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Introduction
The complexity and role of DNA make it the most important 

molecule in nature. Describing its dynamics therefore remains a 
fascinated task for modern physicists and biophysicists alike, because 
it is nowadays accepted that DNA undergoes dynamical features that 
are not yet fully unmasked. There have been many attempts to describe 
that complicated dynamics using appropriate models. The first 
nonlinear model was suggested by Englander et al. [1]. Later, Yomosa 
proposed a further theory based on a dynamic plane base-rotor model 
[2]. Along the same line, Takeno and Homma [3] developed that idea 
and proposed a general spin-like model, and showed its efficiency in 
describing open-states in DNA. Further modifications of the Yomosa’s 
model have been introduced by Zhang [4] to show the influence of the 
dipole-dipole energy on the soliton excitations in the B-DNA molecule. 
He therefore proposed the Hamiltonian
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Where I is the mean value of the moment of inertia of the bases for 
the rotation around the axes P and P′ which pass through the point 
Pn  and P′n and are in parallel with z axis, respectively, S is a parameter 
associated with the stacking energy. ( ),ψ ψ ′n nV

 
is the interstrand

interaction energy which describes interactions between hydrogen 
bonds. It is given by
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The first term of Eq. (2) is the usual interstrand potential, where D is a 
parameter associated with the hydrogen bond energy. The second term 
describes the dipole-induced-dipole interaction between two bases of 
the nth base pair, with λ being a coupling constant associated with the 
dipole-induced-dipole interaction energy. The last term describes the 
dipole-dipole interactions between two bases in the nth coplanar base 
pair, where β measures the strength of the dipole-dipole interactions 
between hydrogen bonds.

As described above, one sees that the model does not take helicity 
into account. It is the main purpose of the present work to modify 
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the above-presented model and show, through the stability analysis 
of a plane wave, that helicity can bring about interesting features in 
the dynamics of DNA molecules. In fact, helicity has already been 
introduced in some recent models by many authors [5-7]. It has 
been, for example, pointed out that it can bring about highly localized 
structures and even describe open-states in DNA in a more realistic 
way [5,6,9,10].

Helicity is due to water filaments that link units at different sites. 
In particular, they have a good probability to form between nucleotides 
which are a half turn of the helix apart on different chains, i.e., which 
are near to each other in space due to the double helix geometry; 
these water filaments-mediated interactions are therefore also called 
helicoidal interactions (the nth pair interact with both the (n + h)th 
and (n − h)th pairs) [5,6,8] with a pitch h that could be equal to 4 [8,9] 
or to 5 [5,10]. Since the helicoidal pitch is 11, we will use in the rest of 
the paper h = 5. Helicoidal interactions are usually described by the 
potential
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Where Sh is a parameter associated with the helicoidal interaction 
energy. Taking account of Eq. (2) and (3), the dynamics of the molecules 
is described by the set of coupled equations
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Where ϕ ψ ψ ′= +  and φ ψ ψ ′= − . By letting Sh=0 we recover the system as described by Zhang [4]. Furthermore, works on that model has 
considered the continuum approximation of the above equations. In recent works, discreteness effects have been shown to fully modify the 
analytical treatment of DNA model [11-13]. In that respect, in order to avoid dropping important information about the model, we adopt a purely 
discrete approach and show that the model can be reduced to a set of coupled modified nonlinear Schrodinger equations. In this frame, we apply 
the multiple-scale expansion introduced by Leon and Manna [14,15] and successfully applied by us in recent papers [5,16]. The procedure is fully 
explained in [14,15] and [5,16], but, to our knowledge, it has never been applied to the above coupled discrete systems. In a recent work [5], the 
above equations have been shown to be completely decoupled. In the present case they constitute a coupled system which describes acoustical and 
optical waves that propagate in the molecule. It is therefore likely that the group velocities and frequencies are not the same. This makes the problem 
to solve rather complicated. For instance, by means of the change in independent variables ( )1 1/τ ε υ= + gt nd , ( )2 2/τ ε υ= + gt nd and 2ς ε= n it 
is possible to use the trial solutions [5,14-16]

( )( ) ( )
1 1

1
( ) , ( , )ϕ ε χ τ

∞

= =−

=∑∑
p

p l l
n p

p l p
t m A n t 											               (5)

( )( ) ( )
2 2

1
( ) , ( , ),φ ε η τ

∞

= =−

=∑∑
p

p l l
n p

p l p
t m A n t                                                             							             (6)

With ( )( )( ) ( )*( ) ( ) ( )( , ) exp 1,2 ,η η−= Ω + = =l l l
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p p gj  and Ωj are the group velocities and the frequencies of both 
modes, respectively.

We insert the above set of solutions into Eqs. (4) and we get the following system
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We solve the problem for different orders of the parameter ε. In this frame, the coefficients for constant terms give at different orders of ε
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The coefficients of (1) ( 1, 2)jA j = , at different order of ε, give
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Equations at order ε3 lead to the following set of coupled equations
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The different features of the frequencies Ω1 and Ω2 are shown in Figure 1. In Figure 1(a), we have assumed Sh = 0. Since the main purpose of 
this work is to bring out the impact of the helicoidal coupling on the bearing of localized structures, the different features of the dispersion relation 
are shown in Figure 1(b)-(d). These figures have been plotted for Sh < (β + D)/4 [panel (b)], Sh = (β + D)/4 [panel (c)] and Sh > (β + D)/4 [panel 
(d)], respectively. The same features have been observed in the framework of the helicoidal spin-like model [5]. In the presence of helicity, the two 
branches (acoustic and optical) do not lie at constant distance. This can give rise to one or two crossover point. We can also notice that the presence 
of such crossover points in the spectrum usually signals the appearance of a complex dynamics. A discussion on this is beyond our scope here. For 
instance, let us fix the value of Sh which gives one crossover point as Sh,cr.

From relations (5) and (6), the approximate solutions φn(t) and Φn(t) of Eqs.(4) can be written as

1( ) 2
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n mt e  and 1( ) 2
2( ) ( ) ( )φ εη τ ϑ ε−Ω= +i qnd t

n mt e ,                              					        (13)

Where (1)
1 1 1( ) ( , )χ τ χ τ=m m  and (1)

2 1 2( ) ( , )η τ η τ=m m .

Modulational Instability of Coupled Waves in DNA
It is now a well establish fact that nonlinear systems exhibit an instability that leads to self-induced modulation of the steady state due to 

interplay between the nonlinear and dispersive effects. Focus on the so-called modulational instability (MI) phenomenon is constantly growing 
because of its importance as a factor giving rise to intrinsic localized modes. It has been in fact demonstrated that MI generates such localized 
modes in nonlinear lattices provided discreteness effects are taking into consideration [9,11,12]. In the framework of DNA dynamics, soliton 
formation through MI has been investigated [5,9,13,16,17], which shows the possibility of solitons and localized structures bearing.

Linear stability analysis

The continuous version of the above system is the coupled NLS equations which are known in various systems. We intend to show in this 
section that it can be used to describe some relevant features of DNA molecules. We use the technique of MI analysis as done in Ref. [5,16] and we 
bring out the impact of both nonlinear coupling and helicity. For this purpose, we consider the stationary solutions.

( )1 1expχ ξ µτ=  −  m A i m  and ( )2 2expη ξ µ τ=  −  m B i m                                						         (14)

which obey the dispersion relations

( ) ( ) 2 22
1 11 12

1

1 2sin 2 sinµ ξ ξ γ γ = − − + + P h A B
Q

                                                                      					      (15a)

( ) ( ) 2 22
2 21 22

2

1 2sin 2 sinµ ξ ξ γ γ = − − + + P h A B
Q

                                                                    					     (15b)

We solve the above set of equations for 2A  and 2B  and get the following system

( ) ( ) ( ) ( ) ( )
2

2 2 22
1 22 1 12 2 22 12 22 12 11 22 122

1

2 sin 2 sinµµ γ γ γ γ ξ γ γ ξ γ γ γ
µ

   − = − − + + + −    
Q Q P h A  					      (16a)

( ) ( ) ( ) ( ) ( )
2

22 21
2 11 2 12 1 11 12 11 12 11 22 122

2

2 sin 2 sinµµ γ γ γ γ ξ γ γ ξ γ γ γ
µ

   − = − − − + + −    
Q Q P h B  					     (16b)

From Eq. (16), wave instabilities will develop in the model under our study if  2
1µ and 2

2µ  are negative. This means that 
2
2
2
1

µ
µ

and 
2
1
2
2

µ
µ

 are 

positive. For that reason, we can set
2 2
2 1
2 2
1 2

1µ µ
µ µ

= = . The remaining terms are easy to manage, i.e.,

( ) ( ) ( ) ( ) ( ) 22 2
1 22 12 22 12 11 22 12

22 1 12 2

1 2 sin 2 sinµ γ γ ξ γ γ ξ γ γ γ
γ γ

 = − − + + − − −
P h A

Q Q
 						       (17a)

( ) ( ) ( ) ( ) ( ) 22 2
2 11 12 11 12 11 22 12

11 2 12 1

1 2 sin 2 sinµ γ γ ξ γ γ ξ γ γ γ
γ γ

 = − − − + − − −
P h B

Q Q
 						      (17b)

Modulated waves are then expected in the DNA model under study if the right-hand sides of Eqs. (17) are negative. In this frame, there is no 
real solutions μ1 and μ2 if

( ) ( ) ( ) ( )2 2
22 1 12 2 22 12 22 122

11 22 12

10, 2 sin 2 sinγ γ γ γ ξ γ γ ξ
γ γ γ

− > >  − + +  = − crQ Q A P h A  					      (18a)

( ) ( ) ( ) ( )2 2
11 2 12 1 11 12 11 122

11 22 12

10, 2 sin 2 sinγ γ γ γ ξ γ γ ξ
γ γ γ

− > >  − − +  = − crQ Q B P h B  						      (18b)

On the other hand, if 22 1 12 2 0γ γ− <Q Q  and 11 2 12 1 0,γ γ− <Q Q  the plane wave solutions will be unstable if

2 2> crA A and 2 2> crB B                                                                                                           					        (19)

The above equations represent the conditions for plane waves to be unstable in the coupled modified sG equations. In what follows we discuss 
the impact of the helicoidal coupling on the coupled instability criteria. In this purpose, the following behaviors have been observed:
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• For Sh = 0, there is no helicoidal coupling and the highest amplitudes of waves will be possible if sin(ξ) = 1, i.e., ξ = π/2 [15]. The corresponding 
threshold amplitudes are plotted in Figure 2(a). The system is modulational unstable for qd ∈ [0; π]. We see that both equations shear the same 
parameter values. However, the threshold amplitude Acr is higher than the threshold amplitude Bcr. 

• For Sh ≠ 0, the two equations do not shear the same parameter values. The threshold amplitude for the in-phase dynamics will be maximum if 
ξ = π/2, while the threshold amplitude for the out of- phase dynamics will be high for ξ = 3π/10 [5]. This also means that localized structures cannot 
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Figure 1: Optical and acoustic frequencies as a function qd and for different values of Sh  and S = 0.3 eV, D = 1.2×10−1 eV, I = 1.8158×103Å2 amu, λ = 4×10−3 eV: 
Panel (a) shows the dispersion curves for Sh = 0. The curves are similar to those obtained for the discrete sG model. For Sh < Sh;cr, we have the configuration of panel 
(b). The dispersion curves oscillate and there is no crossing point between the optical and the acoustic curves. When Sh = Sh;cr, there is one crossing point. Panel (d) 
shows the dispersion curves for S > Sh;cr. In this case, there are two crossing points between the optical and the acoustic curves.
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be observed for both modes at the same time. Helicity therefore introduces a switching between the unzipping of the molecule and the opening of 
the base pairs. The molecule first unzips for the hydrogen bonds to be broken. It is also observed that helicity breaks the instability domains into 
side bands, while in the case Sh = 0 there is only one side band. The in-phase dynamics is expected to undergo large oscillations as predicted by 
Figure 2 (b).

According to the above analysis, it is obvious that in the coupled mode, coupled waves cannot be highly localized at the same time. The in-
phase and out-of-phase motions are therefore expected to display different dynamical features as further reinforced by Figure 4, where the critical 
amplitudes have been plotted versus the helicoidal coupling constant Sh.

Numerical analysis

In previous section, our results are based on the theory of linear stability analysis. However, we know that the linear stability analysis is limited 
because it can only predict the onset of instability and does not tell us anything about the long-time dynamical behavior of the system when the 
instability grows [11,12]. To further confirm that our linear instability analysis given above can correctly describe the initial stage of instability in the 
DNA chain, we exactly solve the set of coupled sG equations Eq.(4) by numerical fourth order  Runge-Kutta algorithm. The numerical simulation 
cannot only confirm our analytical prediction for short time but it can also give the longtime dynamics of the nonlinear DNA system. Periodic 
boundary conditions have been used and the initial condition has been chosen as to satisfy the combined solutions (13) and (14) (the resulting 
expression is a modulated wave). In our simulations, when we chose the appropriate values for qd and ξ, we observe the feature of wave breaking 
displayed by Figure 5. In fact, we bring out the switching of soliton-like structures in the DNA model under our study and confirm that bending 
and base pair opening cannot occur at the same time. In Figure 5 (a1), the bending of the molecule displays extended soliton-like waves as already 
observed by Tabi et al. [6], while the strand oscillation plane waves are stable under modulation [see Figure 5 (b1)]. This confirms the accuracy 
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= 5. Arrows point further regions of stability.
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of our linear stability analysis performed in the previous section and shows that any process that could take place in the DNA double chain is in 
close relationship with solitonic structures. Furthermore, the mechanism by which RNA polymerase opens locally the DNA double helix to initiate 
the transcription is not known, but there is experimental evidence that it involves a bending of the double helix [18,19] before the breaking of the 
hydrogen bonds linking bases in pairs. Although it cannot claim to describe accurately the actual effect of the bending of a three-dimensional helix, 
the two-component model can bring insight into this mechanism as already predicted by the linear stability analysis. Using a simple mechanical 
model of the double helix, it is easy to observe the effects of a local bend: (i) Bases inside the bend are brought closer to each other while the ones 
which are outside increase their relative distance and finally displays the features observed in Figure 5 (b2), while the bending is stopped for a while. 
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(ii) This stands for a local unwinding of the helix which occurs in the middle of the bent region while the two regions next to the bend on both 
sides are on the contrary slightly more twisted. This is due to the rigidity of the two strands entangled in the double helix. That is why we still observe 
slight oscillations of the bending coefficient which account for the effect of base opening on the whole lattice [see Figure 5 (a2)]. It also accounts for 
the constant effect of enzymes on the DNA molecule, because, once the genetic code is copied, the messenger-RNA polymerase is always ready to 
pursue its journey by surfing the long DNA molecule. It is therefore known that local openings of the DNA double helix involve 20 base pairs which 
are copied in order for the proteins to be synthesized.

Conclusion
The main purpose of the present paper was to introduce the helicoidal coupling in a two-component helicoidal model of DNA, and to bring 

out the effectiveness of wave switching between the bending of the molecule and the opening of the base pairs. The separation of the strands and 
the bending of the molecule have been shown to be fully described by a set of coupled sG equations. We have applied the multiple scale expansion 
to the corresponding set of sG equations, for the first time, and we have shown that the dynamics of the molecule can be described by a set of 
coupled NLS equations. The linear stability analysis of the latter has shown that when helicity is considered, wave switching was possible. This has 
been confirmed through the numerical integration of the coupled sG equations which displayed extended waves for the bending and breather-like 
structures for the oscillations of the hydrogen bond.
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