. Third, the tool has no limitation on the
number of loaded sequences for the prediction of new microRNAs,

and the instruction of the prediction models takes into account
dissimilarity between animal and plant microRNAs [73]. Fourth, the
implemented module, identifies the differential expression patterns of
micro RNAs between two situations based on the DESeq package [74].
In addition, taking advantage of the information that several samples
are required for this last module, the multiplication of the consensus
sequences for predicted mature and precursor micro RNAs have also
implemented. This will be helpful to evaluate the consistency of the
extrapolations, i.e. micro RNAs predicted in diverse samples are
probable to be efficient than those predicted in just single sample. In
conclusion, a standalone form of the miRanalyzer tool that
mechanized with modified local file-based database. Variation among
animals and plants microRNAs have been used for the prophecy of
models and disparity expression of identified and predicted
microRNAs, among two situations could be intended. Furthermore,
consent sequences of discovered mature and predecessor microRNAs
can be acquired from various samples, which enhance the consistency
of the expected microRNAs. At last, a stand-alone version of the
miRanalyzer that is supported on a confined and simply modified
database is also accessible for researches; this allows the client to have
extra control on certain consideration as well as to use precise data, for
example unpublished assemblies or other libraries that are inaccessible.

Whole Transcriptome
‘Next-generation’ sequencing (NGS) tools have been developed in a

variety of systems for the investigation of the whole transcriptome for
gene expression analysis [75,76]. NGS helps to examine the discovery
of target genes and the deviations of their expression by discovering
mRNA expression dissimilarity and functional annotation [77]. The
comprehensive analysis of the transcriptome provides a significant
platform to explore massive polymorphic molecular markers as a high
quality resource of expressed sequence tag (EST) assortment [78].

RNA sequencing or Transcriptome sequencing is newly reported
HTS technology that are able to generate millions of short cDNA reads
in corresponding approach. RNA-seq can be used to verify sequences
and a large quantity of transcripts, even at individual cellular level [79].
RNA sequencing has been extensively used in classification of
transcriptome in model species, such as Arabidopsis and rice.
Moreover, productively used in detection of long non-coding RNAs
and alternatively spliced transcripts stresses responsive in Arabidopsis
[80,81]. A general view of a transcriptome can be accessible by RNA
sequencing, comprising new transcriptionally active regions and the
specific position of transcription boundaries [82]. RNA-seq is
particularly useful for investigation of transcriptomes of non-model
species [83,84] as no previous understanding of transcript sequence is
required.

Bioinformatic Challenges
Bioinformatics has become fundamental element of research and

development in the biomedical sciences, and also plays an important
function in deciphering genomic, proteomic and transcriptomic data
produced by high throughput experimental tools, as systematizing
information assembled from conventional biology [85]. Bioinformatics
generally deals with four facets of analysis: protein structure
prediction, DNA sequence analysis, proteomics, functional genomics
and systems biology. High-throughput sequencing, with its rapidly
declining expenditure and growing applications is substitute many
other research technologies. Nonetheless, considerable confronts
remain with NGS; these include data processing and storage. The very
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large amount of data files Need massive quantity of data power
(CPUs), Storage of Data and security/privacy (human samples) and the
development of more proficient, strong and duplicated data analysis
workflows, summarizing and Processing the huge quantity of data
produced by HTS presents a nontrivial confront to bioinformatics [86].
One of the most triumphant output to homogenize HTS workflow was
the expansion of the Sequence Alignment/Map (SAM) format for the
storage of aligned sequencing reads, along with a analogous set of
efficient programs working on SAM files [87].

Ethical Challenges
Sequencing of all genes is considered as a prognostic practice since

analysis of such huge data can give unintentional findings and
information about diseases in future [88]. Biomedical study is
progressively having huge computational and intensive data, and “big
data science” is transferred into the medical field. Unfortunately,
regulators, ethicists, and policy-makers have hardly initiated to
discover the social, legal and ethical issues raised by the multiplicity of
analytical and computational advances in progress and under
improvement in medicine and biology. The majority funding
concerning huge data bioscience has paying attention on security, a
significantly important deliberation, however not the single one. Along
with the challenges raised by new computational techniques are
investigation about security and safety consideration, justice, and how
to attain appropriate informed consent. These expertises also raise a
multitude of regulatory concerns that could pressure the prospects of
translating new assays or computational technologies to the public
health or clinical spheres [88]. In Norway, Biotechnology regulation
and Predictive procedures are regulated and synchronized by the
“bioteknologiloven”. Although this situation raises several challenges,
based on this law, written permission and genetic counseling before,
during and after the predictive gene testing are demanded [89].

Bioinformatics Data Analysis Tools
High-throughput sequencing data was analyzed according to the

three pipelines as shown in Figure 2. The objectives of these different
methods are to determine the expression of miRNA with special
techniques: the traditional method of reads alignment, and two latest
techniques counting of isoforms which is autonomous of any database
entries and seed investigation which focus on analysis to the bases that
are mainly likely functionally significant [90]. In this regard several
software’s and procedures have been developed; including, 9 Analysis
tools such as RMAP, BSMAP, mrsFAST, SOCS-B, BS-seeker, BRAT,
MethylCoder, and Bismark as well as NGSmethPipe.

Figure 2: High-throughput sequencing data was analyzed according
to the three pipelines.

Future Prospective

Third-generation sequencing technology
As technology moves forward, advancement made toward third

generation sequencing tools are, being used which are comprised of
real-time monitoring and Nanopore Sequencing of PCR activity
throughout fluorescent resonant energy transfer. The benefit of these
techniques consist of scalability, simplicity, with rising in DNA
polymerase activities and products, with a reduction of miscalculation
prone, and even more efficiently practicable with the ultimate goal of
achieving precise real-time products [91].

The 3rd technology already being used in SMRT is to sequence
number of DNA fragments in parallel on chip. The chip is comprised
of aluminum deposited on top of glass microscope cover slip with a
100 nm-thick layer. There is an array of cylindrical wells 70–100 nm in
diameter in the alluminium. Third generation sequencing technologies
in present improvements over existing sequencing techniques are (i)
Higher throughput; (ii) Longer read lengths to improve de
novo assembly and allow to direct discovery of haplotypes and even
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entire chromosome phasing; (iii) more rapid turnaround time; (iv)
higher consensus accuracy to enable rare variant detection; (v) limited
use of starting material (theoretically only a single molecule may be
required for sequencing); and (vi) economical, wherever sequencing
the human genome at high fold range for a lesser amount than $100 is
now a realistic goal for the society [92].

Sequencing in diagnostics
Progress in DNA sequencing techniques has permitted complete

examination of the genetics. Understandings from sequencing the
transcriptomes, genomes or exomes, of diseased and healthy cells in
longsuffering are already enabling enhanced analytical
prognostication, classification, and therapy selection of several
syndromes. Understanding the data acquired using new HTS-DNA
tools, preference made in sequencing policies, and general issues in
data analysis and genotype-phenotype correlation is vital if clinicians,
geneticists, and pathologists understand the growing technical
literature in this field, in all aspects [93]. The widespread genetic
heterogeneity has a key apprehension for genetic counseling and
molecular diagnosis. Whereas diverse approaches have been currently
projected to optimize mutation detection, they either not succeed to
perceive mutations in a many patients or done in a time consuming
and expensive manner [94].
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