
OPEN ACCESS Freely available online

Journal of Proteomics & Bioinformatics
Research Article

Correspondence to: Abhishek Narain Singh, Schiller International University, Heidelberg Campus, Zollhofgarten 1, 69115 Heidelberg, Germany,
E-mail: abhishek.narain@iitdalumni.com

Received: September 22, 2021; Accepted: October 06, 2021; Published: October 13, 2021

Citation: Singh AN (2021) GMSECT: Genome-Wide Massive Sequence Exhaustive Comparison Tool for Structural and Copy Number Variations. J
Proteomics Bioinform.14:554.

Copyright: © 2021 Singh AN. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

1J Proteomics Bioinform, Vol. 14 Iss. 10 No: 1000554

INTRODUCTION

Sequence homology has been an established approach to get the
first hint of functional similarity. An bioRxiv preprint of this
paper was published in early 2021 and the abstract was published
in the book of abstract of BIOCOMP 2020 [1]. As the DNA
sequence database continues to grow, the chances of getting

closer matches keeps on improving. However, with the increase
in the DNA repository, there is an equal increase in demand for
handling the sequences in an efficient and rapid way [2]. Most
of the existing pair wise alignment tools are an extension to the
dynamic programming algorithm, and though they are extensively
fast in comparison to standard dynamic programming approach,

ABSTRACT
GMSECT is a parallel robust ‘Application Interface’ that efficiently handles the large genomic sequences for
rapid and efficient processing. It is a ‘message passing interface’ based parallel computing ‘Tool’ that can be
operated on a cluster for ‘Massive Sequences Exhaustive Comparison’, to identify matches such as the structural
variants. The GMSECT algorithm can be implemented using other parallel application programming interfaces
as well such as Posix-threads or can even be implemented in a serial submission fashion. There is complete
flexibility to the choice of comparison tool that can be deployed and with the optional parameters as of the
choice of comparison tools to suit the speed, sensitivity and specificity of pair wise alignment. The algorithm
is simple and robust, and can be applied to compare multiple genomes, chromosomes or large sequences, of
different individuals for personalized genome comparison and works good for homologous as well as distant
species. The tool can even be applied to smaller genomes like the microbial genome such as the Escherichia
coli or algae such as Chlamydomonas reihardtti or yeast Saccharomyces cerevisiae to quickly conduct comparisons,
and thus finds its application to the pharmaceuticals and microbial product based firms for research and
development. The application Interface can efficiently and rapidly compare massive sequences to detect for
the presence of numerous types of DNA variation existing in the genome ranging from Single Nucleotide
Polymorphism (SNPs) to larger structural alterations, such as Copy-Number Variants (CNVs) and inversions.
The new algorithm has been tested for comparing the chromosome 21 of Celera’s R27c compilation with all
the 48 chromosomes of Celera’s R27c compilation and with all the 48 chromosomes of the human Build 35
reference sequence, which took just 2 Hours and 10 minutes using the pair wise BLAST algorithm choice
and with 110 processors each with 2.2 GHz capacity and 2 GB memory. GMSECT facilitates rapid scanning
and interpretation in personalized sequencing project. The application interface with the above resources and
alignment choice is estimated to do exhaustive comparison of the human genome with itself in just 2.35
days. An exhaustive comparison of an individual’s genome with a reference genome would comprise of a two
‘self-genome’ comparison and a ‘non-self-genome’ comparison which is estimated to take about 9.4 days with
the above resources. With the advent of personalized genome sequencing project, it would be desirable to
compare 100s of individual’s genome with a reference genome. This would involve a ‘non-self-genome’ and a
‘self-genome’ comparison for each genome, and would take around 7 days for each individual’s genome using
GMSECT and the above mentioned resources.

Keywords: Genome comparison; DNA sequence; Exhaustive comparison

GMSECT: Genome-Wide Massive Sequence Exhaustive Comparison Tool for
Structural and Copy Number Variations
Abhishek Narain Singh*

Schiller International University, Heidelberg Campus, Zollhofgarten 1, 69115 Heidelberg, Germany

2J Proteomics Bioinform, Vol. 14 Iss. 10 No: 1000554

Singh AN OPEN ACCESS Freely available online

they are not rapid and efficient to handle massive sequences,
resulting in memory address violation and other computational
complications. GMSECT takes into consideration of memory and
processor resources to efficiently do the alignment comparison
with minimal time using parallel computing approach. GMSECT
is an application interface which can be used with any pairwise
alignment tool such as BLAST, BLAT, FASTA or any other
possible alignment tool.

What are the massive sequences?

Massiveness of a sequence is dictated not just in terms of the size
of the genome, but the computational complexity that increases
with incremental size. In other words, a massive sequence is one
that takes a lot of time to process using standard computational
resources, and many a times do not get processed reasonably well.
Massive sequences are the sequences which are characteristics of
higher eukaryotes such as the vertebrates and the plants which
have their genome size in the order of hundreds of megabases.
Typical example includes the model plant Arabidopsis thaliana
genome and the Human genome. For instance, the size in
megabytes of chromosome 1, 2 and 3 of human Build 35 reference
sequence are 241 MB, 237 MB and 195 MB respectively. However,
the term massive is relative and should be used in context with
the algorithm implemented. One reason for the prior statement
is the difference in the number of words generated by different
algorithms and thereby the hits resulting in High Scoring Pairs
(HSPs) and their extension until the score drops below the set
threshold value. Thus there is a computational limit with respect
to the memory resource. The compared sequences should not be
so massive such as to cause ‘memory address violation’, resulting
in ‘core’ files generation or other errors such as ‘segmentation
fault’, ’mpid:Broken pipe!’, or a cause of the machine to ‘hang’.
For instance, while the massiveness limit on a 2 GB, 2.2 GHz
Processor for BLASTn could be around 50,000 bases, BLAT
20,000 bases. Of course each of these heuristics has their own
merits and demerits under various requirements to have different
suitability. Under fair approximation, ‘number of bases could be
considered roughly to be equal to number of bytes’. Because of
the massive size of sequences and computational requirements,
the different pair wise alignment algorithms are impractical
without the use of a supercomputer. The present algorithm serves
as a parallel computing interface to the existing heuristic tools
which can be operated on a cluster of processors.

MATERIALS AND METHODS

Speed, sensitivity and specificity

The variants of dynamic programming algorithm fall under the
umbrella of Needleman Wunsh Algorithm for global alignment
and Smith-Waterman algorithm for local alignment. A popular
local alignment tool such as BLAST, works by looking for matches
of all possible words’ of size w and match score threshold T or
more, and then extending the matches by dynamic programming
until the score drops below the threshold value T. The number
of words generated for nucleotides is 4w since there are four bases
viz., T, C, A and G. While a small value of w would generate
fewer words but result in high number of HSPs (High Scoring

Pairs), high value of w would generate more words but result in
less HSPs. Hence in the former case there is high sensitivity, while
the latter case provides more specificity. With an increase in
sensitivity there are problems of high noise and thus redundant
information, whereas with an increase in specificity there are
concerns for missing out relevant matches. For instance, as an
extreme case example if w=1 we generate 41 i.e., just 4 words viz.,
T, C, A and G. However, all of these four words would generate
HSPs to match up the entire sequences, thereby generating huge
amount of redundant data consuming high computational
time. As a converse extreme example, say we were to compare
a sequence of size ‘N’ with itself and the word size is kept w=N.
This would result in a large number of words to be generated 4N,
but only one of these words would be creating a HSP, thereby
resulting in loss of all possible intra-sequence matches such as the
Copy Numbers, Inversions, LINES, SINES, mini-satellites, micro-
satellites and SNPs. The story is the same for protein sequence
matches with a slight modification that now the number of words
would be 20w since there are 20 naturally occurring amino acids.
Different alignment algorithms are thus suitable for different
data quality since they have their w and T set to certain value.
It is to be noted that most of the time consumption is in the
extension of the HSPs. The speed, sensitivity and specificity of an
algorithm on a given dataset are a function of data quality, w and
T. Although there is a linear relationship between the number
of words generated and execution time, the number of word hits
increases exponentially with decreasing T [3].

Data quality

The DNA sequence is non-random. As an example we know
of the presence of CpG islands or the locally biased A and T
rich region. More GC percentage is known to be associated
with more DNA stability, thermal stability, and species evolve
with codon biasing due to stability criteria or some other forces.
The mutation, addition or deletion of single nucleotides or
large chunks of DNA undergo a survival selection test for its
existence. The selection check depends on the existing metabolic
pathway in a cell, because of which distant species have different
selection criteria to any change in the genomic sequence. These
phenomena suggests as of why does the data quality of a distant
species, say, Arabidopsis thaliana is different from human
beings. The survival criteria and complexity in higher organism
is different than the lower organism, because of the existing
metabolic pathways, and thus while a prokaryote’s ORF does not
have introns, the eukaryotic genomic sequence is segmented by
splice sites as introns and exons. Further, while the average gene
length in prokary-otes is about 1 Kbp the genes in eukaryotes
can be as big as 15 Kbp. We do not yet fully understand the
Genome Complexity and thus some researchers consider dusting
and masking the ‘uninformative’ region in the genome such as
the tandem repeats and fingerprints before making comparisons.
Whatever be the case of handling the genomic data, it is for sure
that Genome sequence of different organism will have different
data quality and thus influence the number of Hits of words
generated and thereby the extension as well, resulting in variation
in execution time.

3J Proteomics Bioinform, Vol. 14 Iss. 10 No: 1000554

Singh AN OPEN ACCESS Freely available online

Time complexity for aligners

The time computational complexity of pairwise alignment is
approximately, aW+bN2+c N2W/20w [3] Where, W is the number
of words generated, N2 is the number of residues in the subject
database and a, b and c are constants. The above formula, would
have the number 20 replaced by 4 if the sequence comparison
was for nucleotides, and then N2 would be the number of
bases in the subject sequence. Also, let N1 be the number of
bases in the query. Although the number of words generated,
W, increases exponentially with decreasing T, it increases only
linearly with the length of the query, so that doubling the query
length doubles the number of words [3]. That is to say for a given
data quality, keeping w and T to be constant, W=d N1, where d
is proportionality constant.

() () ()0 1 2 1 2
20w

cdt ab N b N N N = + +  
 

1 2 1 2a N b N c N N= ′+′ + ′
() () 1 2thus t O O N N=

i.e., query and subject sequences product.

Personalized genome comparison

As we enter into the era of personalized genome sequencing,
we would require a more handy and powerful tool to extract
meaningful information from the sequence so as to relate the
individual with genetic causes of diseases, such as autism, or in
order to understand the genetic cause of a trait of an individual.
This would require a reference genome to be set as a standard,
to which the individual’s genome could be compared to. We
would require a onetime comparison of the reference genome
with itself [4]. Additionally, each individual genome would be
required to compare with itself as well as with the reference
genome. However, the choice of standard reference genome is
questionable itself, as no individual’s genome can be biased to be
assigned as a reference genome, for the simple reason that a single
person is not completely representative of all possible variants in
the course of human evolution. The idea should be to create a
hypothetical reference genome by extracting statistically relevant
information from as many genomes as possible from population
of varied races. This statistically relevant information would
involve the different structural variants in the genome, such
that all major structural variant are being incorporated into the
hypothetical genome. Of course, as more and more individual
genome would be made available from varied population, the
structure of the reference genome would also need to be updated.
If the sequencing technology becomes rapid enough, we would be
expecting more and more of individual’s genome being available.
Ideally, the reference genome should be dynamically updated,
though of course with high computational requirement. The
dynamic update can be made discrete by making the update
periodical and thus reducing computational demand.

For many clinical purposes we choose mouse to be the candidate
animal for carrying out experiments on it. Scientists would be
interested in knowing the identity of an individual’s genome
with the standard mouse genome with respect to the structural
variants. Scientists are also interested in the structural variants of

a chimpanzee genome to that of human. Likewise, there is a need
of comparing two close as well as two distant species in order to
understand the genetic makeup, evolution, and to target disease
susceptibility.

In fact, the research and development section of many
pharmaceutical firms also frequently require finding out the
alignment matches of microbes to progress with the experimental
bench work. GMSECT can be made use to cut short the time by
many a fold.

If we were to compare two genomes, then we would require two
‘self-comparisons’ of the genomes with itself, and a ‘non-self-
comparison’ of the genomes with each other.

Non-self-comparison

A non-self-comparison of two genome sequences would involve
all versus all chromosome comparison such as filling up the
entire matrix. In Figure 1 is a schematic comparison.

Figure 1: Graphical representation of distribution of tasks.

Self-comparison

A self-comparison of a genome sequence of an organism or
individual with itself would essentially generate a symmetric
matrix, such that we would just require the diagonal element
comparisons and half of the remaining matrix comparisons. In
Figure 2 is a schematic view of what would be required.

Figure 2: Reduction of task to only 1/2 of the matrix when
comparing a genome to itself.

4J Proteomics Bioinform, Vol. 14 Iss. 10 No: 1000554

Singh AN OPEN ACCESS Freely available online

Genome alignment strategy

In order to obtain a ‘non-self-comparison’ genome and two
‘self-comparison’ of genome the genome should be aligned for
comparison in much the same way as we align two sequences.
In Figure 3 is shown a faulty alignment followed by the right
alignment strategy in Figure 4.

The above faulty alignment misses out the genome2 versus
genome2 comparison, apart from doing extraneous computation
for genome1 versus genome1. Note that, ‘non-self-comparison’ of
genome1 versus genome2 is complete, though the square matrix
is split up into two triangles at different positions with repetition
of the diagonal element comparisons.

The above genome alignment strategy takes care of the ‘self-
comparison’ as well as the ‘non-self-comparison’ for two different
genomes. The above strategy works well for comparing genomes
of even different sizes, say if one would like to compare the mouse
genome with the human genome.

Divide and rule (fragmentation)

For our analysis purpose we took the first individual genome to
be the human Build 35 reference genome sequence, such that its
24 chromosomes are numbered as chrP1 to chrPY as in Figure 5.
We took the second individual genome to be the Celera’s R27c
compilation of human genome, such that its 24 chromosomes
are numbered as chrC1 to chrCY. A ‘non-self-comparison’ of
the genomes would represent the graph of the square matrix
discussed above.

Figure 5: Schematic coarse grained distribution of work at
chromosome level.

However, as we pointed out earlier, the chromosomal sequences are
massive, and their sizes are in the order of hundreds of megabases.
Different comparison heuristic algorithms have different massive
sequence limits that they can operate on, beyond which there is
concern of the memory resource and I/O constraints, resulting
in generation of ‘core’ file due to memory address violation error.
Needless to mention, the varying sizes of different chromosomes
would be causing improper work-load distribution and significant
CPU wait time in case synchronization of output file generation
and resubmission of left over job is desired. Hence, there is
an acute need for proper synchronized distributed processing,
optimizing the resources of a cluster such as the memory. Now,
let us consider two sequences of sizes N1 and N2 respectively.
Time taken would be O (N1 × N2). For example, if N1=N2=100,
time=O (100 × 100)=O (10,000)

Now let us fragment the two sequences into smaller sequences
N1’=N1’’=N2’=N2’’=50 as in Figure 6.

() ()()() 2 2 50 50t O O= × × ×

=O (4×2500)

=O (10,000)

Figure 3: Improper placement of genomes can lead to
unnecessary computations.

Figure 4: Improper placement of genomes can lead to
unnecessary computations.

Figure 6: Schematic representation of how the comparisons
needs to be done for various sequences.

5J Proteomics Bioinform, Vol. 14 Iss. 10 No: 1000554

Singh AN OPEN ACCESS Freely available online

However, if we can distribute these independent comparisons
into four Processors, then ideally,

 		
() 4 2500

4
t O O × =  

 

		 =O (2500)

However, the splitting region where the partitioning was done
can suffer, in the sense that we may miss matches at the site.
The question is, ‘Do we really miss out the matches that we are
interested in’? The answer is ‘No’! The strong heuristic tools for
matches such as BLAST, is so good in finding out a match that
it can detect a good match of even as low bases as around 24
bases. Below is a graphical representation of the matches that
can happen at the partitioning junction so that we can reverse
engineer to stitch back the results generated as in Figure 7.

Of course, we would be missing matches of small number of
nucleotides less than around 24 bases at the junction and one is
interested in getting those rare match events, one can definitely
pick up small nucleotides around the partition and compare it
with all fragments for possible matches. The event would be rare
since we would be using much higher fragment size relatively in
the order of millions of bases. We choose to save time rather than
identifying the rare events for the time being. Future version of
the software might consider taking care of the rare event in case
such a necessity comes up.

Combining the fragmentation concept with the genome
alignment strategy, we would result in the following comparison
algorithm as in Figure 8.

Where, SeQ1 to SeQN are the fragments of all the chromosomes
of the two genome sequences in the order as stated in the genome
alignment strategy. It is to be noted that by efficient programming
we can quickly fragment the whole genome in the time order of
few minutes.

Total comparisons for 1 fragment=N+(N-1)+...+3+2+1=Summation
N=N (N+1)/2

Parallel processing

Our goal should be to extract the information in a robust way
and as rapidly as possible. The robustness can be introduced by
automating the comparisons by means of parallel processing. We
did the parallelization by means of message passing interface or
MPI, though one can make use of other possible parallelizing tool
for different architecture such as the symmetric multi-processor,
or can even opt for serial job submission. MPI is a widely and
uniformly accepted application programming interface, and
an MPI script can be executed on any cluster for distributed
job. The following scheme below falls under the category of
‘embarrassingly parallel’ programming. Intensive inter-processor
communication is not required for the genome fragmentation
and alignment strategy that we discussed above. One could also
submit the jobs in a serial fashion [5]. We wanted to make general
purpose software to be operational on any cluster since the mode
of job submission of different clusters is different, and thus
general purpose serial job submission software is not possible
because of lack of uniformity. Further, on most clusters an MPI
script job has a higher priority over a serial job submission, and
we wanted to take advantage of this fact, rather than requesting
the cluster administration to change the priority settings.

Since the fragments are of similar size, the job execution time on
each node would be comparable such that there would not be
a significant idle time of any processor at the barrier as shown
in Figure 9. GMSECT, works best while comparing genomes
of two individuals from the same organism such that the data
quality is same thereby further facilitating reduced idle time of
any processor at the barrier. Of course, ‘GMSECT’ can be used
for comparing distant species as well, though in that case the idle
CPU time might increase a bit. Future version of the software
might consider taking care of this aspect as well in case such a
necessity comes up by introducing separate barriers at each node.
It is to be noted that introducing barrier at each node can greatly
increase the latency due to increased calls from the master to
the slaves, causing a drop-down in the time performance in case
comparing closely related species.

Figure 7: Boundary sequence comparisons would need
additional computations.

Figure 8: Schematic distribution of workload as a ‘bag of tasks’.
Figure 9: Schematic distribution of workload as a ‘bag of tasks’.

6J Proteomics Bioinform, Vol. 14 Iss. 10 No: 1000554

Singh AN OPEN ACCESS Freely available online

Average work load on each processor for 1 fragment=N (N+1)/2n,
where ‘n’ is the number of processors allotted.

Optimization

With the vision of the personalized genome sequencing project
we realize the amount of data that would be generated and the
huge amount of information that can be extracted from each
genome, requiring us tremendous and efficient computational
requirements. Hence, for mass comparison of 100s of individual’s
genome, or even otherwise, we would prefer to maximally utilize
the resources of a cluster in order to minimize the execution
time. The secondary concern we had was to minimize the
partitioning required so that there is minimum requirement of
stitching back the matches, and to make the small base matches
at the partitioning junction as a rare event, contributing to
negligible information that would be lost in comparison to huge
information that would be obtained.

In Figure 10 is the profile of fragmentation size versus comparison
time using GMSECT operated on chromosome 21 of Celera’s
Human Genome compilation in a self-comparison with 15
processors each with 2 GB memory and 2.2 GHz using BLAST.

The profile shows hyperbolic nature resemblance till a
fragmentation size of 4 million bases, beyond which the curve
shoots up. In other words, the Minima is obtained at 4 million
bases under the given conditions. Further, creating fragment size
of more than 5 million bases resulted in generation of ‘core’ files.

A similar hyperbolic resemblance profile was generated when
GMSECT was operated on a distant species to human such as
chromosome 2 of Arabidopsis thaliana under the same conditions
using the BLAST tool choice as shown in Figure 11.

Figure 11: Example reduction in time with firstly and increase
in sequence size and then gradual increase in time with increase
in sequence size. Communication and computation overhead
plays critical role. Note: () frag vs. time.

The Minima was found again at around 4 million bases. The
slight shift of minima could be attributed to the change in data
quality [6]. Here again, ‘core’ files were generated when fragment
size of 5 million or more was used due to memory address
violation error.

Since the Minima is around 4 million bases, even for distant
species, we can safely consider this value to be a ‘general’ optimal
fragmentation size on HPF cluster nodes each having processor
of the type mentioned earlier [7]. Reducing the fragmentation
size to smaller size would not only increase the computational
time, but also increase the approximation of stitching back the
matches at the junction [8].

RESULTS AND DISCUSSION

Performance and evaluation

It is to be noted that with the increase in the sequence size, the
number of comparisons increases by a power of two, because of
the very nature of ‘Summation N’ formula i.e. N (N+1)/2.

If x=N (number of fragments) and y=number of comparisons,

Then y=x(x+1)/2

This equation is of the form X2=4aY, with X and Y considered
are variable with frame-shift of x and y respectively. Thus, the
concern is how the GMSECT performs with regard to increase
in comparison jobs. In Figure 12 is the number of comparisons
versus time graph generated using increased units of chromosome
21 units of Celera’s Human Genome compilation using the
BLAST tool choice with standard output format [9]. The above
super linear behavior is a positive indication of the trust on the
performance.

Figure 12: A linear relation between jobs and time. Note: () jobs vs. time

In Figure 13 are the processors versus time performance curve
which indicates high scalable performance using GMSECT on
chromosome 21 versus itself of the Celera’s Human Genome
compilation using the BLAST choice option having standard
output format.

Figure 13: Decrease in time with increase in
computing cores. Note: () Non-Zip.

Figure 10: Example reduction in time with firstly and increase
in sequence size and then gradual increase in time with increase
in sequence size. Communication and computation overhead
plays critical role. Note: () chrC21 Frag vs. Time.

7J Proteomics Bioinform, Vol. 14 Iss. 10 No: 1000554

Singh AN OPEN ACCESS Freely available online

Sample execution

We compared the chromosome 21 of Celera’s human genome
compilation with all of its 24 chromosomes and with all the 24
chromosomes of the human build 35 reference sequence using
110 processors of HPF each with 2 GB memory and 2.2 GHz
capacity, using the pairwise BLAST comparison heuristic choice
with all alignments having statistical relevance of expectation
value (e-value) less than 1 and the tabular output format. The
comparison was completed in just 2 hours and 10 minutes!
Using the above information it is estimated that comparing
two unique human genomes would take around 9.4 days
comprising of two self-comparisons and a non-self. GMSECT
can even be applied to microbial genome such as the Escherichia
coli or algae Botryococcus braunii or yeast Saccharomyces cerevisiae
to quickly do the comparisons, and thus finds its application to
the pharmaceuticals and microbial product based firms for the
research and development.

CONCLUSION AND FUTURE WORK

Self-comparison

There is scope of developing a new version of GMSECT that
could take care of comparing contigs rather than comparing
sequences, since not all contigs are mapped to the chromosomes.
Further, the code can even be developed to take care of matches
of around 24 bases or less at the splitting junction which we have
not bothered at this stage due to the even being a rare event due
to extremely large fragment sizes in the order of millions of bases.

Supplementary materials

Supplementary materials can be downloaded from https://sites.
google.com/a/iitdalumni.com/abi/educational-papers.

REFERENCES
1.	 Singh A, MSECT, Book of abstract, The 21st International Conference

on Bioinformatics and Computa-tional Biology (BIOCOMP 2020) as
part of American Council on Science and Education/CSCE 2020,
ISBN # 1-60132-512-6.

2.	 Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten
years of next-generation sequencing technologies. Nat Rev Genet.
2016;17(6):333-51.

3.	 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215(3):403-10.

4.	 Riley AB, Kim D, Hansen AK. Genome sequence of “Candidatus
Carsonella ruddii” strain BC, a nutritional endosymbiont of
Bactericera cockerelli. Genome Announc. 2017;5(17):e00236-17.

5.	 Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW,
et al. Decoding the massive genome of loblolly pine using haploid
DNA and novel assembly strategies. Genome Biol.2014;15(3):1-3.

6.	 Nakato R, Gotoh O. Cgaln: Fast and space-efficient whole-genome
alignment. BMC Bioinformatics. 2010;11(1):1-4.

7.	 Reinert G, Chew D, Sun F, Waterman MS. Alignment-free sequence
comparison (I): Statistics and power. J Comput Biol. 2009;16(12):1615-
34.

8.	 Orlov YL, Potapov VN. Complexity: An internet resource
for analysis of DNA sequence complexity. Nucleic Acids Res.
2004;32(suppl_2):W628-33.

9.	 Torreno O, Trelles O. Breaking the computational barriers of
pairwise genome comparison. BMC Bioinformatics. 2015;16(1):1-3.

https://doi.org/10.1038/nrg.2016.49
https://dx.doi.org/10.1016/S0022-2836(05)80360-2
https://dx.doi.org/ 10.1128/genomeA.00236-17
https://doi.org/10.1186/gb-2014-15-3-r59
https://doi.org/10.1186/1471-2105-11-224
https://dx.doi.org/10.1089/cmb.2009.0198
https://dx.doi.org/10.1093/nar/gkh466
https://doi.org/10.1186/s12859-015-0679-9

