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INTRODUCTION
Prospects of utilising Liquid Alkali Metal (LAM) coolants in the
area of High Power/Energy Optics (HP/EO) suggested by us
[1-4] were determined by the possibility of achieving a high heat
transfer coefficient in the porous structure due to a favourable
combination of thermo-physical properties of LAM. This
allowed one to lessen the requirements to the thermal
conductivity of the porous structure material, which opened up
the possibility of using new structural materials with a low
thermal expansion coefficient and thermal conductivity in
reflectors. The most particular interest was the employment of
eutectic alloys of LAM with low melting points in HP/EO [5].

Consider some results of theoretical and experimental
investigations of heat and thermal deformation characteristics of
HP/EO cooled by the eutectic alloy Na−K.

MATERIALS AND METHODS
Due to the lack of published data on the heat transfer of LAM
in porous structures, the lower bounds of heat transfer
coefficient were estimated by using the known data on the heat
transfer of LAM coolants in triangular arrays of nuclear reactor
fuel elements [6].

Is the Nusselt number for the laminar flow; s/d is the relative
spacing of the fuel elements in the array; and is the ratio of the
thermal conductivity of the fuel element cladding material to the
thermal conductivity of the coolant. The relations (7) are valid
for assuming that the hydraulic diameter of the array of the fuel
elements corresponds to the hydraulic diameter of the HP/EO
porous structure, and the diameter of a set of rods − to the wire
diameter (for metal-fibrous porous structures).

Figure 1: Nomograms of thermal deformation characteristics of 
HP/EO based on metal-fibrous porous structures made of 
molybdenum, which are cooled by a Na−K coolant in the regions 
of its inlet (a) and outlet (b) at (1) 20, (2) 50, (3) 100 and (4) 200 .

It show the results of numerical calculations of thermal 
deformation characteristics of the HPO cooled by the eutectic 
coolant Na−K. It was assumed that the porous structures of the 
reflectors were made of molybdenum and invar felt. The curves 
in (Figures 1 and 2) are the envelopes of the thermal deformation 
characteristics of the HP/EO family and plotted at a constant 
pressure drop of the coolant and a maximum temperature 
of the cooling surface equal to 1000C.

One can see from that the deformation of the optical surface in 
the region of the coolant outlet, calculated with account for its 
heating in the porous structure, substantially exceeds the 
deformation in the region of the coolant inlet. The maximum 
power densities of the heat flux (not a laser light flux) for the 
HP/EO in question are as follows: kW cm−2 in the region of the 
coolant inlet. The minimum deformation in the region of the 
coolant outflow at a power density of 4.2 kW cm−2 is 0.12,
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which is significantly lower than the optical damage threshold of
the HPO for CO2 and HF/DF lasers.

Figure 2: Nomograms of thermal deformation characteristics of
HP/EO based on metal-fibrous porous structures made of invar,
which are cooled by a Na−K coolant in the regions of its inlet (a)
and outlet (b) at (1) 20, (2) 50, (3) 100 and (4) 200.

Analysis of the data shows that the use of porous structures
made of materials with a low thermal expansion coefficient
(invar fibres) allows one to significantly (approximately by 3−4
times) reduce thermal deformations of the mirror surface both
in the region of the coolant inlet and outlet in the case of LAM
cooling. Thus, the maximum thermal loads, experimentally
allocated from the mirror surface, exceeded 10 kW cm−2. The
experimentally measured thermal deformations of HP/EO
made of invar fibres in the region of minimum deformations
were less than 0.5 .

It should be noted that the results presented in clearly show that
liquid metals are very promising for HP/EO cooling. Such
cooling in combination with porous structures made of
materials with relatively low coefficients of thermal expansion
opens up fundamentally new possibilities for creating a class of
very precise HP/EO with a high optical damage threshold.

Today, due to the accumulation of experimental data on
convective heat transfer and hydrodynamics in porous
structures, such structures are widely used in space
instrumentation and nuclear power systems exposed to high
radiation doses. Due to the structural features, metal porous
structures have no blind pores, which eliminates unwanted
thermal processes. They provide good permeability, high
thermo-physical characteristics, ability to use HP/EO at a boiling
point of working fluids in heated regions, high heat transfer
rates and high limiting values of critical heat fluxes. Metal
porous structures exhibit good physical-mechanical and
performance characteristics. Metallurgical production
technology ensures their stability and reproducibility, long
service life, and high reliability. One of the first mirrors based
on porous structures (Figure 3) [7-10].

Figure 3: First cooled HP/EO elements with a powder based
porous structure.

CONCLUSION
The new areas of research, which have been successfully
investigated together with LAM cooling, include the study of
organic liquids boiling on the surfaces of porous structures with
their hydrodynamic characteristics taken into account. The
study of the influence of these characteristics on the contact
thermal resistance between the porous and solid layers and the
study of heat transfer during condensation of liquids on the
working surfaces of porous structures were investigated as well. It
should be noted that our investigations of heat transfer in
porous structures made it possible to develop the technological
basis for creating a series of water-cooled and LAM cooled
HE/PO for lasers by employing the chemical etching of metal
foils with subsequent soldering to fabricate a multilayer heat
exchanger with a moderate degree of development of the heat
exchange porous surface [11-15].

RESULTS
Further increase in the optical damage threshold of a mirror
surfaces of HP/EO based on porous and microcapillar
structures is possible when LAM and their alloys are used as the
coolants. Prospects of utilising LAM coolants in HP/EO were
determined by the possibility of achieving a high heat transfer
coefficient in the porous structure due to a favourable
combination of thermo-physical properties of liquid alkali
metals. The particular interest of the employment of eutectic
alloys of LAM with low melting temperature in the case of
HP/EO had been confirmed theoretically and experimentally.
Extraordinary high importance results of experimental
investigations of thermal deformation characteristics of HP/EO
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cooled by the eutectic alloy Na−K had been achieved and
demonstrated for the case of MW scale lasers.

According to our experimental tests and expectations the heat
flux with a power density up to 30 kW cm−2 can be evacuated
from the optical (heat exchange LD matrix) surface.
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