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Abstract
Fuel efficiency in hybrid electric vehicles requires a fine balance between combustion engine usage and 

battery energy, using a carefully designed control algorithm. Owing to the transient nature of HEV dynamics, driving 
conditions prediction, have unavoidably become a vital part of HEV energy management. The use of vehicle on-
board telematics for driving conditions prediction have been widely researched and documented in literature, with 
most of these studies identifying high equipment cost and lack of route information (for routes unfamiliar to the GPS) 
as factors currently impeding the commercialization of predictive HEV control using telematics.

In view of this challenge, this study inspires a look-ahead HEV energy management approach, which uses time 
series predictors (neural networks or Markov chains), to forecast future battery state of charge, for a given horizon, 
along the optimal front (optimal battery state of charge trajectory).

The primary contribution of this paper is a detailed theoretical appraisal and comparison of the neural network 
and Markov chain time series predictors over different driving scenarios (FTP72, SC03, ARTEMIS U130 and WLTC 
3 driving cycles). Based on the analysis performed in this study, the following useful inferences are drawn: 

1. Prediction accuracy decreases massively and disproportionately on average with increased prediction horizon 
for multi-input neural networks, 2. In a single-input/single-horizon prediction network, the performance of both the 
neural network and Markov chain predictors are similar and near optimal, with a mean absolute percentage error of 
less than 0.7% and a root mean square error of less than 0.6 for all driving cycles analysed, 3. Markov chains appeal 
as a promising time series predictor for online vehicular applications, as it impacts the relative advantage of high 
precision and moderate computation time.
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Nomenclature

General Nomenclature
NEDC  New European driving cycle

FTP Federal Test Procedure

WLTC Worldwide harmonized Light duty driving Test Cycle

US United States

NYCC New York City Cycle

IM Inspection and Maintenance

SC Supplementary driving Cycle

LA Los Angeles

ARTEMIS Assessment and Reliability of Transport Emission 
Models and Inventory Systems

HWFET Highway Fuel Economy Test

HEV Hybrid Electric Vehicle

SOC State of charge

MAPE Mean Absolute Percentage Error

RMSE Root Mean Square Error

GIS Geographic Information System

GPS Global Positioning System

Introduction
In comparison to conventional vehicles, hybrid electric vehicles 

(HEVs) offer a number of advantages. The most popular of such 
advantages is the possibility of downsizing the original internal 
combustion engine, whilst meeting the power demand at the wheels. 
This advantage stems from the HEV being able to simultaneously 
deliver power to the wheels from both the internal combustion engine 
and the electric motor, thus resulting in reduced fuel consumption. The 
introduction of an electric driveline in an HEV also allows for kinetic 
braking energy regeneration. Aside from fuel consumption related 
advantages, the use of HEVs also presents the possibility of cranking 
the engine with the electric motor, which allows for the removal of the 
starter motor from the powertrain. This new cranking procedure will 
allow for a faster, smoother and a more improved cranking technique, 
as in the case of inertia cranking [1].

Crucial to achieving the aforementioned advantages, is a real time 
control strategy capable of coordinating the on-board power sources 
in order to maximize fuel economy and reduce emissions. Owing to 
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Time Series Prediction Theoretical Framework 
HEV predictive control problem 

One imperative question during HEV control, is that of when 
and how to use the auxiliary energy which comes from the battery. In 
previous time series prediction inspired literatures [9-12], the proposed 
approach was to predict future vehicle velocities using neural networks 
or Markov chains. The predicted velocities are then compared to a 
database containing many driving segments, modeled from previous 
vehicle trips. The most similar segment to the one predicted is selected 
and its optimal control results (pre-calculated offline using dynamic 
programming) are applied. Although this approach has been reported 
to yield promising fuel savings [10], it’s control performance is limiting 
in the sense that it depends both on the size of the offline driving 
database, and the cycle identification algorithm in use.

In light of the prevalent challenge, this paper inspires a look-
ahead energy split approach which uses time series predictors (neural 
networks or Markov chains) to forecast future battery state of charge 
for a given horizon, along the optimal front (optimal battery state of 
charge trajectory).

Over different driving cycles as shown in Figures 1-4, the optimal 
dynamic programming model of a parallel HEV (see Appendix 1 for vehicle 
specification and Figure 5 for vehicle layout), developed in a previous study 
[15] is simulated to obtain the optimal battery state of charge trajectory. The 
obtained trajectories are then combined and used to train and validate the 
time series predictors (neural networks and Markov chains). The training 
and validation dataset is made up of a total of 10 standard driving cycles 
including, NEDC, JAPAN 1015, US06, LA92, NYCC, IM240, ARTEMIS 
U150, WLTC 1, WLTC 2 and HWFET.

The driving characteristics represented by the 14 driving cycles 
used in this study are comprehensive in an average sense, as it accounts 
for moderate urban driving scenarios (IM240 and WLTC 3 driving 
cycles), aggressive urban driving scenarios (LA92 driving cycle), calm 
highway driving scenarios (HWFET driving cycle) and aggressive 
highway driving scenarios (US06 driving cycle). 

Prediction philosophy

The prediction network in this study as shown in Figure 6, has0 
been set up to accommodate multi-input/multi-horizon prediction 
problems. At the beginning of each prediction problem, depending on 
the selected prediction network, the battery state of charge values used 
to initialize the network is measured online from the hybrid electric 
vehicle. These values are symbolically represented for different networks 
thus: A (Figures 6a and 6b); A and B (Figure 6c and 6d); A, B and C 
(Figures 6e and 6f). Using these initialized values, the first future battery 
state of charge is predicted along the optimal front for the different 
networks thus: B (Figures 6a and 6b); C (Figures 6c and 6d); D (Figures 
6e and 6f). For multi-horizon prediction problems, the prediction for 
subsequent horizons (C and F (Figure 6b); D (Figure 6d); E (Figure 6f) 
are made using past immediate values from the prediction network. At 
the end of each prediction cycle (over the selected prediction horizon), 
the next battery state of charge value is assumed known and measured 
online from the hybrid electric vehicle (C and E (Figure 6a); D (Figure 
6b); D and F (Figure 6c); E (Figure 6d and Figure 6e); F (Figure 6f). This 
measure has been implemented for error reduction reasons.

Neural networks theoretical frame work 
Neural networks can be trained to learn a highly nonlinear input/

output relationship by adjusting weights to minimize the error between 

the transient nature of HEV dynamics, driving conditions prediction 
have unavoidably become a vital part of HEV control. At present, two 
main methods exist to identify and predict future driving conditions. 
The first method is the use of traffic environment information provided 
by the GPS, or GIS [2-4], while the second method is the use of driving 
information gathered by on-board sensors. In the first approach, traffic 
environment information such as congested routes and arrival time can 
be provided for the driver to choose the best route. In addition, the 
use of look-ahead information, allows the HEV to plan how and when 
to use the stored energy in the battery and how to recharge it. Using 
this approach, Chan [5] reported a fuel savings of 15% for a prediction 
horizon of 500 meters.

Despite the advantages associated with vehicle telematics, they 
suffer from limitations: including equipment costs and lack of route 
information for routes unfamiliar to the GPS. The second method 
in comparison, offers a more realistic and viable approach to driving 
information identification as it relies only on the theoretical study of 
past driving patterns. Lin et al. [6] and Won et al. [7] were both able 
to incorporate driving pattern identification in the form of analysis 
of feature parameters (extracted from velocity data) to the receding 
horizon control of a hybrid electric vehicle. The reported control results 
are impressive, thus forming a paradigm for further application of 
driving pattern recognition to HEV control.

The use of time series predictive techniques for driving pattern 
recognition and prediction in vehicular applications has become 
increasingly popular of recent, with neural networks topping the list 
[8-14]. Through appropriate training and adjustment of weights, an 
artificial neural network can approximate any continuous measurable 
function to a desired accuracy. The use of Markov chain models as a 
method for vehicular time series prediction is relatively new and has 
only been reported by a few literature [9, 10, 12], with most of them 
focusing only on its preliminary theoretical frame work. Unlike any 
existing study, this paper offers two major original contributions 
to the related literature. First, a detailed theoretical framework for 
neural networks and Markov chains is developed. Next, the prediction 
accuracy of both methods over different driving scenarios (FTP72, 
SC03, ARTEMIS U130 and WLTC 3 driving cycles) are quantified and 
compared, with inferences drawn to explain the impact of prediction 
horizon on the accuracy of the compared predictors and the impact 
of network input on the prediction accuracy of neural networks. 
This comparative analysis is also extended on a subjective basis to 
recommend a promising time series forecasting approach for vehicular 
energy management applications.

Although the foregoing novel contributions are made specifically 
for the receding horizon energy management of hybrid electric vehicles, 
the theoretical bases of the observations made and inferences drawn 
still hold true for other time series prediction applications.

The disposition of this paper is as follows: first, the predictive 
control problem in HEV is introduced alongside the applicable 
assumptions. Next, the theoretical frame work for Markov chains 
and neural networks are developed in details, highlighting the key 
assumptions that apply to each method. Afterwards, both approaches 
are used over different horizons to predict the optimal battery state 
of charge trajectory of a parallel hybrid electric vehicle over different 
driving scenarios. Finally, the prediction accuracy of both methods is 
compared and useful explanations given to observed trends.
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Figure 1: Optimal battery state of charge profile over the NEDC driving cycle.

 
Figure 2: Optimal battery state of charge profile over the US06 driving cycle.

 
Figure 3: Optimal battery state of charge profile over the HWFET driving 
cycle.

Figure 4: Optimal battery state of charge profile over the LA92 driving cycle.

Figure 5: Parallel hybrid electric vehicle.
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A    B    C      D       E         F
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[a]  One input, one prediction horizon 

[b]  One input, two prediction horizons

[c]  Two inputs, one prediction horizon

[d]  Two inputs, two prediction horizons

[e]  Three inputs, one prediction horizon

[f]  Three inputs, two prediction horizons

Actual value Predicted value

Figure 6: Multi-input/multi-horizon prediction network.
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the actual and predicted output patterns of a training set [16]. This form 
of supervised learning is facilitated by the back propagation method 
(shown in Figure 7), which could be articulated in the following steps:

Feed forward approach

i. Using inputs (X1 and X2) to the prediction network, calculate 
the input to hidden layer neurons.
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iii. Calculate the input to the output neuron

1,1 1,21,1 1,2in out N out NY N W N W= +

iv. Calculate the output from the neural network

( )
1
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Y
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 =
 + 

v. Calculate the prediction error

Yactual - Yp = error

Back propagation approach

Calculate local gradients of output and hidden layers 
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1 11
1 1in inN y NN N W
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+ + 
                                    (8)
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+ + 
                (9)

i. Adjust the weight of the network using the gradient descent 
learning rule 

1,1 1,1 1,1 1(1 )x new x old NW W Xα δ= + +                (10)

1,2 1,2 1,2 1(1 )x new x old NW W Xα δ= + +               (11)

2,1 2,1 2,1 2(1 )x new x old NW W Xα δ= + +               (12)

2,2 2,2 2,2 2(1 )x new x old NW W Xα δ= + +               (13)

1,2 1,2 1,2
(1 )N new N old y outW W Nα δ= + +               (14)

1,2 1,2 1,2
(1 )N new N old y outW W Nα δ= + +               (15)

ii. Using the recomputed weights perform steps 1 – 7 again while 

(Yactual - Yp) > Set threshold 

Note: Steps 1 to 8 could be applied to networks with more inputs, 
hidden layers and outputs.

Summarily, the back propagation algorithm adjusts the weights of 
each unit in such a way that the error between the desired output and 
actual output is reduced. This process requires the computation of error 
derivative for each weight, which is a measure of how the error changes 
as each weight is increased or decreased.

In this study, 80% of the optimal battery state of charge data is 
used for neural network training, while 20% is used for performance 
validation. The neural network set up in this study, allows for multi-
inputs and a single output. Understanding the impact of hidden layers 
on the performance of neural networks is outside the scope of this 
study and as such 20 hidden layers are applied to the whole prediction 
network. It is assumed that the comparative analysis contributed by 
this study is unaffected by the number of hidden layers used, provided 
the same number of layers are maintained throughout. The network 
notations are defined in Table 1. 

Markov chains theoretical frame work

A Markov chain is a collection of random variables having the 
property that given the present, the future is conditionally independent 
of the past. A one step state transition in a Markov chain model could be 
described using a state transition diagram, shown in its simplest form 
in Figure 8. Mathematically, this one step state transition diagram could 
be adapted to account for transition probabilities between different 
states, for each prediction horizon thus:

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Input 1

Input 2

wX1,1

wX2,2

N in1,1

N in1,2

δN1,1

δN1,2

N1,1

Nout1,1

Nout1,2

N1,2

w X 2,1

w
X

1,2

w
N

1,1

w N 1,2

Yin

δ y

Yp

X1

X2

Figure 7: Network schematics for an artificial neural network predictor with 
two inputs and one output.

1,1xW
1,2xW
2,1xW
2,2xW

Randomly

generated input

weights

X1

X2

Inputs to neural

network

N1,1

N1,2

Neurons in

hidden layer

nodes

1,1inN
1,2inN

Inputs to hidden

layer neurons.

α Learning rate

1,1outN
1,2outN

Outputs from

hidden layer

neurons

1,1Nδ
1,2Nδ
yδ

Local gradients

1,1NW
1,2NW

Randomly

generated hidden

layer weights

inY
Input to output

neuron
pY

Predicted output

Table 1: Notation definition for an artificial neural network predictor.
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and mean absolute percentage error (MAPE) (Equation 20) metrics 
are used to assess the prediction accuracy of both predictors. RMSE 
as the name implies, provides a quadratic loss function as it squares 
and subsequently averages the prediction errors. Such squaring gives 
considerably more weight to large errors than smaller ones. MAPE on 
the other hand, is a relative measure which expresses prediction errors 
as a percentage of the actual data. This metric provides an easy and 
intuitive way of comparing errors between two predictors.

2(Y Y )actual predictedRMSE
m
−

= ∑               (19) 

Y Y
Y

100

actual predicted

actualMAPE
m

−
∑

=               (20) 

Where: “Yactual” is the actual value, “Ypredicted” is the predicted value, 
“m” is the number of data points. 

Neural networks 

In Figures 11 and 12, the impact of neural network inputs on MAPE 
and RMSE respectively, is investigated.

From these plots, MAPE and RMSE are found to increase massively 
and disproportionately on average as the prediction horizon increases 
for multi-input neural networks. 

To explain this trend, the impact of neural network input on error 
build up is investigated over part of the US06 driving cycle, as shown in 
Figure 13. In this example, the network with 2 inputs and 1 prediction 
horizon (Figure 13a) has the lowest prediction error at node E, owing 
to low error contribution from node C. Similarly, the network with 2 
inputs and 2 prediction horizons (Figure 13b) has 2 error contributing 
nodes (B and C) which further increase the prediction error at node E. 
The same explanation also holds for the network with 2 inputs and 3 
prediction horizons (Figure 13c) which has 3 error contributing nodes 
(A, C and D).

In summary, for multi-input neural networks, the error observed 
at each prediction stage is a cumulative effect of the error in the inputs 
leading to that stage. A buildup of this contributive error throughout 
the prediction stages, results in the overall prediction error observed.

Comparison between Markov chains and neural networks

Prediction accuracy: In this section, the prediction precision of 
Markov chains and neural networks are compared over the FTP72, 
SC03, ARTEMIS U130 and WLTC 3 driving cycles, using the MAPE and 

[ ]1

1

1
1

t t

n
t

t

S S

S p p
S q q

+

+

−   
   −  

                       (16) 

The resulting matrix is known as the transition probability matrix. 
The transition probability matrix maps the probability of occupying 
a new state based on the current state. Mathematically, the transition 
probability matrix consists of K by K matrix whose entries record 
the probability of moving from one state to another. In this study, the 
transition probability matrix is estimated on the basis of simulation 
results from 10 standard driving cycles which represent mixed city and 
high way driving at different aggressively levels. The combined optimal 
battery state of charge trajectory for all 10 driving cycles is mapped 
in to the sequence of quantized states using the nearest-neighbours 
method with a resolution of 0.01. The transition probabilities making 
up the transition probability matrix is estimated using the maximum 
likelihood estimation method expressed mathematically in Equation 
17.

1
1( | ) t t

t t
t

number of transitions from S to S
P S S

number of times S occured
+

+ =      (17) 

The resulting transition probability matrix (TPM) for this study is 
shown graphically in Figure 9.

For each prediction horizon, state transition is based on the future 
state with the highest transition probability (calculated mathematically 
using Equation 18, and detailed graphically in Figure 10 for this 
study).

1 1arg max( ( | ))t t tS prob S S+ +=                (18) 

Where:

1 min max[ , ]
0

1 .

t

ij

ijj

S SOC SOC
prob

prob for all i

+ ∈

≥

=∑
The Markov chains model used in this study homogenous and 

time invariant.

Prediction Results and Comparison of Predictors
In this section, the predictability of both neural networks and 

Markov chains are investigated over the FTP72, SC03, ARTEMIS U130 
and WLTC 3 driving cycles. These cycles are different from the ones 
used for the initial training, and as such offer an unbiased appraisal of 
both methods. 

For both predictors, the prediction philosophy introduced in section 
2.2 is applied. The least root mean square error (RMSE) (Equation 19) 

Figure 8: Markov chains state transition diagram.

Figure 9: Transition probability matrix for a Markov chains predictor.
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Figure 10: Markov chains state transition look up table for a single 
prediction horizon.
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Figure 11: Impact of neural network inputs on mean absolute percentage error 
for each prediction horizon.

RMSE criteria as shown in Figures 14 and 15. To maintain comparative 
fairness, both predictors have been set up on the basis of single-input/
single-output. The resulting plots show that both predictors have a 
similar level of performance, and command a high level of prediction 
precision, even at long prediction horizons, with a root mean square 
error of less than 0.6 and a mean absolute percentage error of less than 
0.7% for all driving cycles analysed.

The low RMSE and MAPE values observed for each predictor, over 
different driving scenarios imply that both predictors offer an accurate 
estimation of the future battery state of charge, even at long prediction 

Prediction Horizon Prediction Horizon

Prediction Horizon Prediction Horizon

15

10

  5

  0

15

10

  5

  0

15

10

  5

  0

15

10

  5

  0
5                10               15 5                10               15

5                10               15

FTP72
SC03
ARTEMIS U130
WLTC 3

1 Input 3 Inputs

5 Inputs 9 Inputs

R
M

SE
R

M
SE

R
M

SE
R

M
SE

5                10               15

Figure 12: Impact of neural network inputs on root mean square error for each 
prediction horizon.

Neural Network Predictor
Actual Battery SOC profile

63

62

61

60

59

58

57
100  101            102             103            104             105            106

One stage prediction horizon

B
at

te
ry

 S
ta

te
 o

f 
C

ha
rg

e 
(%

)

c D E

Time (S)
Previously
predicted value Actual value

Newly
predicted value

(a) 2 inputs, 1 prediction horizon

Neural Network Predictor
Actual Battery SOC profile Two stage prediction horizon

1st predicion stage

B
at

te
ry

 S
ta

te
 o

f 
C

ha
rg

e 
(%

)
B

at
te

ry
 S

ta
te

 o
f 

C
ha

rg
e 

(%
)

(b) 2 inputs, 2 prediction horizons

(c) 2 inputs, 3 prediction horizons

Previously
predicted value Actual value

Newly
predicted value

Previously
predicted value Actual value

Newly
predicted value

Neural Network Predictor
Actual Battery SOC profile

63

62

61

60

59

58

57
100  101            102             103            104             105            106

63

62

61

60

59

58

57
100   101             102             103             104             105             106

2nd predicion stage

2nd predicion stage

1st predicion stage

Three stage prediction horizon

Time (S)

Time (S)

3rd predicion stage

A

B

C

D

E

A
B

C D E

Figure 13: Neural network error build over part of the US06 driving cycle.

horizons. A visualizeable time series confirmation of this observation 
over the ARTEMIS U130 driving cycle is detailed in Figure 16.

Computation time and complexity: Neural networks learn by 
iterative weight adjustments through hundreds of hidden layer nodes in 
each prediction horizon and as such learn slower than Markov chains. 
By using random weights for pattern learning (Section 2.3, Equation 
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 From the obtained results, the following useful inferences are 
drawn:

1. Prediction accuracy decreases massively and disproportionately 
on average with increased prediction horizon for multi-input 
neural networks. Error build up in the network inputs through 
different horizons, is responsible for this trend.

2. In a single-input/single-output prediction network, the 
performance of both predictors are similar and near optimal 
with a mean absolute percentage error of less than 0.7% and 
a root mean square error of less than 0.6 for all driving cycles 
analysed.

This study formulates a successful template for the application of 
a time series predictor (neural networks or Markov chains) to a look 
ahead HEV control strategy. Building on the theoretical framework 
developed in this study and leveraging on the relative advantage of the 
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Figure 15: Comparison of prediction precision for neural networks and Markov 
chains using root mean square error.

7), the prediction performance of neural networks are non-repeatable, 
though similar.

With little or no difference in the prediction precision of both 
predictors, Markov chains appeal as a promising time series predictor 
for online vehicular applications, as it impacts the relative advantage of 
high precision and moderate computation time. 

Conclusions
This paper inspires a look ahead HEV energy management approach 

which uses time series predictors (Neural networks or Markov chains) 
to forecast future battery state of charge for a given horizon, along the 
optimal front (optimal battery state of charge trajectory). 

The primary contribution here is a detailed theoretical appraisal 
of the neural network and Markov chain time series predictors over 
different driving scenarios (FTP72, SC03, ARTEMIS U130 and WLTC 
3 driving cycles), with a view to understanding:- 

1. The prediction accuracy of both predictors in vehicular energy 
management applications. 

2. The impact of prediction horizon on the accuracy of both 
predictors. 

3. The impact of network inputs on the prediction accuracy of 
neural networks.
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Figure 16: Comparison of prediction precision for neural networks and Markov 
chains over the US06 driving cycle time series.
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Markov chains predictor (high precision and moderate computation 
time), future work will see to the realization of a Markov chains inspired 
online receding horizon HEV control strategy.
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