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Abstract
Leucine rich repeats (LRRs) are present in over 20,000 proteins from viruses to eukaryotes. Most LRR units are 

20-30 residues long and can be divided into a highly conserved segment and a variable segment. Eight classes have 
been recognized. Two to sixty-two units occur in tandem to form an LRR structure. The tertiary structures of these
LRRs are helical, in which the β-strands of the highly conserved segments stack in parallel. This helix consists of
a super helical arrangement of repeating structural units. We call it a coil of solenoids. We have used our program
HELFIT to assign helical parameters to 642 LRRs of known structures of 114 proteins. We report these parameters
and their correlations with eight classes of LRR, with the number of repeat units in the LRR, with oligomerization,
and with ligand state of the LRR. The helical parameters of the eight LRR classes frequently overlap one another.
However, the constant distance between parallel β-strands is the primary determinant of the helical parameters of
the LRRs. When the repeat number, n, in LRRs is small, the LRR structures are more variable and, by inference,
more flexible. In the LRRs with n ≥ 10, ∆z (the rise per repeat unit) of the “RI-like” and “Cysteine-containing” classes
is smaller than those of “SDS22-like”, and “Plant-specific” classes. This difference is ascribed mainly to the differ-
ence in the structural units. The helical parameters of the LRRs unambiguously describe both right handed and left
handed helices, helical dimers, and subdomains if they exist. Moreover, the helical parameters sensitively detect
structural changes induced by protein, protein interactions, glycosylation, and/or mutation.
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Introduction
LRRs are present in over 20,000 proteins from viruses to eukaryotes, 

as listed in the data bases of PFAM, SMART, PROSITE, and InterPro 
[1-4]. All organisms for which sequence data are available have at 
least one LRR protein. Most LRR proteins are involved in protein, 
protein interactions, as observed in the plant immune response and 
the mammalian innate immune response [5-9]. Beyond immunity, 
extensive functional diversity occurs among LRR proteins, including 
their involvement in apoptosis, autophagy, ubiquitin related processes, 
nuclear mRNA transport, neuronal development, and the type III 
secretion system in pathogenic bacteria [10-16]. Furthermore, plant 
LRR proteins including LRR containing receptor-like kinases and LRR 
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containing receptor like proteins act as signal amplifiers in the cases of 
tissue damage, of establishing symbiotic relationships, and of affecting 
developmental processes [17-19].

Two to sixty-two LRR units occur in tandem. Each unit is typically 
20-30 residues long and can be divided into a highly conserved segment 
(HCS) and a variable segment (VS) [6,20,21]. The HCS consists of
an eleven residue stretch, LxxLxLxxNxL, or a twelve residue stretch,
LxxLxLxxCxxL, in which “L” is Leu, Ile, Val, or Phe; “N” is Asn, Thr,
Ser, or Cys; and “C” is Cys, Ser or Asn. Eight classes of LRRs-“RI-like”,
“Cysteine-containing”, “SDS22-like”, ”IRREKO”, “Bacterial”, “Plant-
specific”, “Typical”, and “TpLRR”-have been recognized [6,20-22]. They 
are characterized by different lengths and consensus sequences of the
VS of their repeat units. Most of the known LRRs consist of only one
class of units; however a few have a mixture of two classes. A super-motif 
of LRRs occurs in a group of LRR proteins including the subfamily of
small LRR proteoglycan including biglycan, and decorin, and TLRs 7, 8, 
and 9 [23-25]. Moreover, the first, N-terminal LRR unit in the “Typical” 
or “IRREKO” LRR domains is frequently occupied by a “Bacterial”
motif [21]. Crystal and/or solution structures of representatives of all
the eight classes of LRR are available.

Three residues at positions 3 to 5, xLx, in the HCS form a short 
β-strand [5-9]. These β-strands from tandem LRR units stack parallel 
and then the LRRs form an arc or a helix. This helix is not simple but 
consists of a super helical arrangement of repeating structural units. We 
call it a coil of solenoids. 

The concave face, consisting of the HCSs of each LRR unit, consists 
of a parallel β-sheet, one strand from each HCS unit. The convex face, 
consisting of the VS of each LRR unit, is made of a variety of secondary 
structures including the α-helix, 310-helix, polyproline II helix, and an 
extended conformation or a tandem arrangement of β-turns (Figure 1). 
The various secondary structures on the convex side are connected to 
the strands forming the β-sheet in its concave side by two loops (Figure 
1). The “ascending loop” links the C-terminal end of the β-strand in 
the HCS to the N-terminus of the characteristic secondary structure in 
the VS [9] (Figure 1). The “descending loop” links the C-terminal end 
of the characteristic secondary structure in the VS to the N-terminus 
of the β-strand in the HCS of the following unit. Most of the known 
LRR structures have an N- and/or C-cap that shields the hydrophobic 
core of the first LRR unit at the N-terminus and/or the last unit at the 
C-terminus [5-9]. In extracellular proteins or extracellular regions,
these caps frequently consist of Cys clusters consisting of two or four
Cys residues on the N- and C-terminal sides of the LRRs.

Non-LRR, Island Regions, IRs, interrupting LRRs are widely 
distributed; they are referred to as “islands” or “loop outs” [26-28]. A 
large number of plant LRR proteins including LRR containing receptor 
like kinases and LRR containing receptor like proteins have IRs [24,28]. 
In our analyses we treat the LRR regions on either side of its IR as 
distinct helices, as well as analyzing the entire LRR as a single helix.

Enkhbayar et al. [29-31] developed a program, HELFIT, that 
determines the helical parameters-helix axis, pitch (with handedness), 
radius, and number of points or units per turn-as well as RMSD. Only 
four points are required to define a helix. The trace of a helix with 
pitch=0.0Å is a circle; with N=exactly 1.0 the trace is a straight line.

Here we have determined the helical parameters for each LRR and 
evaluated correlation with class of LRR, with the number of repeat units 
in the LRR, with oligomerization, and with ligand state of the LRR to 
reveal some structural features of LRR structures. We demonstrate 
that the constant distance between parallel β-strands is the primary 

determinant of the helical parameters of the LRRs. When the repeat 
number in LRRs is small, the LRR structures are more variable and, by 
inference, more flexible.

Methods
A helix consisting of n repeat units may be characterized by helix 

axis, pitch (P), helix radius (R), and number of repeat units per turn 
(N). HELFIT [29-31] computes these parameters in which the helix axis 
is represented by the unit vector (Figure 2A). These parameters also 
yield the rise per repeat unit (∆z=P/N) and the rotation per repeat unit 
(∆Φ=360o/N). Moreover, HELFIT gives rmsd:

rmsd=
2

1 2( )
[(the minimum of ]id

n
∑

where di is the closest distances from data point to the trace of the helix. 

Here 1 2( )
( 1)

=
−

rmsdp
n

 gives the regularity of helix independent of its

length. If p is relatively large, the LRR is not well described by a helix 
and might be more easily visualized as another shape, e.g. an ellipse.

In most LRRs the three residues at positions 3-5 in the HCS form 
a short β-strand, which is almost completely conserved in all LRR 
structures [5-9]. These β-strands from adjacent repeat units form a 
parallel, pleated sheet on the inside, or concave, surface of the helix. As 
reference points for HELFIT we use the coordinates of the α-carbon 
(Cα) of the consensus leucine residue at position 4 (corresponding to 

Pig RI Skp2

InIA InIJ

YopM FLS2

LINGO-1 BACCAC_03700

Figure 1: Diversity of secondary structures on the convex sides of LRRs in 
representatives of the eight classes-pig RI, Skp2, InlA, InlJ, YopM, FLS2, 
LINGO-1, and BACCAC_03700-for classes “RI-like”, “Cysteine-containing”, 
“SDS22-like”, “IRREKO”, “Bacterial”, “Plant-specific”, “Typical”, and “TpLRR” 
respectively. In all figures, the β-strands from two consecutive LRRs are 
shown. Green arrows represent β-strands, red ribbons α-helices, yellow 
ribbon 310-helix, pink ribbon polyproline II helix, orange tube an extended 
conformation, and blue tubes β-turns. Throughout the text, loops connecting 
the concave side to the convex side are referred to as “ascending”, and 
the ones connecting the convex side to the concave side are referred to as 
“descending”.
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the middle of each β-strand) in individual LRR repeat units.

Three structures of LRRs with n=3 have been determined. In these 
cases we performed 3D circle fitting that directly fits a circle to a set 
of 3D data points, because only three points define a circle [32]. The 
3D circle fitting, meaning P=0.0 and ∆z=0.0 as an a priori assumption 
determines the radius of the circle, the number per circle, the center 
of the circle, and the root mean square deviation from the best fit 
circle. The 3D circle fitting was also utilized for the estimation of the 
average distance between adjacent repeats by the helical parameters. 
Furthermore, the center of the circle was used for the calculation of the 
distance between the two monomers in TLR dimers.

For grouping of eight LRR classes of known LRR domains 
we performed similarity searches by FASTA and by BLAST using 
representative LRR domains clearly belonging to individual classes as 
query sequences. The representative LRR domains were selected from 
those for which the 3D structures have been solved. “RI-like” LRRs are 
from RI, “Cysteine-containing” from Skp2, “SDS22-like” from InlA, 
“IRREKO” from InlJ, “Bacterial” from YopM, “Plant-specific” from 
FLS2, “Typical” from LINGO-1, and “TpLRR” from BACCAC_03700. 

Secondary structure assignments based on 3D coordinates were 
made using the DSSP program ( http://crdd.osdd.net/raghava/ccpdb/
beta2_up.php) [33].

Results
Helical parameters

Figure 2B shows HELFIT computed helices in representatives-RI, 
Skp2, InlA, InlJ, YopM, FLS2, LINGO-1, and BACCAC_03700-of each 
of the eight classes of LRRs. The fits are very good. Supplementary Table 
1 shows the helical parameters–P, ∆z, ∆φ, N, and R of the 642 LRRs 
of known structures of 114 different proteins (Supplementary Table 1) 
[34-145]. 

The correlation of ∆z, ∆φ, and R 

D is the average Cα(i)-Cα(i+1) distance between adjacent repeats, 
in which the Cα atoms are at position 4 in the β-strand [32]. D is a 
function of ∆z, ∆Φ, and R.

1
2 2

22 sin( ) ( )
2

D R z
 ∆Φ = + ∆  
   

   (1)

The data points of 2⋅Rsin (∆Φ/2) versus ∆z fall on a circle with 

radius D; although, in the “TpLRR” class the data deviate from this 
circle (Figure 3). The circle fittings using in total 627 data points (except 
for those of the “TpLRR” proteins) gives D=5.02 ± 0.00 Å [32]. This 
D corresponds to the inter-strand distance that is in the range of 4.5 
to 5.5 Å [146]; this distance allows the formation of hydrogen bonds 
between parallel strands. In a canonical, parallel β-sheet the strands are 
aligned at the same level parallel to the axes of the individual strands. 
This occurs in LRR structures; the observed D is consistent with the 
distance between strands in the canonical parallel β-sheet.

The D value in the “TpLRR” class is 5.52 ± 0.14 Å and thus is 
larger and more variable than those in other classes. The calculation 
of the Cα(i)-Cα(i+1) distance revealed D>6.9 Å between neighboring 
β-strands, as observed in FAEPRAA2165_0102, EUBVEN_01088, 
BACCAC_03700, and BACOVA_01565. This greater distance arises 
from water bridges in the hydrogen bonds between the strands.

Most of the LRRs have R=15 → 30 Å (Supplementary Table 1). 
However, five LRRs in human Trk-A shows very small R (=0.89 Å) 
[143], while LRRs 7-13 in BT_1240 has very large R (=277 Å). Even 
in the extreme cases the 2⋅R⋅sin (∆Φ/2) and ∆z values fall on the circle 
in figure 3. In the former the helix axis is nearly perpendicular to the 
β-strand axis. In contrast, in the latter the helix axis is nearly parallel to 
the β-strand axis. 

The helical parameters of the eight LRR classes frequently overlap 
one another (Figure 2B). The ∆z and 2⋅R⋅sin (∆Φ/2) values in the 
“Typical” class are distributed broadly (Figure 3). 

Structures of LRRs in GPIBβ, a GPIBβ/GPIX chimera, and 
ZP_02034617.1 with n=3 are available (Supplementary Table 1) 
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o
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o

17
3.46
0.16
16.9
21.3
17.7

11
36.5
1.57
15.5
23.2
17.3

15
73.4
2.80
13.7
26.2
17.7

16
55.9
2.23
14.4
25.0
18.1

16
47.3
1.67
12.7
28.4
20.6

29
70.5
2.90
14.8
24.3
15.2

14
0.55
0.02
12.6
28.9
23.0

12
-79.1
-6.29
28.6
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1.50

Figure 2: HELFIT analyses of LRR domains. (A) Four helix parameters 
directly calculated by HELFIT in BRI1 with n=25; (B) Eight representatives-
pig RI, Skp2, InlA, InlJ, YopM, FLS2, LINGO-1, and BACCAC_03700-of each 
class of LRRs. Black circles indicate the first unit. In panel B, six numerical 
values for each protein are in order from top to bottom: the repeat number n, 
the helix pitch P [Å], the rise per repeat unit ∆z [Å], the rotation per repeat unit 
∆Φ [o], the number of repeat units per turn N [units/repeat], and the helix radius 
R [Å]. Left and right figures of each protein indicate side views and views along 
the axes of a helix, respectively. In the side views the direction of helix axis is 
in the direction of the arrows. In the along views the cross signs show that it is 
in a downward direction and also the dots show that it is in a upward direction.
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but also the entire dimer forms a single helix. We found four examples. 
Mouse CD14, in which the LRR does not conform to any of the eight 
classes, forms a dimer in the crystallographic asymmetric unit as well 
as in solution [139]. Dimerization in the crystal is mediated by LRR 
residues in the loop between β-strands in the HCS of repeats 12 and 13. 
The C-terminal β-strands of the two β-sheets from the two monomers 
interact in an antiparallel fashion and form a large and continuous 
β-sheet encompassing the entire CD14 dimer. The two monomers are 
related by a two fold axis of rotation, perpendicular to their common 
helix axis. The CD14 monomer forms a left handed helix, as does the 
CD14 dimer (Figure 5 and supplementary Table 1).

Human RI complexed with human angiogenin or ribonuclease I 
forms a dimer with human RI-angiogenin/ribonuclease I [36,37]. The 
whole molecule of human RI consists of only LRRs; all belong to “RI-
like” class. The two complexes are held together by many hydrogen 
bonds formed between the N-terminal β-strands of the two human 
RI molecules, leading to the formation of an antiparallel β-sheet. The 
entire RI dimer adopts a right handed helix whose helical parameters 
are similar to those of its individual monomers. These two hRI 
molecules are related by an approximate two fold axis of rotation, nearly 
perpendicular to the common helical axis. 

Mouse RI bound to mouse ribonuclease I forms a tetramer in the 
crystallographic asymmetric unit. The tetramer consists of two dimers 
that are related by a glide plane. The monomers of both dimers adopt 
a right handed helix whose parameters are quite similar to those in the 
dimer of human RI- angiogenin/ribonuclease I (Supplementary Table 
1).

Frog LGR4, whose LRRs belong to the “RI-like” class, also forms a 
homo-dimer in the crystal and in solution [104]. The two monomers 
in the LGR4 dimer are in close proximity at their C-terminal sides and 
are related by a two fold axis of rotation-TLRs 1-6, TLR8, RP105, LGR4, 
LGR5, and Drosophila Toll, “TpLRR” class-FAEPRAA2165_01021 and 

[144]. The circle fitting analysis yields D =4.90 Å ± 0.01 Å that seems 
to be smaller than in LRRs with n ≥ 4. This smaller D might reflect 
interactions of side chains bridging N- and C-caps [144].

Left handed helices

Most LRRs form right handed helices, that is Δz>0.0 Å. However, 
left handed helices are adopted by LEGL7, CD14, Lmof2365_1307, 
FSHR, TLR1, and TLR2, in which the repeat number n ≥ 7; ∆z=-0.78 → 
-3.17 Å (Figure 4 and supplementary Table 1).

Helical dimers in CD14, RI, and LGR4

In the homo-dimers of some LRRs not only the individual monomer 
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Figure 3: The correlation of z and 2·R·sin (∆Φ/2) in the helix parameters. 
(A) All 642 LRRs; (B) 139 LRRs with the repeat number n ≥ 10 in the four 
classes of “RI-like”, “Cysteine-containing”, SDS22-like, and “Plant-specific”. 
Some LRRs in the “TpLRR” class deviate from the common circle; this can
be attributed to a larger twist angle of β-sheets, a breaking of β-strands in
the HCS; or a prism like shape for the LRRs. “R” is the helix radius of a helix
consisting of n repeat units, “∆z” the rise per repeat unit, and “∆Φ” the rotation 
per repeat unit.

LEGL7 Mouse CD14

Lmof2365_1307 FSHR

Human TLR1 Human TLR2

11
-26.9
-1.53
20.5
17.6
13.7

11
-45.1
-14.8
14.3
24.3
18.3

7
-68.8
-2.43
12.7
28.3
19.9

11
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8.86
40.6
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-30.5
-1.08
12.8
28.2
22.0

21
-27.2
-0.97
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Figure 4: HELFIT analyses of LRR domains adopting left handed helices-
LEGL7, mouse CD14, Lmof2365_1307, FSHR, human TLR1, and human 
TLR2. Six numerical values in each protein are the repeat number and helical 
parameters of LRRs which in order from top to bottom the repeat number n, 
the helix pitch P [Å], the rise per repeat unit ∆z [Å], the rotation per repeat unit 
∆Φ [o], the number of repeat units per turn N [units/repeat], and the helix radius 
R [Å]. Left and right figures of each protein indicate side views and views along 
the axes of a helix, respectively. In the side views the direction of helix axis is 
in the direction of the arrows. In the along views the cross signs show that it is 
in a downward direction and also the dots show that it is in a upward direction. 
Black circles indicate the first unit. 
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EUBVEN_01088, and “Variable” class-BT_1240 and BAGEGG_03329. 
Most of the p (error) values are larger than 0.20 (Supplementary Table 
1). The angle between the two helix axes (Ω) best characterizes the 
discontinuity (Supplementary Table 2). The LRRs with two subdomains 
may be grouped into four categories.

The overall shape of the entire LRR in TLRs 1-6, TLR8, RP105, and 
BAGEGG_03329, is well approximated as half or three quarters of an 
ellipse. For example, the LRRs in human TLR3 with n=25 consist of 
two subdomains, LRRs 1-12 and LRRs 13-25 (Figure 6). The 25 units 
of TLR3 forms a nearly flat ellipse with p=0.23 Å. This p value is larger 
than p=0.09 Å of units 1-12 in subdomain 1 and of units 13-25 in 
subdomain 2. Similar characteristics are observed in other LRRs that 
consist of two subdomains. The angle, Ω, between the two helix axes of 
the subdomains ranges from 13.4 → 19.2o (Supplementary Table 2). This 
tilt generates a larger p for the entire LRRs.

AtTMK1, BRI1, BRL1, AtRKP2 and Drosophila Toll contain 
LRRs interrupted by a non-LRR, IR. For example, AtTMK1 contains 
15 units interrupted by a non-LRR IR; n1=11 and n2=4 [75]. The two 
helix axes are nearly perpendicular to one another; Ω=74º (Figure 6 
and Supplementary Table 2). The non-LRR IR has a cluster of four Cys 
residues with the pattern of Cx6Cx29Cx7C. The formation of a disulfide 
bridge in Cx7C suggests that the IR acts as an N-cap, further supporting 
the formation of the second subdomain. The first LRR domain in 
Drosophila Toll with n=19 forms a half ellipse [95]. Therefore, the LRR 
domain is divided into two subdomains.

EUBVEN_01088, FAEPRAA2165_01021, and BT_1240 contain 
LRRs in which the continuity of the parallel β-sheet is disrupted. The 
“TpLRR” domains in EUBVEN_01088 and FAEPRAA2165_01021 with 
n=14 are kinked at the central seventh and eighth repeats with 35 and 
37 residues, respectively; Ω=71 → 88º (Figure 6 and supplementary 
Table 2). BT_1240 contains 13 LRRs of which four repeats are similar to 

the “TpLRR” consensus. BT_1240 forms a homo-dimer in the crystal, 
in which the two molecules are in close proximity at the C-terminal 
sides. The LRR unit 7 is 30 residues long and disrupts the continuity of 
the parallel β-sheet; Ω=64 → 70º (Supplementary Table 2).

The LRR domains in human LGR4 and LGR5 with n=19, and frog 
LGR4 with n=17 are kinked between the central eleventh and twelfth 
repeats [104-107]; Ω=19.1 → 40.1o. The units of LRR11 and of LRR12 
do not strictly obey the LxxLxLxxNxL rule. Instead, the Asn residues 
are replaced by A309 and T332, respectively. As a result, the asparagine 
ladder (in which the Asn side chains from different turns are stacked 
and form hydrogen bond connecting turns) breaks in this region, 
thereby generating two longer β-strands [104-107]. 

Homo-oligomers

Proteins that contain LRRs form homo-dimers, -trimers, -tetramers, 
-pentamers, -hexamers, and -octamers in crystals. The LRRs of these
homo-oligomers are related by non-crystallographic symmetry and
hence experience slightly different packing environments. There are
two patterns. The first case is that the helical parameters of individual
monomers constituting the homo-oligomers are similar to each
other. In this case, their repeat numbers are large, n ≥ 11. Examples
include, homo-octamers-NLRC4 (n=16), Skp1 (n=11), RP105 (n=23),
AtTIR1 (n=18), and AtCOI1 (n=18); homo-hexamers-SspH1 (n=10)
and biglycan (n=12); homo-pentamer-EUBVEN_01088 14; homo-
tetramers-RanGAP1(n=11), LINGO-1 (n=14), Drosophila Toll (n=8),
and CARMIL (n=16), and homo-dimers-NGL-3 (n=11) and InlA

Human RI

Mouse CD14

Frog LGR4

Figure 5: HELFIT analyses of LRR domains forming helical dimers-mouse 
CD14, human RI, and frog LGR4. Left and right figures of each dimer indicate 
side views and views along the axes of a helix, respectively. In the side views 
the direction of helix axis is in the direction of the arrows. In the along views the 
cross signs show that it is in a downward direction and also the dots show that 
it is in a upward direction. Black circles indicate the first unit. 

Human TLR3

AtTMK1

EUBVEN_01088

LRR 1-12
LRR 13-25

LRR 12-15

LRR 1-11

LRR 1-7

Ω = 13.4°

LRR 8-14

Ω = 106°

Ω = 86.2

Figure 6: Schematic representations of LRRs with two subdomains-human 
TLR3, AtTMK1, and EUBVEN_01088. “Ω” is the angle between the two helix 
axes of the two subdomains.
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(n=16). In the second pattern the helical parameters differ significantly 
among the individual monomers. In this case, their repeat numbers are 
small; n=5 or 7. They include homo-tetramers-TAP, n=5, VLR2913, 
n=5, bovine coupling factor B, n=5, and human pp32, n=5; the homo-
hexamer-human pp32, n=5; and the homo-octamer-InlK, n=7.

Eight classes of LRR

When the repeat number, n, is ≤ 8, the helical parameters for 
individual monomers of the homo-oligomers are sometimes variable. 
The helix parameters were not determined in these cases. 

The consensus sequence of the “RI-like” class is LxxLxLxxNx(L/C)
xxxgoxxLxxoLxxxxx. The repeat length is 28-29. Most of their VSs 
adopt an α-helical conformation (β-α structural units) (Figure 1). “RI-
like” LRR proteins include RI (n=17), NLRC4 (n=16), CARMIL (n=16), 
and NLRX1 (n=8) [34-40]. The helix parameters range over: P=- 6.3 
→ 35.6 Å, ∆z=- 0.21 → 1.76 Å, ∆Φ=11.4 → 18.5o, N=19.5 → 31.6 units/
repeat, and R=14.7 → 24.8 Å (Supplementary Table 1).

The LRR domains of RanGAP from human and fungi, n=11, and 
tropomodulin from chicken and Caenorhabditis elegans, n=5, show 
little similarity to the RI LRRs [41-45]. However, their repeat units are 
in β-α conformations that are the same as those of the “RI-like” class. 
Correspondingly, their helical parameters are similar to those of the 
four “RI-like” LRR proteins.

The LRR domain in LEGL7 is similar to that in CARMIL 
(E-value=6.2 · 10-4 in FASTA). We tentatively assign the LEGL7 LRR 
to the “RI-like” class. The LRR domain consists of eleven units. The 
consensus is VxxLxLxxNxLxxxSxxELxxxLAxIPxx with 29 residues. 
DSSP analysis indicates that the “ascending loops” in the eight repeats 
adopt a 310-helix of one turn at the underlined residues and the VS 
adopts an α-helix with 6 → 10 residues. The LRR domain adopts a left-
handed helix; P=-26.9 Å, ∆z=-1.53 Å, ∆Φ=20.5º, N=17.6 units/repeat, 
and R=13.7 Å (Supplementary Table 1).

“Cysteine-containing” LRR proteins include F-box/LRR-repeat 
protein 20 from Rattus norvegicus, grr1 from Saccharomyces cerevisiae 
and grrA from Emericella nidulans. The consensus sequence is 
LxxLxLxxCxxITDxxoxxL(a/g)xx(C/L)xx. Tertiary structures are 
available for Skp2 with n=8 or 11 [46,47]. The units of Skp2 are 
relatively variable; they are in β-α conformations (Figure 1). The helix 
parameters range over: P=28.1 → 40.8 Å, ∆z=1.17 → 1.75 Å, ∆Φ=15.0 → 
16.2o, N=22.3 → 23.4 units/repeat, and R=16.6 → 18.9 Å (Supplementary 
Table 1).

The “Cysteine-containing” LRR domain in Skp2 is similar to those 

in AtTIR1 and AtCOI1 [48-50]. For both, n=18. The HCS of the LRR 
domains in AtTIR1 and in AtCOI1 are highly variable because the CxxI 
sequence is not conserved in most of these LRRs. In contrast, the VSs 
are conserved. We, therefore, assume that both the LRR domainsI1 
belong to the “Cysteine-containing” class. The variable HCSs form 
relatively long β-strands with three to six residues and the VSs form 
α-helices with twelve residues. The p values are large: p=0.33 → 0.42 Å 
and thus the right handed helix is distorted. The helix parameters range 
over: P=19.3 → 20.4 Å, ∆z=1.02 → 1.05 Å, ∆Φ=18.5 → 19.3o, N=18.7 → 
19.1 units/repeat, and R=14.9 → 15.3 Å.

The consensus sequence of the “SDS22-like” class is 
LxxLxLxxNxIxxIxxLxxLxx. The repeat length is 21-23. The VSs strongly 
prefer a 310-helix at the underlined residues. The individual units are 
in β-310 conformation (Figure 1). “SDS22-like” LRR proteins include 
five distinct internalins (except for InlJ) with n=6 → 16 [51-68]. The 
“SDS22-like” LRR domains adopt a right-handed helix: P=6.27 → 73.7 
Å, ∆z=0.23 → 2.91 Å, ∆Φ=11.8 → 15.1o, N=23.9 → 30.7 units/repeat, and 
R=17.4 → 22.8 Å (Supplementary Table 1). 

The LRR domain in InlK shows high similarity to that in 
Lmof2365_1307. These two LRR domains show significant similarity 
to those in InlA and internalin C2 (with E-values <10-4 in FASTA). We 
tentatively assume that the LRR domain in InlK and Lmof2365_1307l 
belong to the “SDS22-like” LRR class. Three variable HCSs at the 
N-terminal side adopt long β-strands with five or eleven residues. These 
putative “SDS22-like” domains adopt a left-handed helix; P=-62.9 →
-97.4 Å, ∆z=-1.90 → -3.32 Å, ∆Φ=10.9 → 14.8o, N=25.8 → 33.1 units/
repeat, and R=12.9 → 24.7 Å.

The consensus sequence of the “IRREKO” class is 
LxxLxLxxNxLxxLDLxx(N/L/Q/x)xx or LxxLxCxxNxLxxLDLxx(N/
L/x)xx [21]. The only available 3D structure is that of InlJ [69]. InlJ 
with n=15 belongs to this class; although, the first and the last units 
are “SDS22-like”. The VS of TxLDL(T/S)x(N/L)Tx adopt an extended 
β conformation and β-turns (Figure 1). Its helical parameters are 
P=73.3 Å, ∆z=2.80 Å, ∆Φ=13.7º, N=26.2 units/repeat, and R=17.7 Å 
(Supplementary Table 1).

The consensus sequence of the “Bacterial” class is 
LxxLxVxxNxLxxLP(D/E)LPxx. The repeat length is 20-22. The 
structural units are in β-polyproline II helix conformation (Figure 1). 
“Bacterial” LRR proteins include YopM (n=16), SspH2 (n=13), SspH1 
(n=10), and ipaH3 (n=9) [147-150]. The helix parameters range over: 
P=46.7 → 103 Å, z=1.64 → 2.61 Å, ∆Φ=8.71 → 12.7o, N=28.4 → 36.0 
units/repeat, and R=20.6 → 24.6 Å (Supplementary Table 1). 

“Plant-specific” LRR proteins include protein FLS2, BRI1, BRL1, 
BAK1, SERK1, AtTMK1, AtRPK2, and PGIP [70-77]. BRI1 and BRL1 
are homologs. BAK1 and SERK1 are also homologs. The consensus 
of the “plant-specific” class is xxLxLxxNxLxGxLPxxLxxLxx with 24 
residues [22,151]. The AtTMK LRR domain with n=15 is kinked at 
the central eleventh and twelfth repeats [75]. The consensus sequence, 
LxGxLP, at positions 11 to 16 forms a second parallel β-strand in the 
“ascending loop”. Thus, the structural unit is β-β-310 (Figure 1). The 
helix parameters with n=9 → 29 range over: P=57.2 → 87.0 Å, ∆z=2.39 
→ 3.37 Å, ∆Φ=13.7 → 15.0o, N=24.0 → 26.2 units/repeat, and R=15.2 →
17.5 Å (Supplementary Table 1).

“Typical” LRRs are the most abundant LRR class [6,20]. The 
consensus sequence is LxxLxLxxNxLxxLpxxoFxxLxx in which 
uppercase indicates more than 50% occurrence of a given residue in a 
certain position; lowercase indicates 30-50% occurrence; “L” is Leu, “N” 
is Asn, “p” is Pro, “o” indicates a non-polar residue, “F” are Phe, and “x” 

ψ = 159° ψ = 176°

L = 50.7 Å L = 46.7 Å

CL097

Figure 7: Schematic representation of spatial arrangement of unliganded and 
ligand activated human TLR8 dimer. “L” and “ψ” are the distance and the angle 
between the two helical axes of the two monomers in the dimers, respectively. 
Left and right figure indicate the unliganded and the liganded TLR8 dimer.
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is a non-conserved residue. “Typical” LRR proteins include 53 proteins 
(Supplementary Table 1) [71, 78-137]. 

Most of their VSs adopt a tandem arrangement of three β-turns 
(which we call consecutive -turns) on the convex faces (Figure 1). The 
consecutive -turns form a flattish amphipathic structure with main chain 
hydrogen bonds in a linear arrangement. Adjacent β-turn repeat motifs 
form a regular parallel packing arrangement with the core hydrophobic 
residues pointing alternately in and out of the plane of the structure 
interlocking with the corresponding hydrophobic residues from the 
adjacent repeat. The consecutive -turns have already been reported in 
the underlined eight residues of the VS consensus of xxLPxGLLxGLxx 
seen in three LRR units in GPIbα with n=9 [125]. Thus, the structural 
units may be represented by consecutive -turns. 

Phenylalanine at position 19 is internally buried and is surrounded 
by four Leu’s, which form the hydrophobic core of the LRR structure. 
These Phe’s of consecutive units form the spine of the LRR [89]. This 
Phe spine involves aromatic, aromatic interactions; the benzyl groups 
form stacks of Phe side chains. The first, N-terminal LRR unit in most 
of the “Typical” LRR domains is “Bacterial” LRR. The VS adopts the 
polyproline II helix instead of consecutive β-turns.

The helix parameters with n=7 → 27 range broadly: P=- 62.0 → 93.2 
Å, ∆z=- 1.53 → 3.24 Å, ∆Φ=7.41 → 15.0o, N=23.9 → 51.2 units/repeat, 
and R=15.5 → 38.9 Å (Supplementary Table 1). The LRR domains may 
be grouped into a right handed helix, a left-handed helix, and a near 
flat. 

Human Slit2 contains four tandem arrays (D1 to D4) of LRRs that 
consist of six to eight units. The structures of D2, n=7, D3, n=7, and 
D4, n=6, have been determined in the free state [91-93]. The helical 
parameters differ significantly from each other; D2>D4>D3 in P; 
D4>D2>D3 in both ∆z and ∆Φ, and D3>D2>D4 in both N and R 
(Supplementary Table 1).

The LRR domains in biglycan, decorin, and TLR8 consist of three or 
four tandem repeats of a super motif of STT in which “S” is a “Bacterial” 
LRR unit and “T” is a “Typical” LRR unit [23,24]. The LRR domains of 
biglycan and decorin with n=12 consist of four repeats of STT. Also the 
N-terminal LRR domain in TLR8, n=27, contains three repeats of STT.
The helix parameters range over: P=36.7 → 51.8 Å, ∆z=0.82 → 1.84 Å,
∆Φ=10.5 → 14.3°, N=25.3 → 34.3 units/repeat, and R=19.0 → 26.3 Å.

The LRR domain in Xcv3220, n=9, has high sequence similarity 
to those in both human LGR4 with E-value=7.7 · 10-6 in FASTA and 
human LGR5 with E-value=7.0 · 10-6 in BLAST. We assume that this 
Xcv3220 LRR domain belongs to the “Typical” class. Seven of the 
nine repeats are represented by the consensus of LxxLxLxxCxx(x/-)
LxxLPxxLxxLxx with 23-24 residues. The structural unit is β-310. The 
LRR domain adopts a left-handed helix; P=22.3 Å, z=0.59 Å, ∆Φ=-9.6º, 
N=37.6 units/repeat, and R=29.7 Å. 

The consensus sequence of the “TpLRR” class is 
LxxLxLxxxLxxIgxxAFxx(C/N)xx. The repeat length is 23-25. 
Bacterial “TpLRR” proteins include BACOVA_04585, bacterial 
group 3 Ig-like proteins (BACCAC_03700 and BACOVA_01565), 
FAEPRAA2165_01021, EUBVEN_01088, and BT_1240. The repeat 
numbers range from 12 to 14. The tertiary structures of the six “TpLRR” 
proteins have been determined. The ascending loops consist mainly of 
one β-turn and short β-strand of two residues, while the most of the 
descending loops consist of a single β-turn (Figure 1). Most of their VSs 
adopt a tandem arrangement of two or three β-turns.

The helix parameters are variable among the six proteins and 

deviate significantly from those of the other classes (Supplementary 
Table 1). This can be attributed to a larger twist angle of β-sheets, to a 
breaking of β-strands in the HCS, or to a prism like shape for the LRRs. 
The mean twist angle of β-sheets in LRR proteins belonging to the other 
classes was 3 → 8° [32]. LRRs in the “TpLRR” class sometimes do not 
form β-strands in the HCS.

Most of LRRs in BT_0210, n=18, BAGEGG_03329, n=18, and 
LRIM1, n=11, are highly variable and could be assigned to none of the 
eight classes [134, 138-144]. Their helix parameters range over: P=66.2 
→ 96.2 Å, ∆z=1.66 → 2.88 Å and ∆Φ=8.5 →10.8°, N=33.4 → 42.1 units/
repeat, and R=22.0 → 31.8 Å (Supplementary Table 1). These parameters 
are most similar to those in the “Bacterial” domains.

Structural change induced by protein, protein interactions, 
glycosylation and/or mutation

In the LRRs the concave surface, the convex surface, N-terminal 
domain including N-cap, C-terminal domain including C-cap, or 
their combinations are involved in protein, protein interactions 
(Supplementary Table 3).

The LRRs of VLR and Slit2 belong to the “Typical” class, as noted. 
VLRB.2D, n=5, bound to a protein antigen, HEL, as well as non-
bound VLR has been determined [83]. VLR uses nearly its entire 
concave surface to bind HEL. This binding causes large changes of the 
helical parameters; a decrease of P, ∆z, and ∆Φ, and an increase in R 
(Supplementary Table 3). The structures of D3 in human Slit2 have 
been determined in the free state and in the complex with the Ig domain 
from Robo1 [91]. As seen in the VLRB.2D-HEL complex, the Slit2 D3 
domain uses its concave surface to bind Ig. The formation of the complex 
causes large changes of the helical parameters. Conversely, an increase 
of P, ∆z, and ∆Φ, and a decrease in R is observed (Supplementary Table 
3). The same structural change occurs in the InlA-cadherin complex; 
although, it is minor (Supplementary Tables 1 and 3) [56]. 

The crystal structures of free LRIM1 and of free APL1 and of 
their hetero-dimer complex have been determined [134]. The LRIM1/
APL1complex has a single intermolecular disulfide bond. LRIM1 and 
APL1 contain 11 and 15 repeat units, respectively. The HELFIT analysis 
detects structural change in both LRR domains due to the complex 
formation. The LRIM1 LRR domain in the complex shows a significant 
increase in P and ∆z and decrease in R (Supplementary Table 3). In 
contrast, the helical parameters in the APL1 LRR domain are reversed 
and have small changes in ∆z and R.

The structures of frog LGR4 have been determined in the free 
state and in complex with R-spondin [104]. The formation of the 
complex induces small structural changes and increases in P, ∆z, and 
R (Supplementary Table 3).

The structures of free RabGGTα and its complex bound to escort 
protein 1 have been determined [53,54]. The helical handedness of the 
LRR domain with n=6 reverses upon binding to REP (Supplementary 
Table 1).

The crystal structures of the complexes of Skp1-Skp2 and Skp1-
Skp2-Cks1 are available [46,47]. The binding of Cks1 causes slight 
structural changes; an increase of P, ∆z, and ∆Φ, and a decrease in R. 
Moreover, the crystal structures of the complexes with Ran-GPPNHP-
RanBP1-RanGAP and Ran-GDP-AlFx-RanBP1-RanGAP have been 
determined [43]. The helical parameters of these two complexes differ 
slightly from one another. 

Many structures of GPIbα have been reported in the free state and 
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in complexes with one or two α-thrombins, von Willebrand Factor A1, 
and PEP inhibitor [124-131]. We do not find a clear pattern of structural 
changes. However, it appears that the binding of two α-thrombins 
causes a structural change. 

The crystal structures of NgR-4, n=10, in both the non-glycosylated 
state and N-glycosylated at Asn-82 and Asn-179, are available [88,89]. 
N-glycosylation induces a decrease of P, ∆z, and ∆Φ and an increase of N
and of R (Supplementary Table 3). The G28E mutant of bovine coupling 
factor B, n=5, has a smaller R than does the wild type (Supplementary
Table 1) [152].

Spatial arrangement of TLR dimers 

The structures of the unliganded and ligand activated human TLR8 
dimer were determined [119]. Helix parameters of the two monomers 
in the unliganded dimer are generally similar to those in the liganded 
dimer. However, upon ligand binding the spatial arrangement of the 
two monomers in the dimer changes. The distance between the two 
monomers at their C-terminal regions changes from 53 Å to 30 Å [119]. 
HELFIT calculates the distance and the angle between the two helical 
axes of the two monomers in the dimers, L and ψ. Correspondingly, the 
ligand binding drastically changes these two parameters; ∆L=- 2.6 Å 
and ∆ψ=17º (Figure 7). 

The structures of TLR3 complexed with dsRNA and with six 
different Fabs (Fab15 light and heavy chains, Fab12 light and heavy 
chains, and Fab1068 light and heavy chains) have been determined, 
as well as the structure of free TLR3 [112,113]. The formations of the 
complexes induce decreases in the helix radii. The dsRNA TLR3 dimer 
has L=74.5 Å and ψ=148º.

Furthermore, the hetero-dimers of human TLR1 and TLR2, and of 
mouse TLR2 and TLR6 have been determined [108,109]. The values of 
L and ψ are 44.0 Å and 168º in the TLR1-TLR2 dimer and 53.0 Å and 
169º in the TLR2-TLR6 dimer, respectively.

Discussion
The constant inter-strand distance is the primary determinant 
of the helical parameters of the LRRs

The HELFIT analysis demonstrates that the inter-strand distance 
(D) is constant in the seven classes except for the “TpLRR“ class; D=5.02
± 0.00 Å (Figure 2B). In contrast, D in the “TpLRR” class is significantly 
larger; D=5.52 ± 0.14 Å. This can be attributed to non-uniformity of
the inter-strand distance. The helix radius R in some LRRs belonging
to the “TpLRR” class is extremely small or very large (Supplementary
Table 1). Thus, the overall shape of these LRRs of the “TpLRR” class is
best described as a prism; while those of the other classes are helices or
semi-ellipses.

The “ascending loops” influence the helical parameters of the 
LRRs 

The LRRs in RI and LEGL7 belong to the “RI-like” class. The RI 
LRR adopts a right handed helix or a horse shoe shape. In contrast, 
the LEGL7 LRR adopts a left handed helix (Figure 4). The LRRs form 
β-strands on the concave face (in the HCS) and α-helix of 9 → 15 
residues on the convex face (in the VS). Both of the “descending loops” 
also consist of one β-turn. On the other hand, the ascending loops of 
the LEGL7 LRR include a 310-helix of one turn; while the RI LRR does 
not adopt this helix in the loops.

Some LRRs in NLRC4, InlK, Lmof2365_1307, AtTIR1, AtCOI1, 

TLRs 1-6, and TLR8 do not obey the LxxLxLxxNxL consensus, 
especially at the underlined residues. In addition, some LRRs in these 
proteins frequently form longer β-strands consisting of four to seven 
residues in the HCS. This affects not only the ascending loops but also 
the descending loops. Indeed, the right handed helices of NLRC4, 
AtTIR1, AtCOI1, TLRs 1-6 and TLR8 are distorted. Also the LRRs 
in InlK and Lmof2365_1307, which belong to the “SDS22-like” class, 
adopt left handed helices; while those in the normal “SDS22-like” class 
form right handed helices. 

The HCS of the “TpLRR” class with ten residues is shorter than 
eleven or twelve residues in the “Typical” class. On the other hand, the 
VS of the “TpLRR” class is quite similar to that of the “Typical” class. 
Both VSs consist mainly of consecutive -turns (Figure 1). However, 
the helical parameters indicate that the “Typical” class adopts a helix, 
while the “TpLRR” class resembles a prism. These observations can 
be attributed to a structural difference of the ascending loops and the 
inter-strand distance.

The helix parameters vary among the “Typical” LRRs. Seven of 
the ten repeats in NgR-4 and eleven of the fourteen repeats LINGO-1 
conform to the “Typical” consensus. However, their structures differ 
from one another. The NgR-4 LRR domain adopts a right handed helix 
with ∆z=2.09 Å; while the LINGO-1 LRR arc is nearly flat; |∆z|=0.06 Å. 
The LINGO-1 LRRs show a structural periodicity that consists of four 
tandem repeats of three consecutive LRR units. The first and second 
VSs in the three LRR units adopt a β-strand plus consecutive β-turns, 
while in the last VS the corresponding β-strand breaks. In contrast, this 
periodicity is not seen in the corresponding residues in NgR-4. The 
different helical parameters may be due to a difference in structure of 
the ascending loops and the conformations on the convex face. 

In conclusion, the above observations suggest that the helical 
parameters more strongly depend on the structures of the “ascending 
loops” than of the “descending loops”. Moreover, the helical parameters 
of the LRRs are influenced by helical elements on the convex face and 
the uniformity of parallel strand stacking on the concave face.

LRR domains having small repeat number are highly flexible

The values R and ∆z versus n for all 642 LRRs show a lot of variation, 
if n is small (Figure 3). Here we describe some examples. The first is the 
family of VLR. The lysozyme bound VLRB.2D forms a tetramer in the 
crystal [83]. The two monomers adopt a right handed helix, while the 
other two monomers adopt a left handed helix. Sea lamprey VLRB, n=5, 
bound to the BclA protein forms a trimer [84]. One monomer forms 
a right handed and the other monomer forms a left handed helix. The 
third monomer is not visible in the electron density map of the crystal 
structure. Tetrameric VLR 2913 has a range of helical parameters in its 
four monomers (Supplementary Table 1). 

The crystal structures of InlB, n=8, in wild type, mutant, and 
complexes have been determined [60-64,85]. The InlB molecules form 
a monomer, dimer, and hexamer in the crystals. The helical parameters 
show a range of variation. InlB with an additional LRR unit inserted, 
n=9, forms a trimer. All the monomers have similar helical parameters.

Right handed and left handed helices exist in the dimer of SERK1, 
n=5, bound to BRI1 [71] and in the tetramer of bovine Coupling 
Factor B, n=5 [152]. InlK, n=7, forms a homo-octamer in the crystal 
[68]. The helix parameters of these eight monomers are highly variable 
(Supplementary Table 1). Even with n=17 in RI, the helix parameters 
are significantly different among four vertebrate species: both P and ∆z 
decrease in order of pig, bovine, human, and mouse [34-37]. 
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These observations strongly suggest that LRR domains with n ≤ 7 
are more variable and are more flexible in solution. NMR data of LC1 
with n=6 support this inference; within the β-sheets the consensus 
leucine residues at position 4 have relatively low order parameters [52].

Structural features of individual LRR classes

As noted, the helical parameters of the eight LRR classes frequently 
overlap one another. Moreover, when the repeat number in LRRs is 
small, the LRR structures are more variable. Taken together, the helical 
parameters of the LRRs with n ≥ 10 were compared to find the structural 
features (Figure 3B and supplementary Figure 1). The “TpLRR” class 
deviates significantly from other classes. The “Typical” class has highly 
variable values. The rise per subunit, ∆z, of the “RI-like” and “Cysteine-
containing” classes is clearly smaller than those of the “SDS22-like”, and 
“Plant-specific” classes. This is mainly ascribed to the difference in the 
structural units. 

Structures of non-LRR, IRs

The structures of non-LRR, IRs may be considered in two groups. 
In the first group, IRs allow the continuity of the parallel β-sheet and the 
LRR units to form a single domain of a regular LRR structure. Examples 
include the IRs of BRI1, AtRPK2, BT_0210, and TLR8.

The BRI1 LRR domain has 25 units interrupted by a 70 residue IR 
between unit 21 and unit 22 [28]. B. thetaiotaomicron BT_0210 contains 
18 units interrupted by a 76-residue IR between units 2 and 3. In the 
two LRR domains the helical handedness reverses (Supplementary 
Table 1). The IR forms a small domain those folds back into the interior 
of the helix, where it has extensive polar and hydrophobic interactions. 
The IR between repeat units 15 and 16 of TLR8 is 39 residues long [24]. 
The additional residues loop out from the expected helical path of a 
regular LRR before rejoining it some residues later [119]. Consequently, 
this IR is in the exterior of the helix, in contrast to the IRs in BR11 and 
BT_0210.

In the second case IRs disrupt the continuity of the parallel β-sheet 
and form two distinct subdomains. This case is observed in AtTMK1 
[75] and Drosophila Toll [95]. The AtTMK1 LRR domain contains 15
repeats interrupted by a 41 residue IR between LRR11 and LRR12 [28],
while the Toll LRR domain with 24 repeats has a 68 residue IR between 
LRR10 and LRR11[95] .

Conclusions
We have assigned helical parameters to the 642 LRRs of known 

structure using the program HELFIT. These parameters and their 
correlations with class of LRR, with the number of repeat units in the 
LRR, and with oligomerization and ligand state of the LRR are described. 
The helical parameters of the eight LRR classes frequently overlap one 
another. However, the constant distance between parallel β-strands is 
the primary determinant of the helical parameters of the LRRs. When 
the repeat number, n, is small, the LRR structures are more variable 
and, by inference, more flexible. In the LRRs with n ≥ 10, rise per repeat 
unit, ∆z, of the “RI-like” and “Cysteine-containing” classes are smaller 
than those of “SDS22-like”, and “Plant-specific” classes. This is ascribed 
to the difference in the structural units. The helical parameters of the 
LRRs unambiguously define both right handed and left handed helices, 
and helical dimers and subdomains if they exist. Moreover, the helical 
parameters sensitively detect structural changes induced by protein, 
protein interactions, glycosylation, and/or mutation. 
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