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The superfamily of G Protein-coupled Receptors (GPCRs) 
comprises a majority of cell surface receptors capable of binding 
various signal molecules, including amino acids and their derivatives, 
nucleotides, peptides, proteins and odorants. GPCRs play a pivotal role 
in the regulation of cell growth, differentiation, metabolism, motility, 
communication, and many other biochemical and physiological 
events [1-3]. They share the same topology and contain seven helical 
Transmembrane regions (TM) forming transmembrane channel, 
extracellular N-terminal Domain (NTD), intracellular C-terminal 
Domain (CTD), three Extracellular (ECLs) and three intracellular 
loops (ICLs). The membrane-proximal regions of ICLs interact 
with heterotrimeric G proteins and β-arrestins, both responsible for 
activation of the enzymes generating the second messengers and G 
protein-gated ionic channels. In a majority of GPCRs the second and 
third ICLs are involved in the interaction with G-proteins and the 
third ICL and CTD with β-arrestins. ECLs, primarily the second ECL, 
are responsible for the recognition of ligand and are involved in the 
formation of high affinity orthosteric site located in the transmembrane 
channel of receptor. 

The pharmacological action of over 40% of the currently used drugs 
is carried out through GPCRs [4,5]. This is due to the fact that GPCRs 
and intracellular signaling cascades they regulate contribute to a large 
number of diseases, including widespread endocrine dysfunctions 
such as metabolic syndrome, obesity and diabetes mellitus [6,7]. As a 
consequence, the development of new selective and effective regulators 
of GPCRs is one of the actual problems of molecular endocrinology 
and biochemistry. 

In the last two decades the evidence was obtained that the synthetic 
peptides corresponding to functionally important regions of ICLs 
and ECLs of GPCRs can affect in vitro and in vivo the activity of 
cognate receptors and signaling pathways regulated by them [8-14]. 
The biological activity of GPCR-peptides depends on the integrity of 
molecular determinants in the primary structure which are responsible 
for ligand recognition and binding in the case of ECL-peptides and for 
interaction with G proteins and β-arrestins in the case of ICL-peptides, 
and on the similarity of three dimensional structure of GPCR-
peptide and the region homologous to them in the cognate receptor. 
Since ligand-binding regions of ECLs and G protein- and β-arrestin-
interacting regions of ICLs are located primarily in the membrane-
proximal segments of these loops, their conformation in the full-size 
receptor is stabilized by the adjacent hydrophobic TM and by the 
interaction between N- and C-terminal segments of loops. Due to this, 
the modification of GPCR-peptides by TM segments or hydrophobic 
radicals simulating TM, as well as the design of cyclic forms of GPCR-
peptides mimicking the conformation of loops in native receptor allow 
a significant increase of their effectiveness [15-17]. Note that ICL-
peptides modified by TM segments of about 2/3 of the entire TM in 
length or by fatty acid radicals with physicochemical properties similar 
to these segments are capable of penetrating the plasma membrane 
and interacting with the intracellular targets, i.e. intracellular regions 
of the cognate GPCR, and receptor-interacting regions of G protein 
α subunits. It was found that ICL-peptides modified by hydrophobic 
radicals, primarily palmitoyl radical, discovered by Covic et al. [9] 
in 2002 and designated as pepducins [9], selectively influence the 
transduction of hormonal signal via homologous GPCR, acting as 
intracellular agonists and antagonists, and are also capable of triggering 

the appropriate cell response in the absence of hormonal stimulus [18-
24]. As the main molecular mechanism of action of pepducins includes 
their interaction with complementary regions of the cognate GPCR, 
the regulatory effects of pepducins are receptor specific; they have no 
influence even on the closely related receptors and are active only in the 
tissues where there are receptors homologous to them [25,26]. 

Pepducins derived from Protease-activated Receptors (PAR) of the 
types 1, 2 and 4 have influence on platelet aggregation, inflammation, 
angiogenesis, cancer and metastasis [27]. The drug PZ-128 developed 
on the basis of pepducin P1pal-7, a derivative of N-terminal region 
of the third ICL of PAR1, and found to inhibit significantly PAR1-
mediated platelet aggregation and arterial thrombosis in guinea pigs 
and monkeys can be a good alternative to the low-molecular PAR1-
antagonists used to treat arterial thrombosis [27]. The data was 
obtained that PAR1-derived pepducins suppress the tumor growth 
and metastasis, and reduce the cell viability in breast, ovarian and lung 
carcinoma cells [28]. The antitumor effect of PAR-derived pepducins 
comprises the increase of apoptosis of malignant cells, the inhibition 
of platelet aggregation and chemotaxis, and the suppression of tumor 
angiogenesis, which leads to a decrease of tumor survival and growth. 
It was shown that the PZ-128, alone and in combination with Taxotere, 
an anti-cancer chemotherapy drug, inhibited growth of breast tumor 
xenografts and their metastasis to the lung [28]. This pepducin, in 
addition, significantly reduced PAR-mediated migration of lung 
cancer cells isolated from patients with lung tumors and decreased 
lung tumor growth by 75 %. Its effectiveness was comparable with 
that of monoclonal VEGF-directed antibody drug Bevacizumab, 
an antitumor agent and angiogenesis inhibitor [29,30]. Pepducins 
corresponding to ICLs of the chemokine receptors CXCR1, CXCR2 
and CXCR4, like those mentioned above, possessed potent antitumor 
activity [23,24,31,32]. CXCR4-derived pepducins both in monotherapy 
and in combination with rituximab, the monoclonal antibody to 
B-cell-associated antigen CD20, effectively suppressed the survival and 
metastasis of disseminated lymphoma xenografts, which can be used
as basis of a new treatment strategy for lymphoid malignancies [24].

PAR2-derived pepducins influenced acute pancreatitis [33]. 
Possessing antagonistic activity, pepducin P2pal-18S, a derivative of 
the third ICL of PAR2, protected acinar cells against injury induced 
by bile acid in vitro and reduced the severity of experimental biliary 
pancreatitis in mice when administered before or 2 h after bile acid 
infusion in vivo. It follows that PAR2-derived pepducins may be 
successfully used in the clinical management of patients at risk for 
developing acute biliary pancreatitis. 
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Many data are available now on ICL-peptides as regulators 
and modulators of functioning of endocrine system in the in vitro 
and in vivo conditions [19-22,34-38]. C-palmitoylated pepducin 
612-627-K(Pal)A corresponding to C-terminal part of the third ICL 
of thyroid-stimulating hormone (TSH) receptor in vitro stimulated 
the basal activity of adenylyl cyclase and GTP-binding capacity of Gs-
proteins, the components of TSH-sensitive adenylyl cyclase signaling 
system, and reduced the stimulating effects of TSH on this system 
in the thyroidal membranes [22]. The 5-days treatment of rats with 
intranasally administered 612-627-K(Pal)A resulted in a significant 
and sustained increase of free T4 level and a decrease of TSH level [37]. 
These data furnish evidence that TSH receptor-derived pepducins can 
be used to develop new regulators of the thyroid functions. 

GPCR-peptides, the derivatives of ECLs, are a promising tool 
for the study of pathogenesis of diseases induced by autoantibodies 
against extracellular regions of GPCR, such as cardiomyopathy, 
complex regional pain syndrome, chronic Chagas’ disease, cognitive 
dysfunctions, Sjögren’s syndrome [39-41]. The treatment of rats with 
peptide corresponding to the NTD of melanocortin receptor (MCR) of 
the type 4, led to the increase of food intake, weight gain, and insulin 
and triglycerides levels in the blood plasma, like in the case of blockade 
of hypothalamic MCRs [42]. In rats treated with peptide, a derivative 
of the third ICL of type 3 MCR, possessing MCR3-antagonistic 
activity there was the increase of body weight, elevated blood pressure, 
decreased locomotor activity, the increase of triglycerides, insulin, 
and leptin levels, like in the case of metabolic syndrome and type 2 
diabetes mellitus [43]. ECL-peptides can also be used to inhibit binding 
of infectious agents, such as viruses, to the cell membrane. Peptide 1-27 
corresponding to the NTD of GPR1 receptor and the antibodies against 
the peptide blocked the infection induced by HIV-1 that uses GPR1 as a 
co-receptor [44]. It is assumed that the administration of ECL-peptides 
causes not only the production of antibodies with antiviral activity, 
but also inhibits in a competitive manner the interaction of the virus 
with GPCR. The specific binding between ECL-peptides and a large 
number of chemicals can be the basis for a search of highly selective 
GPCR ligands [13,45,46]. The study of conformational change in ECL-
peptides is carried out by easily accessible spectroscopic methods; 
therefore the screening of the ligands can be automated. 

The progress achieved in the development of GPCR-peptides opens 
up prospects for their wide application, on the one hand, in medicine 
as drugs to treat endocrine, cardiovascular and other diseases, and on 
the other hand, in theoretical biology as functional probes to study 
the structural-functional organization of the hormonal signaling 
systems and molecular mechanisms of interactions of GPCRs with 
ligands and the downstream regulatory and adaptor proteins. Multiple 
modifications of GPCR-peptides can change their specific biological 
activity and influence their selectivity, efficiency, bioavailability and 
stability, which allow unlimited expanding of the area of the use of 
peptides. It should be noted that at present intensive studies are carried 
out on the peptides derived from receptor tyrosine kinases, G-proteins, 
enzymes generating the second messengers, and other signal proteins 
[12].
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