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INTRODUCTION

Sequence homology has been an established approach to get the 
first hint of functional similarity. An bioRxiv preprint of this 
paper was published in early 2021 and the abstract was published 
in the book of abstract of BIOCOMP 2020 [1]. As the DNA 
sequence database continues to grow, the chances of getting 

closer matches keeps on improving. However, with the increase 
in the DNA repository, there is an equal increase in demand for 
handling the sequences in an efficient and rapid way [2]. Most 
of the existing pair wise alignment tools are an extension to the 
dynamic programming algorithm, and though they are extensively 
fast in comparison to standard dynamic programming approach, 
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they are not rapid and efficient to handle massive sequences, 
resulting in memory address violation and other computational 
complications. GMSECT takes into consideration of memory and 
processor resources to efficiently do the alignment comparison 
with minimal time using parallel computing approach. GMSECT 
is an application interface which can be used with any pairwise 
alignment tool such as BLAST, BLAT, FASTA or any other 
possible alignment tool.

What are the massive sequences?

Massiveness of a sequence is dictated not just in terms of the size 
of the genome, but the computational complexity that increases 
with incremental size. In other words, a massive sequence is one 
that takes a lot of time to process using standard computational 
resources, and many a times do not get processed reasonably well. 
Massive sequences are the sequences which are characteristics of 
higher eukaryotes such as the vertebrates and the plants which 
have their genome size in the order of hundreds of megabases. 
Typical example includes the model plant Arabidopsis thaliana 
genome and the Human genome. For instance, the size in 
megabytes of chromosome 1, 2 and 3 of human Build 35 reference 
sequence are 241 MB, 237 MB and 195 MB respectively. However, 
the term massive is relative and should be used in context with 
the algorithm implemented. One reason for the prior statement 
is the difference in the number of words generated by different 
algorithms and thereby the hits resulting in High Scoring Pairs 
(HSPs) and their extension until the score drops below the set 
threshold value. Thus there is a computational limit with respect 
to the memory resource. The compared sequences should not be 
so massive such as to cause ‘memory address violation’, resulting 
in ‘core’ files generation or other errors such as ‘segmentation 
fault’, ’mpid:Broken pipe!’, or a cause of the machine to ‘hang’. 
For instance, while the massiveness limit on a 2 GB, 2.2 GHz 
Processor for BLASTn could be around 50,000 bases, BLAT 
20,000 bases. Of course each of these heuristics has their own 
merits and demerits under various requirements to have different 
suitability. Under fair approximation, ‘number of bases could be 
considered roughly to be equal to number of bytes’. Because of 
the massive size of sequences and computational requirements, 
the different pair wise alignment algorithms are impractical 
without the use of a supercomputer. The present algorithm serves 
as a parallel computing interface to the existing heuristic tools 
which can be operated on a cluster of processors.

MATERIALS AND METHODS

Speed, sensitivity and specificity

The variants of dynamic programming algorithm fall under the 
umbrella of Needleman Wunsh Algorithm for global alignment 
and Smith-Waterman algorithm for local alignment. A popular 
local alignment tool such as BLAST, works by looking for matches 
of all possible words’ of size w and match score threshold T or 
more, and then extending the matches by dynamic programming 
until the score drops below the threshold value T. The number 
of words generated for nucleotides is 4w since there are four bases 
viz., T, C, A and G. While a small value of w would generate 
fewer words but result in high number of HSPs (High Scoring 

Pairs), high value of w would generate more words but result in 
less HSPs. Hence in the former case there is high sensitivity, while 
the latter case provides more specificity. With an increase in 
sensitivity there are problems of high noise and thus redundant 
information, whereas with an increase in specificity there are 
concerns for missing out relevant matches. For instance, as an 
extreme case example if w=1 we generate 41 i.e., just 4 words viz., 
T, C, A and G. However, all of these four words would generate 
HSPs to match up the entire sequences, thereby generating huge 
amount of redundant data consuming high computational 
time. As a converse extreme example, say we were to compare 
a sequence of size ‘N’ with itself and the word size is kept w=N. 
This would result in a large number of words to be generated 4N, 
but only one of these words would be creating a HSP, thereby 
resulting in loss of all possible intra-sequence matches such as the 
Copy Numbers, Inversions, LINES, SINES, mini-satellites, micro-
satellites and SNPs. The story is the same for protein sequence 
matches with a slight modification that now the number of words 
would be 20w since there are 20 naturally occurring amino acids. 
Different alignment algorithms are thus suitable for different 
data quality since they have their w and T set to certain value. 
It is to be noted that most of the time consumption is in the 
extension of the HSPs. The speed, sensitivity and specificity of an 
algorithm on a given dataset are a function of data quality, w and 
T. Although there is a linear relationship between the number 
of words generated and execution time, the number of word hits 
increases exponentially with decreasing T [3].

Data quality

The DNA sequence is non-random. As an example we know 
of the presence of CpG islands or the locally biased A and T 
rich region. More GC percentage is known to be associated 
with more DNA stability, thermal stability, and species evolve 
with codon biasing due to stability criteria or some other forces. 
The mutation, addition or deletion of single nucleotides or 
large chunks of DNA undergo a survival selection test for its 
existence. The selection check depends on the existing metabolic 
pathway in a cell, because of which distant species have different 
selection criteria to any change in the genomic sequence. These 
phenomena suggests as of why does the data quality of a distant 
species, say, Arabidopsis thaliana is different from human 
beings. The survival criteria and complexity in higher organism 
is different than the lower organism, because of the existing 
metabolic pathways, and thus while a prokaryote’s ORF does not 
have introns, the eukaryotic genomic sequence is segmented by 
splice sites as introns and exons. Further, while the average gene 
length in prokary-otes is about 1 Kbp the genes in eukaryotes 
can be as big as 15 Kbp. We do not yet fully understand the 
Genome Complexity and thus some researchers consider dusting 
and masking the ‘uninformative’ region in the genome such as 
the tandem repeats and fingerprints before making comparisons. 
Whatever be the case of handling the genomic data, it is for sure 
that Genome sequence of different organism will have different 
data quality and thus influence the number of Hits of words 
generated and thereby the extension as well, resulting in variation 
in execution time.
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Time complexity for aligners

The time computational complexity of pairwise alignment is 
approximately, aW+bN2+c N2W/20w [3] Where, W is the number 
of words generated, N2 is the number of residues in the subject 
database and a, b and c are constants. The above formula, would 
have the number 20 replaced by 4 if the sequence comparison 
was for nucleotides, and then N2 would be the number of 
bases in the subject sequence. Also, let N1 be the number of 
bases in the query. Although the number of words generated, 
W, increases exponentially with decreasing T, it increases only 
linearly with the length of the query, so that doubling the query 
length doubles the number of words [3]. That is to say for a given 
data quality, keeping w and T to be constant, W=d N1, where d 
is proportionality constant. 

( ) ( ) ( )0 1 2 1 2   
20w

cdt ab N b N N N = + +  
   

1 2 1 2a N b N c N N= ′+′ + ′
( ) ( ) 1 2thus t O O N N=

i.e., query and subject sequences product.

Personalized genome comparison

As we enter into the era of personalized genome sequencing, 
we would require a more handy and powerful tool to extract 
meaningful information from the sequence so as to relate the 
individual with genetic causes of diseases, such as autism, or in 
order to understand the genetic cause of a trait of an individual. 
This would require a reference genome to be set as a standard, 
to which the individual’s genome could be compared to. We 
would require a onetime comparison of the reference genome 
with itself [4]. Additionally, each individual genome would be 
required to compare with itself as well as with the reference 
genome. However, the choice of standard reference genome is 
questionable itself, as no individual’s genome can be biased to be 
assigned as a reference genome, for the simple reason that a single 
person is not completely representative of all possible variants in 
the course of human evolution. The idea should be to create a 
hypothetical reference genome by extracting statistically relevant 
information from as many genomes as possible from population 
of varied races. This statistically relevant information would 
involve the different structural variants in the genome, such 
that all major structural variant are being incorporated into the 
hypothetical genome. Of course, as more and more individual 
genome would be made available from varied population, the 
structure of the reference genome would also need to be updated. 
If the sequencing technology becomes rapid enough, we would be 
expecting more and more of individual’s genome being available. 
Ideally, the reference genome should be dynamically updated, 
though of course with high computational requirement. The 
dynamic update can be made discrete by making the update 
periodical and thus reducing computational demand.

For many clinical purposes we choose mouse to be the candidate 
animal for carrying out experiments on it. Scientists would be 
interested in knowing the identity of an individual’s genome 
with the standard mouse genome with respect to the structural 
variants. Scientists are also interested in the structural variants of 

a chimpanzee genome to that of human. Likewise, there is a need 
of comparing two close as well as two distant species in order to 
understand the genetic makeup, evolution, and to target disease 
susceptibility.

In fact, the research and development section of many 
pharmaceutical firms also frequently require finding out the 
alignment matches of microbes to progress with the experimental 
bench work. GMSECT can be made use to cut short the time by 
many a fold.

If we were to compare two genomes, then we would require two 
‘self-comparisons’ of the genomes with itself, and a ‘non-self-
comparison’ of the genomes with each other.

Non-self-comparison

A non-self-comparison of two genome sequences would involve 
all versus all chromosome comparison such as filling up the 
entire matrix. In Figure 1 is a schematic comparison.

 

Figure 1: Graphical representation of distribution of tasks. 

Self-comparison

A self-comparison of a genome sequence of an organism or 
individual with itself would essentially generate a symmetric 
matrix, such that we would just require the diagonal element 
comparisons and half of the remaining matrix comparisons. In 
Figure 2 is a schematic view of what would be required.

Figure 2: Reduction of task to only 1/2 of the matrix when 
comparing a genome to itself.
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Genome alignment strategy

In order to obtain a ‘non-self-comparison’ genome and two 
‘self-comparison’ of genome the genome should be aligned for 
comparison in much the same way as we align two sequences. 
In Figure 3 is shown a faulty alignment followed by the right 
alignment strategy in Figure 4.

The above faulty alignment misses out the genome2 versus 
genome2 comparison, apart from doing extraneous computation 
for genome1 versus genome1. Note that, ‘non-self-comparison’ of 
genome1 versus genome2 is complete, though the square matrix 
is split up into two triangles at different positions with repetition 
of the diagonal element comparisons. 

The above genome alignment strategy takes care of the ‘self-
comparison’ as well as the ‘non-self-comparison’ for two different 
genomes. The above strategy works well for comparing genomes 
of even different sizes, say if one would like to compare the mouse 
genome with the human genome.

Divide and rule (fragmentation)

For our analysis purpose we took the first individual genome to 
be the human Build 35 reference genome sequence, such that its 
24 chromosomes are numbered as chrP1 to chrPY as in Figure 5. 
We took the second individual genome to be the Celera’s R27c 
compilation of human genome, such that its 24 chromosomes 
are numbered as chrC1 to chrCY. A ‘non-self-comparison’ of 
the genomes would represent the graph of the square matrix 
discussed above.

Figure 5: Schematic coarse grained distribution of work at 
chromosome level.

However, as we pointed out earlier, the chromosomal sequences are 
massive, and their sizes are in the order of hundreds of megabases. 
Different comparison heuristic algorithms have different massive 
sequence limits that they can operate on, beyond which there is 
concern of the memory resource and I/O constraints, resulting 
in generation of ‘core’ file due to memory address violation error. 
Needless to mention, the varying sizes of different chromosomes 
would be causing improper work-load distribution and significant 
CPU wait time in case synchronization of output file generation 
and resubmission of left over job is desired. Hence, there is 
an acute need for proper synchronized distributed processing, 
optimizing the resources of a cluster such as the memory. Now, 
let us consider two sequences of sizes N1 and N2 respectively. 
Time taken would be O (N1 × N2). For example, if N1=N2=100, 
time=O (100 × 100)=O (10,000)

Now let us fragment the two sequences into smaller sequences 
N1’=N1’’=N2’=N2’’=50 as in Figure 6. 

( ) ( )( )( ) 2 2 50 50t O O= × × ×  

=O (4×2500)     

=O (10,000)

Figure 3: Improper placement of genomes can lead to 
unnecessary computations.

Figure 4: Improper placement of genomes can lead to 
unnecessary computations.

Figure 6:  Schematic representation of how the comparisons 
needs to be done for various sequences.
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However, if we can distribute these independent comparisons 
into four Processors, then ideally,

    		
( ) 4 2500  

4
t O O × =  

   

		            =O (2500)

However, the splitting region where the partitioning was done 
can suffer, in the sense that we may miss matches at the site. 
The question is, ‘Do we really miss out the matches that we are 
interested in’? The answer is ‘No’! The strong heuristic tools for 
matches such as BLAST, is so good in finding out a match that 
it can detect a good match of even as low bases as around 24 
bases. Below is a graphical representation of the matches that 
can happen at the partitioning junction so that we can reverse 
engineer to stitch back the results generated as in Figure 7. 

Of course, we would be missing matches of small number of 
nucleotides less than around 24 bases at the junction and one is 
interested in getting those rare match events, one can definitely 
pick up small nucleotides around the partition and compare it 
with all fragments for possible matches. The event would be rare 
since we would be using much higher fragment size relatively in 
the order of millions of bases. We choose to save time rather than 
identifying the rare events for the time being. Future version of 
the software might consider taking care of the rare event in case 
such a necessity comes up.

Combining the fragmentation concept with the genome 
alignment strategy, we would result in the following comparison 
algorithm as in Figure 8. 

Where, SeQ1 to SeQN are the fragments of all the chromosomes 
of the two genome sequences in the order as stated in the genome 
alignment strategy. It is to be noted that by efficient programming 
we can quickly fragment the whole genome in the time order of 
few minutes.

Total comparisons for 1 fragment=N+(N-1)+...+3+2+1=Summation 
N=N (N+1)/2

Parallel processing 

Our goal should be to extract the information in a robust way 
and as rapidly as possible. The robustness can be introduced by 
automating the comparisons by means of parallel processing. We 
did the parallelization by means of message passing interface or 
MPI, though one can make use of other possible parallelizing tool 
for different architecture such as the symmetric multi-processor, 
or can even opt for serial job submission. MPI is a widely and 
uniformly accepted application programming interface, and 
an MPI script can be executed on any cluster for distributed 
job. The following scheme below falls under the category of 
‘embarrassingly parallel’ programming. Intensive inter-processor 
communication is not required for the genome fragmentation 
and alignment strategy that we discussed above. One could also 
submit the jobs in a serial fashion [5]. We wanted to make general 
purpose software to be operational on any cluster since the mode 
of job submission of different clusters is different, and thus 
general purpose serial job submission software is not possible 
because of lack of uniformity. Further, on most clusters an MPI 
script job has a higher priority over a serial job submission, and 
we wanted to take advantage of this fact, rather than requesting 
the cluster administration to change the priority settings.

Since the fragments are of similar size, the job execution time on 
each node would be comparable such that there would not be 
a significant idle time of any processor at the barrier as shown 
in Figure 9. GMSECT, works best while comparing genomes 
of two individuals from the same organism such that the data 
quality is same thereby further facilitating reduced idle time of 
any processor at the barrier. Of course, ‘GMSECT’ can be used 
for comparing distant species as well, though in that case the idle 
CPU time might increase a bit. Future version of the software 
might consider taking care of this aspect as well in case such a 
necessity comes up by introducing separate barriers at each node. 
It is to be noted that introducing barrier at each node can greatly 
increase the latency due to increased calls from the master to 
the slaves, causing a drop-down in the time performance in case 
comparing closely related species.

Figure 7:  Boundary sequence comparisons would need 
additional computations.

Figure 8:  Schematic distribution of workload as a ‘bag of tasks’.
Figure 9:  Schematic distribution of workload as a ‘bag of tasks’.
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Average work load on each processor for 1 fragment=N (N+1)/2n, 
where ‘n’ is the number of processors allotted.

Optimization

With the vision of the personalized genome sequencing project 
we realize the amount of data that would be generated and the 
huge amount of information that can be extracted from each 
genome, requiring us tremendous and efficient computational 
requirements. Hence, for mass comparison of 100s of individual’s 
genome, or even otherwise, we would prefer to maximally utilize 
the resources of a cluster in order to minimize the execution 
time. The secondary concern we had was to minimize the 
partitioning required so that there is minimum requirement of 
stitching back the matches, and to make the small base matches 
at the partitioning junction as a rare event, contributing to 
negligible information that would be lost in comparison to huge 
information that would be obtained.

In Figure 10 is the profile of fragmentation size versus comparison 
time using GMSECT operated on chromosome 21 of Celera’s 
Human Genome compilation in a self-comparison with 15 
processors each with 2 GB memory and 2.2 GHz using BLAST.

The profile shows hyperbolic nature resemblance till a 
fragmentation size of 4 million bases, beyond which the curve 
shoots up. In other words, the Minima is obtained at 4 million 
bases under the given conditions. Further, creating fragment size 
of more than 5 million bases resulted in generation of ‘core’ files. 

A similar hyperbolic resemblance profile was generated when 
GMSECT was operated on a distant species to human such as 
chromosome 2 of Arabidopsis thaliana under the same conditions 
using the BLAST tool choice as shown in Figure 11.

Figure 11:  Example reduction in time with firstly and increase 
in sequence size and then gradual increase in time with increase 
in sequence size. Communication and computation overhead 
plays critical role. Note: (     ) frag  vs. time.

The Minima was found again at around 4 million bases. The 
slight shift of minima could be attributed to the change in data 
quality [6]. Here again, ‘core’ files were generated when fragment 
size of 5 million or more was used due to memory address 
violation error.

Since the Minima is around 4 million bases, even for distant 
species, we can safely consider this value to be a ‘general’ optimal 
fragmentation size on HPF cluster nodes each having processor 
of the type mentioned earlier [7]. Reducing the fragmentation 
size to smaller size would not only increase the computational 
time, but also increase the approximation of stitching back the 
matches at the junction [8].

RESULTS AND DISCUSSION

Performance and evaluation

It is to be noted that with the increase in the sequence size, the 
number of comparisons increases by a power of two, because of 
the very nature of ‘Summation N’ formula i.e. N (N+1)/2. 

If x=N (number of fragments) and y=number of comparisons,

Then y=x(x+1)/2 

This equation is of the form X2=4aY, with X and Y considered 
are variable with frame-shift of x and y respectively. Thus, the 
concern is how the GMSECT performs with regard to increase 
in comparison jobs. In Figure 12 is the number of comparisons 
versus time graph generated using increased units of chromosome 
21 units of Celera’s Human Genome compilation using the 
BLAST tool choice with standard output format [9]. The above 
super linear behavior is a positive indication of the trust on the 
performance.

Figure 12:  A linear relation between jobs and time. Note: (     ) jobs  vs. time

In Figure 13 are the processors versus time performance curve 
which indicates high scalable performance using GMSECT on 
chromosome 21 versus itself of the Celera’s Human Genome 
compilation using the BLAST choice option having standard 
output format. 

Figure 13:  Decrease in time with increase in 
computing cores. Note: (     ) Non-Zip.

Figure 10:  Example reduction in time with firstly and increase 
in sequence size and then gradual increase in time with increase 
in sequence size. Communication and computation overhead 
plays critical role. Note: (     ) chrC21 Frag vs. Time.
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Sample execution

We compared the chromosome 21 of Celera’s human genome 
compilation with all of its 24 chromosomes and with all the 24 
chromosomes of the human build 35 reference sequence using 
110 processors of HPF each with 2 GB memory and 2.2 GHz 
capacity, using the pairwise BLAST comparison heuristic choice 
with all alignments having statistical relevance of expectation 
value (e-value) less than 1 and the tabular output format. The 
comparison was completed in just 2 hours and 10 minutes! 
Using the above information it is estimated that comparing 
two unique human genomes would take around 9.4 days 
comprising of two self-comparisons and a non-self. GMSECT 
can even be applied to microbial genome such as the Escherichia 
coli or algae Botryococcus braunii or yeast Saccharomyces cerevisiae 
to quickly do the comparisons, and thus finds its application to 
the pharmaceuticals and microbial product based firms for the 
research and development.

CONCLUSION AND FUTURE WORK

Self-comparison

There is scope of developing a new version of GMSECT that 
could take care of comparing contigs rather than comparing 
sequences, since not all contigs are mapped to the chromosomes. 
Further, the code can even be developed to take care of matches 
of around 24 bases or less at the splitting junction which we have 
not bothered at this stage due to the even being a rare event due 
to extremely large fragment sizes in the order of millions of bases. 

Supplementary materials 

Supplementary materials can be downloaded from https://sites.
google.com/a/iitdalumni.com/abi/educational-papers.
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