
International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 2 No. 4 (October 2011)© IJoAT 594

Hardware Design of a High Speed VLSI Comparator Framework for DNA

Sequence Matching Using High Level Synthesis

Dr. Seema Verma
1
, Sanjeev Kumar

2
 and Dibyayan Das Sharma

2

1
 Dept. of Electronics, Banasthali University,

Rajasthan, India
2
 Dept. of Electronics & Communication Engineering, Delhi College of Technology & Management,

Palwal, Haryana, India

Corresponding Author Email: dibyayandsharma@gmail.com

Abstract

DNA sequence matching has assumed a very important role in molecular biology and

bioinformatics. A typical DNA sequence represents a massively huge set of data and hence

sequence matching must be made feasible and within practical limits by use of technology and

innovation. Here in this paper, a high speed pipelined comparator framework has been designed

which can be used for rapid sequence matching. The design is created following a new

methodology using GAUT II high level synthesis (HLS) tool which allows developing hardware

with optimized performance metrics. The designed hardware has the potential to be a low cost

solution to real-time DNA matching and verification processes with significantly low latency.

Keywords: DNA sequence matching, VLSI, High Level Synthesis, Computer Architecture, High

Speed Comparator

1. Introduction

DNA or Deoxyribonucleic Acid contains the genetic information required for

development and functioning of all known living organisms. The specific structure of DNA

molecule conveys specific information and hence the sequence of its base pairs is very important

[1][2]. Recently there has been tremendous interest in knowing the DNA structure of various

living organism and is an area of active research in biology.

Apart from the interest in this field from an academic research point of view, study of

DNA is also important from a technological point of view. It is known that the DNA of each and

every individual is unique such that one can identify the person by his/her DNA. This can be

essentially used to track down criminals. Furthermore, correlation of DNA structure and genetic

information with specific ailments can be used to precisely diagnose patients. Study of DNA also

has widespread applications in fields like genetic engineering, forensics and bioinformatics.

The typical sequence of a DNA contains millions of base pairs and hence ideally speaking

an exact matching process between two DNA samples of same size would require millions of

comparisons. To solve this problem, the matching is done between a sample DNA sequence and

mailto:dibyayandsharma@gmail.com

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 2 No. 4 (October 2011)© IJoAT 595

a much larger DNA sequence in database. Several algorithms have been designed commonly

known as Exact String Matching Algorithms (ESMA) which aims to bring down the

computational complexity involved in exact matching process and have been applied to DNA

sequencing. They work by finding the number of occurrences of the sample DNA (called a string

or a pattern) in the target DNA stored in the database (called text). Yet another class of

algorithms is called Inexact or Approximate String Matching Algorithms that aims to find the

closest possible match between two DNA sequences.

Whatever be the class of algorithm used, pattern matching algorithms have two main

objectives viz. 1) reduction of number of character comparisons required in the worst and

average case analysis and 2) reduction of time required in the worst and average case analysis [3].

Considering the complexity involved in DNA pattern matching comprising of millions of base

pairs, most of these algorithms are implemented in software. Depending on the amount of

investment that can be put in by interested parties, either these softwares are run on general

purpose hardware like desktop computers or in highly specialized supercomputers. Both these

alternatives are two extremes wherein a software run on desktop computers would be a low cost

solution but will take time to compute a typically long sequence while computing the same

sequence with a supercomputer would take the least time but will prove to be a costly affair.

In this work, a sort of middle path has been chosen wherein a high speed pipelined

comparator framework has been designed which can be used with the aforementioned algorithm

and thereby enhance the computational ability of these algorithms while reducing their running

time. The integration of this comparator framework with the software based algorithm can prove

to be a low cost yet sufficiently high speed solution for DNA sequencing needs and hence has the

potential to be widely adopted by parties who may not have access to supercomputing

infrastructure.

2. High Level Synthesis Methodology

High level synthesis is the latest technological evolution of logic synthesis for VLSI

design. The basic goal of high level synthesis tools is to generate register transfer level (RTL)

code in some hardware description language (HDL) like VHDL or Verilog, from an input high

level language like C/C++ or MATLAB while satisfying a given set of design constraints and

optimizing the given cost function.

Although research in high level synthesis started a long time back (in 1970s), success in

this field has been seen only recently [4] in specific domain areas like DSP. However, it is quite

interesting to note the various technological advancements that this methodology offers and

hence becomes important for researchers to develop a tool that can be used across all the

domains of VLSI chip designing. One of the major advantages of high level synthesis tool is that

it allows the designer to think about their designs at a higher level of abstraction. This implies

that the designer can now concentrate on the underlying algorithm to solve a problem rather than

worrying about problems pertaining to gate level synthesis. The design time will reduce

drastically and allow the designer to explore multiple algorithmic solutions.

Despite these advantages that make high level synthesis methodology seem like a dream

come true for design engineers, there are several loop holes that needs to be sorted out. It is

believed that syntheses performed by these tools are not at par with hand coded designs in terms

of certain design constraints. At high levels of abstraction, estimates of key hardware constraints

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 2 No. 4 (October 2011)© IJoAT 596

like area, clock cycles, frequency and power are usually prone to error which may propagate to

the final implementation [5]. Furthermore, high level synthesis tools do not provide satisfactory

results when it comes to synthesis of control-dominated branching logic. These tools, as it turns

out, are much more suitable for data intensive algorithm synthesis.

However, with the advent of present tools and cutting-edge research in this field, the

situation seems promising for the future. Most tools today employ various techniques like

parallelism extraction, loop unrolling, optimized allocation strategies, compiler pragmas etc. to

enhance the quality of the synthesis results. At present these tools have largely succeeded in

being quite efficient in generating optimized RTL code for FPGA implementation. With enough

research in optimization strategies, high level synthesis tools can complement traditional RTL

design methodologies if not completely replace them for ASIC designs.

 In this work, we chose to use a high level design methodology primarily to assess the

efficacy of this important technological paradigm and also to demonstrate the benefit this

methodology can bring to the over-all design methodology by providing a fast convergence from

idea to hardware implementation.

3. Design Approach

To design the hardware, a novel design approach has been followed based on high level

synthesis methodology. The complete flow of our approach is shown in Figure 1. Starting with

the formulation of specification, various constraints were ascertained which the proposed

hardware was required to satisfy. These constraints and specifications mainly pertained to the

high speed operation of the circuit and included parameters like throughput, latency, maximum

data rates. Specifications and constraints determined at this stage were still rough estimates.

However, these rough estimates are not the ones used by the synthesis tool as the starting point of

the optimization. The synthesis tool has its own library for this purpose.

Fig. 1: Complete Flow of Design Methodology

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 2 No. 4 (October 2011)© IJoAT 597

Once the constraints are determined, the C code that shows the behaviour of the hardware

is written. Usually the C code contains the operations that the hardware is intended to perform

which in this case consists of only comparisons. However, these comparisons are needed to be

performed on two input vectors in parallel using pipelined stages. The C code is written keeping

this in mind.

The tool that we have used for this work is GAUT II. The GUI of this software can be

seen in Figure 2. It is an open source high level synthesis tool developed at LESTER Lab at

France. It accepts behavioural VHDL or C code as input and generates IEEE P1076 compliant

RTL VHDL code for synthesis as output [6]. The code generated can then be used for synthesis

and verification by virtue of simulation which are the last steps of the design approach that has

been followed. For more details on GAUT, readers can see [7] and [8].

Fig. 2: GUI of the GAUT II High Level Synthesis Tool

4. Proposed Architecture of the Hardware

The hardware has been designed keeping few assumptions in mind. The first assumption

is the bit encoding of the four nucleobases A, T, C and G as shown in Table 1. Having done this

bit encoding, the input stream of data will simply become a long string of 0s and 1s. However,

one cannot simply do a bit by bit comparison as then it will produce wrong results which will not

make any sense. We have designed the hardware keeping this in mind. The hardware accepts data

serially which are then placed in input registers in groups of two to preserve the bit encoding of

the nucleobases. The comparator array then compares these 4 bits (2 for sample base and 2 for

target base) and produces a 1 for valid match or a 0 otherwise. This extensive requirement is

reflected in our C code by using bit-accurate variables from the Algorithmic C class library from

Mentor Graphics which is supported by GAUT tool.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 2 No. 4 (October 2011)© IJoAT 598

Table 1: Bit Encoding of the Nucleobases

Nucleobase Bit Representation

A 00

T 01

C 10

G 11

Another assumption that we have made in our design is that the bit encoding is not

performed in our hardware but by a software routine run on a general purpose computer with

which this hardware is integrated. The string matching algorithms as discussed in the beginning

of the paper can be written in a high level language and may include a function that does this bit

encoding of input data streams. As the software is executed, our hardware will receive this bit

encoded data and then function as intended.

The RTL code as generated by GAUT II from the input C code gives rise to architecture

of the form as shown in Figure 3.

Fig. 3: Proposed General Architecture of the Hardware

The control unit comprises of an FSM that controls and schedules all the operations

carried out by the processing unit. The processing unit comprises of pipelined comparator arrays

that carries out comparisons between input data which are stored in input registers. The top level

dataflow graph of the processing unit is shown in Figure 4 and the generated RTL VHDL code

opened from within GAUT GUI is shown in Figure 5.

The 24 green points on the left show the two sets of input data (each a vector of 12 data

points). The two orange points are constants, one being 0 and the other being 1. All these inputs

are connected with comparator arrays (blue points in the middle) and produce the output which

are stored in output registers and shown by 12 yellow points on the right.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 2 No. 4 (October 2011)© IJoAT 599

Fig. 4: Top level Dataflow Graph of the Processing Unit

Fig. 5: Generated RTL VHDL code opened from within GAUT GUI

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 2 No. 4 (October 2011)© IJoAT 600

The Gantt chart shows the exact scheduling of the data through various registers and is

shown in Figure 6. From here it is evident that the number of pipeline stages is 2. The choice of

the number of pipeline stage is determined to satisfy design metrics like speed, area, power etc.

For a DNA sample containing approximately 1 million base pairs, the estimated time the

hardware takes to compare it is 0.006666666 seconds excluding of course the time it takes for the

software routine to run whose running time will depend on the length of the underlying code and

the processor on which it is run.

Fig. 6: Gantt chart of the Operation

5. Hardware Characteristics

The characteristics of the designed hardware are shown in Table 2. As can be seen from

the Gantt chart, it takes 7 clock cycles to get the output. For clock duration of 10 ns, the output is

received after 70 ns which is the latency of the hardware. The hardware synthesis result in GAUT

tool is shown in Figure 7.

Table 2: Hardware Characteristics

Parameters Value

Clock 10 ns

Latency 70 ns

Pipeline Stages 2

Internal data registers 6

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 2 No. 4 (October 2011)© IJoAT 601

Fig. 7: Hardware Synthesis Result in GAUT Tool

Keeping fixed the clock period at 10 ns, we compared the latency of the design with the

area estimate as provided by the GAUT II tool. The details are shown in Figure 8 below. The x-

axis represents the latency while the y-axis represents the area estimate provided by GAUT tool.

Fig. 8: Area v/s Latency graph

From the graph above, it can be seen that the area increases drastically for the latency

period equal to clock period which is 10 ns. For all other latencies the corresponding area

estimates are given. This validates the fact that lower the latency is, higher is the logic circuit size.

The graph above also helped us decide the particular hardware implementation which had a

latency of 70 ns which is quite optimum both in terms of area and speed. This could not have

been known so easily with traditional RTL based design methodology where it would require one

to develop RTL code multiple times to find out the best possible implementation of the hardware

not feasible with stringent time-to-market deadlines prevalent in the industry.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 2 No. 4 (October 2011)© IJoAT 602

6. Hardware Implementation

The generated RTL description can be used as an input to various synthesis tools for gate-

level synthesis. It may be used for implementation on an FPGA also. However, prior to RTL

generation one needs to characterize the operators in appropriate library files for the target device

(in case of FPGAs) or target processes in case of ASIC. By default, GAUT tool provides library

characterization for Xilinx and Altera FPGA families.

The total area or resources consumed on specific FPGA device will be more than what

GAUT indicates for the processing unit. This is because other interfacing circuitry will also be

synthesized like communication unit, GALS/LIS interface, memory unit etc. With GAUT tool it

is possible to have a memory aware synthesis methodology [9] that can further allow us to design

fast memory access based comparison framework by incorporating certain string matching

algorithms directly in hardware. This research avenue is currently being pursued by the authors.

GAUT tool is also capable of generating SystemC cycle accurate simulation model which

is SystemC 2.1 compliant. Hence these simulation models can also be used for virtual

prototyping using SoCLib platform.

7. Conclusion

Here in this paper we have shown how high level synthesis methodology can be used to

obtain an optimized and efficient hardware implementation in the form of a high speed

comparator framework targeted for DNA sequencing needs. High level synthesis allowed us to

make several important choices pertaining to hardware performance metrics at a fairly early stage

than was possible with traditional RTL based methodologies and allowed us to design the

hardware satisfying all design constraints. The hardware has the potential to be a fast and cost-

effective solution that can be integrated with software routines to develop a high speed DNA

sequencing tool.

References

[1] J. D. Watson and F.H.C Crick, “A Structure for Deoxyribose Nucleic Acid", Nature, 171, 1953, pp. 737 –

738.

[2] J. D. Watson and F.H.C Crick, “Genetical Implications of the Structure of Deoxyribonucleic Acid", Nature,

171, 1953, pp. 964 – 967.

[3] R. Bhukya and DVLN Somayajulu, “2-Jump DNA Search Multiple Pattern Matching Algorithm”,

International Journal of Computer Science Issues (IJCSI), Vol. 8, Issue 3, No. 1, 2011, pp. 320 – 329.

[4] G. Martin and G. Smith, “High Level Synthesis: Past, Present and Future”, IEEE Design and Test of

Computers, 2009, pp. 18 – 23.

[5] David C. Zaretsky et. al., “Balanced Scheduling and Operation Chaining in High Level Synthesis for FPGA

Designs”, Proceedings of the 8
th

 International Symposium on Quality Electronic Design, 2007, pp. 595 –

601.

[6] Official website of GAUT -- http://www-labsticc.univ-ubs.fr/www-gaut/

[7] E. Martin et al., “GAUT: An Architecture Synthesis Tool for Dedicated Signal Processors”, Proceedings of

EURODAC, 1993, pp. 14 – 19.

[8] Julien et al., “Low Power Synthesis Methodology with Data Format Optimization Applied on a DWT”,

Kluwer Academic Journal of VLSI Signal Processing, 2003, pp. 195 – 211.

[9] G. Corre et al., “Memory Aware High Level Synthesis for Embedded Systems”, IADIS International

Conference on Applied Computing, 2004.

