
Volume 4 • Issue 3 • 1000148
J Cell Sci Ther
ISSN: 2157-7013 JCEST, an open access journal

Open AccessResearch Article

Fang et al., J Cell Sci Ther 2013, 4:3 
DOI: 10.4172/2157-7013.1000148

Central Nervous System: Cell Therapy

Keywords: Treg cells; Children; Allogeneic hematopoietic stem cell
transplantation; Acute graft versus host disease; Leukemia relapse

Introduction
Allogeneic Hematopoietic Stem Cell Transplantation (allo-

HSCT) is a curative therapy for malignant hematological disorders. 
Acute Graft-Versus-Host Disease (aGVHD) and relapse are major 
problems for patients undergoing allo-HSCT. Due to the lack of reliable 
laboratory measurement for clinical observation and unsatisfactory 
treatment effect of severe aGVHD, searching for new biomarkers to 
predict aGVHD is one of the research focuses in the field of HSCT. 

As a subpopulation of T lymphocytes, Treg cell has gained 
increasing concerns in recent years. It plays a pivotal role in maintaining 
self-tolerance and controlling adaptive immune responses [1]. They can 
suppress aGVHD yet retain the Graft Versus Leukemia (GVL) effect 
[2]. There were clinical trials that proved the importance of Tregs after 
HSCT [3-5] while some studies provided negative results of correlation 
between reduced Treg frequency and GVHD severity [6,7].

Several markers were used to identify Treg cells. CD4 and CD25 
are most commonly used, however, they are difficult to discriminate 
between Treg and activated T effector cells [8]. Foxp3 is the most 
definitive marker for identification of Treg whereas identification of this 
marker requires permeabilization which can totally kill the cells [9]. 
CD127 is an excellent biomarker of human Treg cells, especially when 
combined with CD25. The combination of CD25 and CD127 identifies 
Treg cells that account for up to 7-8% of CD4+ T cells, a significantly 
greater percentage than identified by previous approaches. Moreover, 
these cells suppress the proliferative response of alloreactive T cells in 
mixed lymphocyte response and are themselves anergic to the same 
stimuli [10]. Cell surface marker CD127 could enrich human Treg 
Cells selectively for in vitro functional studies and has the potential in 
vivo therapy [11]. Therefore, the CD4+CD25+CD127- population has 
recently been suggested in preclinical studies to be most suitable for 
human adoptive transfer studies and represent accurately the level of 
human Treg cells [11-14]. 

Since rare use of CD4+CD25+CD127- markers for Tregs 
detection and the controversy on roles of Treg cells in clinical 
observations, we conducted this retrospective study to observe the 

role of CD4+CD25+CD127- Treg cells in aGVHD after allo-HSCT for 
children with malignant hematological disorders.

Material and Methods

Patients and transplantation characteristics

Fifty consecutive children with malignant hematological diseases 
who underwent allo-HSCT at a single institution between July 2012 
and August 2013 and achieved engraftment were enrolled in the study. 
The treatment protocol was approved by the local Ethics Committee. 
Informed consent was obtained from all guardians. The median age of 
patients was 8 years (range from 1 to 14 years), with 29 males and 21 
females. Primary diseases included Acute Myeloid Leukemia (AML) 
(n=19), Acute Lymphoblastic Leukemia (ALL) (n=18), Chronic Myeloid 
Leukemia (CML) (n=3), Myelodysplastic Syndrome (MDS) (n=3), 
Juvenile Myelomonocytic Leukemia (JMML) (n=5), Non-Hodgkin’s 
Lymphoma (NHL) (n=1) and Langerhans cell histiocytosis (LCH) 
(n=1). 6 patients received bone marrow transplantation, 42 patients 
received G-CSF-mobilized peripheral blood stem cell transplantation 
and 2 patients received cord blood transplantation. 12 patients received 
graft from Matched Sibling Donors (MSD), 8 from Mismatched Related 
Donors (MMRD) and 30 from Matched Unrelated Donor (MUD). 
Myeloablative conditioning regimen was adopted for all patients. The 
median follow-up time of all live patients was 288 days, ranging from 
89 to 496 days.
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Abstract
Acute Graft-Versus-Host Disease (aGVHD) is the major problem for patient undergoing allogeneic Hematopoietic 

Stem Cell Transplantation (allo-HSCT). Previous study showed the significant role of CD4+CD25+ Treg cells in 
inhibiting aGVHD. This retrospective study of 50 children with hematological malignancies undergoing allo-HSCT 
investigated the influence of donor CD4+CD25+CD127- Treg cells on aGVHD. The proportion of Treg cells in graft 
is significantly higher in patient with grade 0-I aGVHD than in patients with grade II-IV aGVHD (3.08 ± 0.72% vs. 
2.52 ± 0.86%, P=0.016). There was no significant difference on Treg cells proportion in graft between relapsed 
and non relapsed patients (3.20 ± 0.80% vs. 2.80 ± 0.81% P=0.549). CD4+CD25+CD127- Treg cells in donor graft 
can reduce the incidence of aGVHD after children received allo-HSCT without increasing the risk of relapse. Graft 
CD4+CD25+CD127- Treg cells level is a valuable biomarker to predict aGVHD.
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GVHD prophylaxis 

The diagnosis and grading of aGVHD was defined according to 
the published criteria [15]. Cyclosporine (with serum valley drug levels 
150-200 µg/l) and methotrexate (15 mg/m2 on day +1, 10 mg/m2 on 
day +3 and day +6) were used for GVHD prophylaxis. Mycophenolate 
mofetil was added in 8 patients who underwent MMRD-HSCT. 
Cyclosporine was slowly tapered beginning day+60 and discontinued 
between day+120 and day+427 according to the clinical manifestation. 

Graft cells population Detection

Fifty samples (2ml each) were extracted from donor graft (bone 
marrow, peripheral blood or cord blood) before transplantation. Red 
blood cells were lysed at room temperature for 10min by ACK solution 
(150 mM NH4CL, 1 mM KHCO3, 0.1 mM EDTA, reagents from 
Sigma), followed by cell counting and washing. Antibody staining was 
performed at 4°C for 30 min in dark: CD34-PE and CD45-V500 for 
stem/progenitor cells detection, CD3-perCP and CD45-V500 for T 
lymphocytes, CD19-PE and CD45-V500 for B lymphocytes, CD56-PE 
and CD45-V500 for natural killer cells. CD25-FITC, CD127-PE, CD4-
APC, CD3-perCP and CD45-V500 markers were used for Treg cells 
detection (Figure 1). Stained cells were analyzed by flow cytometer 
(Canton II, BD). CD127-PE was from Beckman and all the rest from 
BD Pharmingen.

Statistical analysis

Descriptive statistical analysis was performed to evaluate the 
variables related to patients and transplantation characteristics. The 
counting variables of two groups were compared by the Chi-square 
test (Fisher’s exact test when demanded). Nonparametric test (Mann-
Whitney test) was applied to compare the abnormally distributed 
measurement variables from the two groups. The impact of Treg cells 
and other related factors on aGVHD was evaluated using binary logistic 
regression. Statistical software, SPSS 14.0 (SPSS Inc., Chicago, IL) was 
used and all the tests were set at the 5% significance level. 

Results
Patient characteristics

According to the occurrence and severity of aGVHD, patients were 
divided into 2 groups: 31 with grade 0-I aGVHD and 19 with grade 
II-IV aGVHD. No significant differences were found between the 
two groups on primary diseases, graft type and sources, conditioning 
regimen and GVHD prophylaxis (Table 1).

Influence factors of aGVHD

In logistic regression analysis, the proportion of Treg cells in graft 
was found significantly decrease the risk of aGVHD (RR=0.273, 95%CI 

 Figure 1: Phenotypic characterization of Treg cells: Treg cells in donor graft were detected by flow cytometry in a five-color panel, surface labeling of CD45, CD3, 
CD4, CD25 and CD127 (A) Gate shows CD45+ Mononuclear cells (B) Gate shows CD45+CD3+ T lymphocytes (C) Bivariate dot plot illustrates the CD4+CD25+ 
phenotype pattern of Treg cells (D) Bivariate dot plot illustrates the CD4+CD25+CD127- phenotype pattern of Treg cells.
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0.095-0.787, p=0.016). Stem cell transplantation from alternative 
donors was the risk factor of aGVHD occurrence (RR=10.574, 95%CI 
1.163-96.131, p=0.036) (Table 2).

Impact of graft cells subpopulation on aGVHD and 
hematological malignancies relapse

The proportion of CD4+CD25+CD127- Treg cells was significantly 
higher in the grade 0-I aGVHD group than in grade II-IV aGVHD 
group (3.08 ± 0.72% vs. 2.52 ± 0.86%, P=0.016). There was no statistical 
difference on the proportions of CD34+ stem/progenitor cells, CD3+ 
T lymphocytes, CD19+ B lymphocytes and CD56+ natural killer cells 
between the two patient groups (Figure 2).

Eight patients suffered from relapse after allo-HSCT. No statistical 
difference on proportion of CD4+CD25+CD127- Treg cells was found 

between the patients with diseases relapse and those without relapse 
(3.20 ± 0.80% vs. 2.80 ± 0.81% P=0.549). 

Discussion
Acute GVHD is an important reason for the failure of allo-HSCT. 

Severe, refractory aGVHD has plagued extensive application of allo-
HSCT. HLA disparity is the main reason inducing GVHD while graft 
components may also be an important factor to affect the occurrence of 
aGVHD. In 1995, Sakaguchi first reported the CD4+CD25+ Treg cells 
with immune suppressive function which can control GVHD [16]. Liu 
also reported the expression of donor CD4+CD25+ Treg cells in the 
group of patients with aGVHD at lower levels than the non aGVHD 
group [17]. Taylor found that removing the CD4+CD25+Treg cells 
from donor grafts can make the patients with severe aGVHD while 
infusion of separated purified donor Treg cells can significantly reduce 
GVHD [18]. Therefore, in 2007 Minnesota University began the first 
clinical trial by using cord blood Treg cells to control GVHD. Brunstein 
reported preliminary results of umbilical cord blood Treg cells against 
GVHD [19]. Till now, researches were mostly based on adults or focus 
on CD4+CD25+ Treg cells. There were very few reports of children with 
allo-HSCT or reports of CD4+CD25+CD127- Treg cells in clinical. In 
our present study on 50 children with hematological malignancies, 
graft CD4+CD25+CD127- Treg cells expression was found significantly 
lower in children with grade II-IV aGVHD than in those with grade 
0-I aGVHD, which proved that donor CD4+CD25+CD127- Treg cells 
can reduce aGVHD for children with allo-HSCT. Shin et al found that 
rapamycin, interleukin-2 can reduce GVHD as they promote Treg 
cells proliferation [20]. Lim proved that the combined application 
of mesenchymal cells and Treg cells have anti-GVHD effect [21]. 
Veerapathran mechanically verified the anti-GVHD function of Treg 
cells, which achieve the effect by inhibiting immunogenicity of minor 
histocompatibility antigen [22]. 

In addition to the Treg cells, other cell components of donor graft 
have also been reported to be relevant to aGVHD. High proportion of 
T lymphocytes was reported to be a predictive factor of severe aGVHD 
[23]. CD34+ cells and CD19+CD5+ B cells may increase the incidence 
of aGVHD and cGVHD [24,25]. CD3-CD16+CD56+ NK cell has been 
generally considered to reduce the aGVHD effect [26,27], whereas there 
were reports with different results [28]. The present study did not find 
any influence of graft CD3, CD34, CD19 and CD56 cells on aGVHD; 
maybe sample size is not large enough to provide objective assessment.

Clinical, GVHD and GVL cannot be separated, it has been a 
great concern that whether Treg cells could reduce GVL effects as 
well as reduce GVHD. Considerable researches clarified that Treg 
cells can alleviate GVHD without abating GVL effect [29,30]. In the 
present research, no significant difference on the proportion of Treg 
cells was found between the 8 patients with their primary hematologic 
malignancies relapse and another 42 patients without relapse. However, 
a short follow-up period and limited number of cases disenable us to 
draw an objective and reliable conclusion on the effect of Treg cells on 
GVL. 

In conclusion, CD4+CD25+CD127- Treg cells in donor graft can 
reduce the incidence of aGVHD after allo-HSCT for children with 
hematological malignancies. It can be a predictive biomarker for 
monitoring aGVHD clinically and provide important information for 
GVHD prophylaxis.

Patients with 
grade 0-I aGVHD 

(n=31)

Patients with 
grade II-IV 

aGVHD (n=19)
P value

Male/Female, n/n 19/12 10/9 0.547
Age, year (mean ± std) 8.2 ± 4.0 8.5 ± 4.0 0.841
Primary diseases, n (%) 0.139

ALL 9 (29.0) 9 (47.4)
AML 14 (45.2) 5 (26.3)
CML 2 (6.4) 1 (5.3)
MDS 0 (0.0) 3 (15.8)
JMML 4 (12.9) 1( 5.3)
NHL 1 (3.2) 0
LCH 1 (3.2) 0

HSC donor, n (%) 0.404
MSD 10 (41.9) 2 (10.5)

MMRD 4 (12.9) 4 (21.1)
MUD 17 (54.8) 13 (68.4)

Stem cell source, n (%) 0.836
BM 3 (9.7) 3 (10.5)

PBSC 27 (87.1) 15 (84.2)
CB 1 (3.2) 1 (5.3)

GVHD prophylaxis, n (%) 
n(%)n(%) prophylaxis,n(%) 0.693

CsA+MTX 27 (87.1) 15 (78.9)
CsA+MTX+MMF 4 (12.9) 4 (21.1)

aGVHD: acute Graft Versus Host Disease; ALL: Acute Lymphoblastic Leukemia; 
AML: Acute Myeloid Leukemia; CML: Chronic Myeloid Leukemia; MDS: 
Myelodysplastic Syndrome; JMML: Juvenile Myelomonocytic Leukemia; NHL: Non-
Hodgkin’s Lymphoma; LCH: Langerhans Cell Histiocytosis; HSC: Hematopoietic 
Stem Cell; MSD: Matched Sibling Donor; MMRD: Mismatched Related Donor; 
MUD: Matched Unrelated Donor; BM: Bone Marrow; PBSC: Peripheral Blood 
Stem Cells; CB: Cord Blood; CsA: Cyclosporine A; MTX: Methotrexate; MMF: 
Mycophenolate Mofetil.

Table 1: Characteristics of patients and transplantation.

Factors
aGVHD

RR (95.0%CI) P value
Age 1.118 (0.906-1.380) 0.296

Stem cell donor (MSD/AD) 10.574 (1.163-96.131) 0.036
GVHD prophylaxis (CsA+MTX/

CsA+MTX+MMF) 2.575 (0.285-23.229) 0.399

Proportion of CD3 cells in graft 1.042 (0.967-1.124) 0.276
Proportion of Treg cells in graft 0.273 (0.095-0.787) 0.016

aGVHD: acute Graft Versus Host Disease; MSD: Matched Sibling Donor; AD: 
Alternative Donor (mismatched related donor and matched unrelated donor 
included); CsA: Cyclosporine A; MTX: Methotrexate; MMF: Mycophenolate Mofetil.

Table 2: Influencing factors of aGVHD: logistic regression.
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 Figure 2: The relationship between donor graft cell components and aGVHD: The proportion of CD4+CD25+CD127+ Treg cells in donor graft was significantly higher 
in patients with grade 0-I aGVHD than in patients with grade II-IV aGVHD (p=0.016, A). No statistical difference was found between the two group of patients on 
the proportion of CD34+ stem/progenitor cells (p=0.610, B), CD3+ T lymphocytes (p=0.950, C), CD19+ B lymphocytes (p=0.250, D) and CD56+ natural killer cells 
(p=0.897, E).
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