
Research Article Open Access

Volume 4 • Issue 1 • 1000268
J Clin Exp Ophthalmol
ISSN:2155-9570 JCEO an open access journal

Open AccessResearch Article

Mastrangelo et al., J Clin Exp Ophthalmol 2013, 4:1 
DOI: 10.4172/2155-9570.1000268

*Corresponding author: Domenico Mastrangelo, MD, Department of Medical, 
Surgical, and Neurological Sciences, University of Siena, Italy, Tel: +39 0577 
234072; Fax: +39 0577 369185; E-mail: mastrangelo@unisi.it

Received January 05, 2013; Accepted January 18, 2013; Published January 25, 
2013

Citation: Mastrangelo D, Massai L, Micheli L, Muscettola M, Cevenini G, et al. 
(2013) High Doses of Ascorbate Kill Y79 Retinoblastoma Cells In vitro. J Clin Exp 
Ophthalmol 4: 268. doi:10.4172/2155-9570.1000268

Copyright: © 2013 Mastrangelo D, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

High Doses of Ascorbate Kill Y79 Retinoblastoma Cells In vitro
Domenico Mastrangelo1*, Lauretta Massai1, Lavinia Micheli1, Michela Muscettola1, Gabriele Cevenini2 and Giovanni Grasso1

1Department of Medical, Surgical, and Neurological Sciences, University of Siena, Italy 
2Department of Surgery and Bioengineering, University of Siena, Italy 

Keywords: Retinoblastoma; Ascorbic acid; Ascorbate; Y79; Tumor
chemosensitivity assay

Introduction
Retinoblastoma is a rare intraocular tumor affecting the retina 

of young children and infants [1]. Chemotherapeutic agents such as 
carboplatin and etoposide, have been shown to effectively reduce the 
volume of intraocular tumors in children affected by retinoblastoma 
[2,3]. However, the toxicity of systemic chemotherapy, still represents 
an issue which deserve further investigation [4,5], particularly when 
genomic instability is involved, as in the case of retinoblastoma [6,7]. 

In an effort to improve drug delivery to the tumor, and 
simultaneously reduce systemic toxicity, Superselective Ophthalmic 
Artery Infusion (SOAI) of chemotherapeutic agents [8], has been 
more recently developed and become a well established, though still 
controversial [9,10] treatment for more advanced retinoblastoma, 
leading to a dramatic increase in the preservation rate of affected 
eyes [11-15]. More specifically, the SOAI of Melphalan (SOAIM) 
has become one of the preferred therapeutic procedures in the local 
treatment of advanced retinoblastoma, given its low systemic toxicity 
and good tolerability [16-19], although SOAI can be used to deliver 
other chemotherapeutic and also non chemotherapeutic agents to the 
tumor. 

However, even if the dose of Melphalan (MEL) used in each 
therapeutic procedure is relatively low, doses greater than 0.48 mg/kg, 
such as those given for bilateral tandem infusion, are still associated 
with an increased risk of neutropenia, and some authors suggest that 
SOAI combination chemotherapy be used rather than MEL alone 
[13,14,20]. 

Furthermore, the evidence behind the use of MEL in retinoblastoma, 

Abstract
Objectives: To tests the sensitivity of Y79 retinoblastoma cell lines to high doses of ascorbate, in vitro, and compare 

its effects with those of some chemotherapeutic agents routinely employed in the treatment of retinoblastoma. 

Methods: Y79 retinoblastoma cells have been exposed to increasing doses of either sodium ascorbate (SA) or 
Melphalan (MEL), to define a dose-response curve around the peak plasma concentrations reached by both chemicals 
when administered according to the existing therapeutic procedures and protocols. The assessment of cell number and 
viability was performed, before and after exposure, with both the manual (Trypan Blue Exclusion Test) and automated 
(flow cytometry) methods. Fluorescence microscopy and direct observation of cells in culture, with inverted microscope, 
were also performed. 

Results: Y79 cells are highly sensitive to the cytotoxic effect of SA, with cell viability reduced of over 90% in some 
experiments. As reported in the literature, this effect is directly cytotoxic and most probably mediated by acute oxidative 
stress on different cellular components. The same does not apply to Melphalan which, at the doses commonly used for 
therapeutic purposes, did not show any significant effect on cell viability, in vitro. 

Conclusion: To our knowledge, this is the first report showing that high doses of SA can actively kill retinoblastoma 
cells in vitro. While it is not surprising for SA, to show direct cytotoxic effect on tumor cells, the data reported herein 
represent the first evidence in favor of the possible clinical use of high doses of intravenous SA, to treat children 
affected by retinoblastoma. Given the many advantages of SA over the chemotherapeutic agents commonly employed 
to treat cancer (including its almost total absence of toxic or side effects, and its exclusive specificity for cancer cells), 
it is reasonable to assume, from the data reported herein, that the high doses of intravenous ascorbate, have the 
potential to represent a real revolution in the treatment of retinoblastoma.

is limited to studies which tested only a few chemotherapeutic agents 
[21,22], using the clonogenic assay, which has been largely criticized, 
in the past [23,24] and almost completely abandoned nowadays, given 
its low reliability [25].

Moreover, there is sufficient evidence, in both human and 
experimental models, that Melphalan is carcinogenic and causes acute 
leukemia in humans [26,27] and this strongly argues against its use in 
children with retinoblastoma. 

Interestingly, with the advent of Pharmacogenomics, it has become 
increasingly clear that drug therapy, including chemotherapy, should 
be tailored to the individual patient, in order to limit toxic effects and 
maximize the therapeutic ones [28-31]. 

Also and more importantly, the effectiveness of high intravenous 
doses of ascorbic acid (AA) or its sodium salt, sodium ascorbate (SA), 
in the treatment of cancer, has been recently demonstrated both in 
vitro and in vivo, and this has fueled new research in the field of cancer 
therapy, given the almost total lack of toxicity and the reported tumor 
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The same procedure (including the incubation for one hour at 37°C 
in 5% CO2/95% air) was used for SA, starting from a 1M stock solution, 
to a final concentration of 1, 3, 5, and 7 mM in each well containing 
Y79 cells. These doses of ascorbate were chosen according to the 
pharmacokinetic profile of SA, when administered in high doses by i.v. 
injection [32,33,35,41].

At the end of the incubation time, the cells were collected, 
centrifuged for 5 min at 500 x g, re-suspended (“washed”) in fresh 
medium and incubated for other 18 - 24 hours at 37°C in 5% CO2/95% 
air, before the analysis. 

Four control (no treatment) samples were also included in each 
experiment. A cell viability assay with Trypan Blue, was performed 
after exposure to both MEL and SA, at the end of the incubation period, 
according to the reported procedures [43,44]. Each “manual” (Trypan 
Blue) counting was performed by three of us, in triplicate, and the 
mean percentage of live/dead cells calculated for each sample. 

At the end of the incubation period (18 - 24 hours after exposure to 
MEL and SA), cells were collected in vials, and mixed with the Muse™ 
Count & Viability Reagent, according to the procedure supplied by the 
manufacturer, for automated counting and viability analysis. Namely, 
20 μl of each sample were added to 380 μl of the Muse™ Count & 
Viability Reagent, which differentially stains viable and non-viable 
cells based on their permeability to the two DNA binding dyes present 
in the reagent. A specific Software Module then performs calculations 
automatically and displays data in two dot plots as shown in figure 1.

Each experiment was repeated at least twice, and a total of twelve 
experiments was carried out, encompassing four “manual” (Trypan 
Blue) and eight automated (“Muse” TM) cell counting and viability 
tests, before and after exposure to MEL and SA. The results have 
been cumulatively analyzed by calculating the mean, standard error, 
standard deviation, and confidence intervals (CI) of the percentages of 
living cells for each experiment (Tables 1 and  2).

specificity of SA, which, at plasma levels below the 20 mM, selectively 
kills cancer cells without affecting the normal ones [32-42]. 

Based on the above evidences, we have compared the effects 
of both MEL and SA, in vitro, on Y79 retinoblastoma cell lines by 
exposing tumor cells to increasing doses of both chemicals, chosen 
according to the peak plasma levels reported, respectively, for SOAIM 
and pharmacologic (high) doses of SA, administered by intravenous 
injection. 

Materials and Methods

Cells, reagents, and equipments

Y79 human retinoblastoma cell lines were supplied by European 
Collection of Cell Cultures (ECACC). All reagents, including culture 
media, Sodium Ascorbate (SA), Melphalan (MEL), Trypan Blue, 
Hoechst 33342, and Propidium Iodide (PI), were purchased from 
Sigma-Aldrich. Automated cell count and viability was performed 
by using the “Muse”™ (Merck-Millipore) automated cell analyzer. A 
Zeiss Axioplan2 microscope was used for fluorescence microscopy and 
a Shandon cytocentrifuge for morphologic analysis of cell suspensions.

Cell count and viability

Cell counting, before and after exposure to increasing doses of 
either MEL or SA, was performed with both the manual (Trypan 
Blue Exclusion Test) and automated (“Muse”TM) methods. The 
automated method, using the “Muse”TM, was carried out according to 
the instructions supplied by the manufacturer which encompass an in 
house method of nuclear staining for the assessment of cell viability. 
The trypan Blue Exclusion Test was performed according to the 
standard procedures [43,44]. 

At the end of each counting and viability test, Y79 cell suspensions 
were stained with Hoechst/PI as described elsewhere [35,45], and 
aliquots of about 1 × 104 cells were deposited onto alcohol-washed 
glass microscope slides by using a cytocentrifuge, at 1,000 r.p.m. for 5 
minutes, and then observed under fluorescence microscopy. 

Experimental protocol

Y79 human retinoblastoma cells were grown in RPMI supplemented 
with antibiotics, glutamine, and 10% FBS, at 37°C in 5% CO2/95% air. 
During the phase of exponential growth, the cells were collected and 
counted with the “Muse”TM automated cell counter/analyzer and then 
diluted to a concentration of about 1 × 106/ml. 

MEL is not or only partially soluble in water. According to Miller 
et al. [46], it must be prepared immediately before use, by dissolving 
it in acid alcohol (1 ml of 12 N HCl in 120 ml 95% ethan ol). Other 
authors suggest the use of both acid ethanol and propylene glycol, 
to store MEL as a stock solution at -70°C for several weeks [47]. For 
our purposes, we used the method proposed by Miller et al.. A 1mM 
stock solution of MEL, dissolved in acid ethanol and then diluted 
to the final concentration of 1mM with Phosphate Buffered Saline 
(PBS), was prepared and four aliquots, of 1, 3, 5, and 7 μl, respectively 
(corresponding to 1, 3, 5, and 7 μM in the final medium containing 
the cells), were added to each of the four wells of a twelve well plate 
containing 1 ml of medium with Y79 cells in the phase of exponential 
growth. Cells were exposed to MEL at 37°C in 5% CO2/95% air, for one 
hour. The doses of MEL (1, 3, 5, and 7 μM) were chosen according to 
the pharmacokinetic profile of the drug after SOAIM, as reported by 
Shaiquevichet al. [20].

SAMP. %L %L %L %L
C 88 87 92 88
A1 79 88 95 87
A3 55 28 47 18
A5 1 7 21 10
A7 0 2 5 0
M1 85 81 98 93
M3 87 85 96 90
M5 91 82 96 90
M7 80 95 91 88

Table 1: Mean percentages of live/dead cells after exposure to SA 1, 3, 5, and 
7 mM (A1, A3, A5, A7), and MEL 1, 3, 5, and 7μM (M1, M3, M5, and M7), as 
calculated by Trypan Blue Exclusion Test.

Table 2: Mean percentages of live/dead cells after exposure to SA 1, 3, 5, and 7 
mM (A1, A3, A5, A7), and MEL 1, 3, 5, and 7μM (M1, M3, M5, and M7), as reported 
by the MuseTM.

SAMP. %L %L %L %L %L %L %L %L
C 64.4 64.4 79.5 79.5 73.5 73.5 65.5 66.1
A1 66.30 67.30 63.10 64.20 65.10 65.7 68.8 70.4
A3 40.90 39.70 5.30 3.50 40.80 46.5 29.2 31.7
A5 10.70 7.90 3.10 2.00 14 14.2 8.7 8.7
A7 8.70 7.90 2.80 1.50 6.20 6.6 6.6 6.6
M1 69.00 69.20 66.40 62.90 68.4 68.4 66.7 68.9
M3 67.60 67.50 66.50 65.90 67.1 70.3 67.6 71.5
M5 74.10 72.00 67.50 65.80 68.9 68.9 70.8 72.5
M7 68.60 67.90 67.90 67.60 69.4 71.2 59.7 65.7
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Aliquots of cells were also stained with Hoechst/PI, according to 
the standard protocols, deposited onto glass microscope slides with a 
cytocentrifuge, and finally observed under fluorescence microscopy 
[35,45].

For statistical analysis., the mean values and related 95% confidence 
intervals were calculated for each set of repeated measurement by using 
the SPSS statistical package, version 10.

Results
The results of this experiment are summarized in the diagrams of 

figures 2 and 3, reporting the mean percentage of live cells on the y-axis 
and the doses of drugs on the x-axis, for the manual (Trypan Blue) and 
the automated (MuseTM) procedures, respectively. 

It is very well known that Trypan Blue Exclusion Test, is a robust 
direct test to measure cell viability, in which dead cells can be easily 
detected, because, by incorporating the blue dye, their cytoplasm stains 
blue, when observed under microscopy. The only limit of this procedure 
is represented by its inability to detect both early or late apoptotic cells 
which still possess an intact cytoplasmic membrane, and therefore, do 
not stain with the dye [43,44].

Figure 1: Plots obtained by analyzing Y79 cell after exposure to SA 1, 3, 5, and 7 mM (A1, A3, A5, A7, respectively), and MEL 1, 3, 5, and 7μM (M1, M3, M5, and M7) 
with the MuseTM automated cell counter/analyzer (Merk - Millipore). In the upper left plot, the black circle indicate the live cells while the red circle indicates the dead 
cells. As it can be seen, the “cloud” of live cells decreases in intensity, going from A1 (1mM SA) to A7 (7mM SA). The same does not apply to Melphalan, thus indicating 
that doses 3, 5, and 7 mM ascorbate (SA) kill a progressively increasing number of Y79 cells. The lower group of plots, reporting the percentage of live/dead cells, 
confirms this result. 
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Methods based on the use of fluorescent dyes and microscopic 
observation, on the other hand, are laborious and not completely 
reliable, particularly when chromatin morphology is investigated [45]. 

The automated cell counting and viability analysis used herein 
(MuseTM, Merk-Millipore) utilizes a proprietary mix of two DNA 
intercalating fluorescent dyes in a single reagent. One of the dyes is 
membrane permeant and stains all cells with a nucleus. The second 
dye only stains cells whose membranes have been compromised and 
are dying or dead. This combination allows for the discrimination of 
nucleated cells from those without a nucleus or debris, and live cells 
from dead or dying resulting in both accurate cell concentration and 
viability. The use of dual fluorescent probes that clearly identify all 
nucleated cells, live and dead, allows for greater sensitivity and accuracy 
compared to colorimetric methods. Using multiparametric fluorescent 
detection of individual cells via microcapillary flow technology, the 
system enables highly sensitive and rapid detection of cellular samples 
using minimal cell numbers [48].

The cumulative data concerning the mean percentages (Tables 1 
and 2) of live cells, with both the manual (Trypan Blue) (Figure 2) and 
the automated (MuseTM) (Figure 3) methods, reveals that SA is highly 
efficient in killing Y79 retinoblastoma cells in culture, starting from a 3 
mM concentration in the culture medium. The number of viable cell is 
further reduced, from about 70%, to around 10%, and less than 10%, at 
5 and 7 mM SA, respectively. The same does not apply to MEL, which, 
at the concentrations used in the present investigation, did not show 
any significant effect on cells viability in culture. 

The morphologic analysis, with Hoechst/PI (Figure 4), fully 
confirmed the data reported with both the manual and automated cell 
counting and viability procedures. Interestingly, after exposure for 
one hour to high doses (3, 5, and 7 mM) of SA, on direct observation, 
Y79 cells clearly showed fragmentation and “oncosis” [49,50], as if cell 
membrane functions were definitively compromised (Figure 5). 

The calculation of the mean values and related 95% confidence 
intervals (CIs) revealed statistically significant difference (p<0.005) in 
the mean percentages of dead cell between the group encompassing the 
control sample (C), A1, M1 to 7, and the group including A3, A5 and 
A7, i.e. the higher concentrations of SA in the culture medium. 

Discussion
The history of ascorbic acid (AA) as an anticancer molecule is 

very controversial [36]. McCormik, nearly 60 years ago, suggested 
that ascorbate protects against cancer by increasing collagen synthesis 
[51,52], while Ewan Cameron hypothesized that ascorbate could have 
anti-cancer effects by inhibiting hyaluronidase and thereby preventing 
cancer spread [53]. Although successful clinical trials had been 
reported, by Cameron and the twofold Nobel laureate Linus Pauling, 
on terminal cancer patients [54-59], Charles Moertel, at Mayo Clinic, 
reported negative results, and his trials were credited as the definitive 
proof of the inefficacy of AA in treating cancer [60,61]. In Moertel’s 
trial, however, ascorbate was given orally, while Cameron and Pauling 
had used both the intravenous and oral route of administration 
simultaneously. 

Interestingly, from the reported survey data, we know that 
intravenous ascorbate (either AA or SA) is used in doses up to 200 g 
per infusion, to treat a variety of pathological conditions, including 
cancer, is well tolerated, and remarkably safe, with very few adverse 
effects [62]. As a matter of fact, when taken orally, plasma ascorbate 
concentrations never raise beyond the level of 100 μmol/l, due to the 
limited bioavailability of the molecule and renal excretion [63], while, 
by intravenous infusion, concentrations in the millimolar range can 
be achieved, which would never be obtained with the maximum dose 
administered by oral route [35,42,64]. 

Both AA (Vitamin C) and/or its sodium salt SA have been reported 
to selectively kill cancer cells, being, at the same time, totally harmless 
for normal cells, when peak plasma levels are maintained below the 

Figure 2: Box plot showing the comparative effect of SA 1, 3, 5, 7 mM (A1, 
A3, A5, A7 respectively) and MEL 1, 3, 5, and 7 μM on Y79 cells in culture, as 
analyzed with the “manual” (Trypan Blue Exclusion Test) method. C = Control, 
untreated samples. The “x” axis reports the increasing concentrations of both 
SA (A1 to 7) and MEL (M1 to 7). The “y” axis reports the percentage of live 
cells. SA 3, 5, and 7 mM cause extensive and statistically significant cell 
death in culture (see text) 
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Figure 3: Box plot showing the comparative effect of SA 1, 3, 5, 7 mM (A1, 
A3, A5, A7 respectively) and MEL 1, 3, 5, and 7 μM on Y79 cells in culture, 
as analyzed with the “Automated” (MuseTM, cell counter/analyzer - Merk 
Millipore)) method. C = Control, untreated samples. The “x” axis reports the 
increasing concentrations of both SA (A1 to 7) and MEL (M1 to 7). The “y” 
axis reports the percentage of live cells. SA 3, 5, and 7 mM cause extensive 
and statistically significant cell death in culture (see text)
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Downstream targets of H2O2 are different and almost certainly involve 
the actions of reactive oxygen species (ROS) [65]. Moreover, given the 
inherent promiscuity of the action of both H2O2 and ROS, no single 
target exists, among cancer cells, for cytotoxic response to SA [66]. As 
a matter of fact, a number of different effects of SA on cancer cells have 
been reported, in vitro, depending on the cell line investigated [67], with 
cytotoxicity being the main outcome with 9 L rat glioblastoma (10), SK-
N-SH human neuroblastoma, and Kelly human neuroblastoma [68], 
human chronic lymphocytic leukemia [69], Pan02 mouse pancreatic 
cancer, and MIA PaCa-2 human pancreatic carcinoma [40].

In 1993, Medina and Schweigerer reported the cytotoxic effect of 
AA on Y79 cells in long-term incubations in the presence of limited 
amounts of serum in the medium [70] and, to our knowledge, the data 
reported herein are the only literature report, investigating the effects 
of high doses of AA on retinoblastoma cell lines. More recently, a 
nutrient mixture containing AA, lysine, proline, and green tea extract 

Figure 4: Morphology of Y79 cells treated with MEL (M7), and SA (A7) and 
stained with Hoechst/PI. Cells were treated for 1 hour, harvested, washed, 
stained with Hoechst/PI, and examined by fluorescence microscopy, as 
described under “Material and Methods” (Original magnification: 200 x) Blue 
nuclei (Hoechst 33342) indicate live cells, while red nuclei (Propidium Iodide) 
indicate dead cells. C = control (untreated) cells. 7 mM SA kills more than 
90% Y79 cells in culture, as denoted by the red nuclei. Cell killing with MEL 
(M7) is not significantly different from the control (C). 

C 

M7 

A7 

threshold of 20mM/ml [37,38]. In our experience, AA seems more 
efficient than SA in killing Y79 cells in vitro (data not shown), but 
SA was preferred since, when dissolved in PBS, at 1M concentration, 
it gives a slightly basic solution (pH 7.3) which doesn’t need to be 
buffered, as is the case for AA (which, instead, at 1M concentration, 
turns the pH of the solution to 2.2 – 2.4).

Regarding the mechanisms through which SA is cytotoxic / 
cytocidal for cancer cells, wide agreement exists on the view that SA 
(and/or AA) is a pro-drug for H2O2 generation, since for pharmacologic 
SA to promote cancer cell death, H2O2 must be formed [32,33,35,41]. 

Figure 5: Microphotographs of y79 retinoblastoma cells incubated with 
sodium ascorbate (SA) m 1, 3, 5, and 7 mM (A1, A3, A5, A7), and Melphalan 
(MEL) 1, 3, 5, and 7μM (M1, M3, M5, and M7). C = Control (untreated). 
Original magnification … 200 x). Cell treated with increasing doses of SA, 
show a progressive decrease in the total number of cells, especially evident 
in A7, and an increasing number of swollen cells (white arrows in A3, and A5) 
indicative of the phenomenon of “oncosis”.
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has shown the ability to limit cell proliferation and induce apoptosis in 
Y79 cells [71]. 

In our investigation, we have compared the effects of high (mM) 
doses of SA on Y79 human retinoblastoma cell lines, with those 
produced, on the same cells, by MEL. In recent years, MEL injected 
in the ophthalmic artery, has become the treatment of choice for some 
advanced, but also localized retinoblastoma, yielding encouraging 
results in terms of both reduced toxicity and increasing local efficacy 
[72]. However, MEL is also a potentially carcinogenic drug, carrying 
an increased risk of leukemia, after prolonged or repeated treatments 
[26,27] and this aspect should not be overlooked, particularly when, 
as in the case of retinoblastoma, genomic instability is involved [6,73]. 

The present investigation was carried out in order to compare the 
in vitro effects of MEL, which is one of the chemotherapeutic drugs 
of choice in retinoblastoma, with those of SA which, in a number of 
different reports, has shown cytotoxic effects on tumor cell lines. 

To our knowledge, in only one case the cytotoxic effects of SA on 
human retinoblastoma cell line (Y79) has been reported, although this 
case refers to long term exposures and particular growth conditions. 
In the experience reported herein, Y79 cells have shown a particular 
sensitivity to SA 3, 5, and 7 mM, after only one hour exposure, with a 
linear proportion between dose and percentage of dead cells. The same 
result was not achieved with increasing doses of MEL. 

Y79 in culture, showed, after exposure, morphological aspects of cell 
death, including fragmentation and oncosis [49,50]. All data (Trypan 
Blue, automated cell counting and viability, cellular morphology in 
culture, Hoechst/PI nuclear staining, before and after exposure to SA) 
were concordant in showing a marked cytotoxicity of SA to Y79 cells.

The calculation of the Confidence Intervals (CI) at 95% of the two 
treatments (MEL and SA) and the controls (C) revealed no separation 
(p>0.05) at 1mM SA (A1), but were clearly well separated (p<0.005), 
starting from 3mM SA (A3) which, in this experience, represents the 
minimal effective concentration of SA, against Y79 cells. The difference 
is still statistically significant at 5 mM and 7 mM SA. These data are 
in agreement with the current literature on high intravenous doses 
of SA, which indicate the 5mM plasma level as the more effective 
concentration to efficiently and selectively kill cancer cells [32,33]. 

Conclusions
Given all the above, it is reasonable to infer that SA in high doses, 

such as those achieved after intravenous injection, are highly toxic for 
Y79 cell lines, while MEL, at the doses commonly used for SOAIM, 
does not significantly affect cell viability in vitro. This is most probably 
due to the different mechanisms through which both MEL and SA kill 
cancer cells. More importantly, SA opposite to MEL, is almost totally 
harmless for normal human cells. 

SA also enhances the cytotoxicity of several chemotherapeutic 
agents, in vitro [74,75], and, in our experience (data not shown) it shows 
a synergistic cytotoxic effect with Melphalan, on Y79 cells. Therefore, 
our experimental data, suggest that SA can be usefully added to MEL, 
in the treatment of retinoblastoma. 

More importantly, our data on the effects of SA on Y79 cells, 
strongly argues in favor of the treatment of retinoblastoma with high 
doses of intravenous SA alone, repeated according to the established 
protocols [76-78]. Finally, given the more recent therapeutic progresses, 
in the treatment of retinoblastoma, with the intra arterial injection of 

chemotherapeutic agents, SA represents, to the author’s opinion, the 
ideal candidate for this new therapeutic approach, in the near future.
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